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Classical theory of scattering of an electron beam by a laser standing wave
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A classical theory of scattering of an electron beam by a laser standing wave {the Kapitza-Dirac effect) is

presented. The prediction of the theory is in good agreement with all the experimental results which were

reported independently by Bartell et al. , Schwarz et al. , Takeda et al, , and Pfeiffer. This shows that the
interaction of a free electron with coherent radiation is basically a classical process.

I. INTRODUCTION.

On the basis of the effect of "stimulated Compton
scattering, " Kapitza and Dirac suggested in 1933'
that a beam of electrons of mell-defined momentum

p could be reflected from a standing light wave of
wavelength A. , now known as "Kapitza-Dirac ef-
fect." They predicted that the reflection is re-
quired to obey the first-order Bragi' condition
with a lattice-spacing equivalent to —,

'
A. , and the

probability of an electron being reQected is pro-
portional to the square of the intensity of the light
beam. They also suggested that the intensity of
ordinary light source (green mercury light of
A. = 5460 L) is too low for any possible experimental
observation.

The experimental investigation of this effect be-
came possible after the advent of laser wave. '
Observations of the scattering of electron beams
by laser standing waves were first reported inde-
pendently by Bartell- Thompson-Roskos' and
Schwarz-Tourtellotte-Gaertner in 1965. . Subse-
quently, four independent and detailed experimen-
tal results of Schwarz, ' Bartell-Roskos-Thomp-
son, ' Takeda-Matsui, ' and Pfeiffer' were pub-
lished. These results were not only different
from each other but also inconsistent with the pre-
diction of Kapitza and Dirac. In the experiments
of Schwarz, ' Bartell et al. ,' and Takeda et al. ,

'
the maximum deflection probabilities were re-
ported not at the Bragg condition, but at smaller
deflection angles. In Pfeiffer's experiment, ' no
deflected electrons were observed at the Bragg
condition although the detection system used
should have been capable of detecting deflection
probabilities of less than 1%. Schwarz also re-
ported that the deflection would be minimum if the
alignment between the laser beam and the electron
beam was set to satisfy the Bragg angle. The
confused situation of the experimental results has
even caused some authors to argue, on the basis
of the picture of the Kapitza-Dirac scattering,
that Schwarz's results only represented noise. "

On the theoretical side, more-general quantum-
mechanical treatments" "as well as semi-quan-
tum-mechanical treatments'"" were reported in
the past decade by a number of authors. The
quantum-mechanical approach has been developed
rigorously so that it can be applied to experimental
conditions. The s emi-quantum-mechanical ap-
proach also provides another interpretation for
the scattering process as diffraction by a grating.
In spite of all these efforts, a satisfactory theo-
retical explanation of the experimental facts has
not yet been obtained. Obviously, the basic ques-
tion is whether the quantum-mechanical (stochas-
tic) approach has been developed adequately to de-
scribe this effect or that the interaction of a free
electron with coherent radiation is basically a
classical (deterministic) process. " The latter
implies that the quantum-mechanical picture of
electron-radiation interaction may not be valid for
coherent radiation. Since the fundamental property
of a laser, in comparison with that of ordinary
light, is characterized by its coherency and not by
itS intensity, it is reasonable to believe that the
scattering of an electron beam by a laser standing
wave may not be physically interpreted as the
"stimulated Compton scattering" of the Kapitza-
Dirac effect which was considered implicitly for
incoherent light.

In this work, a classical theory of the scattering
of an electron beam by a laser standing. wave is
given. It will be shown that the results obtained
by this theory are in good agreement with all the
recent experimental results, including those of
Schwarz et al. A summary of numerical results
obtained from the previous theories is given in the
Appendix for comparison.

II. CLASSICAL THEORY

Our classical. theory will be developed by con-
sidering the effect of an electromagnetic plane
wave on the motion of a free electron"'" accord-
ing to the following assumptions:
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20 CLASSICAL THEORY OF SCATTERING OF AN ELECTRON. . .

(i) The laser beam is a coherent and linearly
polarized electromagnetic plane wave with neither
angular divergence nor frequency spread. It
forms an ideal standing wave with a totally reQect-
ing mirror.

(ii) The incident elect'ron beam is monochroma-
tic and has no angular divergence.

(iii} In a very intense laser beam, the Lorentz
force due to the field of the laser acting on each
individual electron in the electron beam is so
strong that the mgch smaller effects of the elec-
tron-electron interaction, the radiation reaction,
and the influence of the electron beam on the laser
beam shall not be considered.

(iv) Since the velocities of the electrons used in
the experimental measurements are much smaller,
than the velocity of light, we shall assume the in-
teraction being nonrelativistic.

A. Motion of an electron in a laser standing wave

According to assumptions (iii) and (iv), the equa-
tion of motion of an electron in an electromagnetic
standing wave is given by the Lorentz force equa-
tion

dp&
mc —

&I
=e(z, + p», ),dI;)

where m, e, and P= v/c are the inertial mass,
electric charge, and velocity of the electron, re-
spectively; c is the velocity of light; and E, and

H, are the electric and magnetic fields of the
standing wave. From assumption (i}, the standing
wave is formed by the superposition of two plane
waves of equal intensity and the same frequency
but traveling in opposite directions. Therefore,
we have

E,= E,(r,)+ Z (r )

and

tain the basic equation of motion .

F=mc —=e 1 — „E,+ 1+P„E

E =mE, sin(&u +re+ v), (4)

where co is the angular frequency of the laser, p
is the phase factor specified by the initial time
relation between the standing wave and the elec-
tron, and m is the phase change after reflecting
from the mirror. Since dr. /dt=1 —p„, dr /dt
= 1+P„, k'm=sin$, and 1'm=cosf, the three
components of the equation of the electron motion
(3) become

F~dt = mcd p»= eE,[sin(&ur, + y)dr,

-sin(&ur + p)dr ]sin), (5a)

E,dt =mcdp, =eE,[sin(&ur. + y)dr.

-sin(~r + q)dr ]cosg, (5b)

+(P E, -P Z )n],
where P„=n P.

The picture of interaction is schematically shown
in Fig. 1 where there are four unit vectors k, 1,
m, and n. 1 is perpendicular to n and lies in the
plane of incidence formed by n and Po(= vo/c), the
initial velocity of the electron. k, n, 1 forms a
triad with k=n Xl. m, the direction of polariza-
tion of the laser beam, is perpendicular to n and
makes an angle t with l. The electron with vel-
ocity Po enters the standing wave at a small inci-
dent angle 80. After passing through the interac-
tion region, it leaves the standing wave with a final
velocity P and an angle of deflection 4 . Now let
the electric fields of the advanced and retarded
waves be

E,= m E, sin(&ur, + y)

and

H, = H, (r,) + H (r )

with,

(2a)

and

H,(r,)=n x Z,(r, ) INCIDENT
ELECTRON
BEAM

(2b)H (r )=-n xz(r ),
where E, and H, are the electromagnetic field of
the advanced plane wave with retarded time v',

=t -n p, direction of wave propagation n, and
position vector p= r/c; E and H are those of the
retarded wave with advanced time & = t +n ~~p and
direction of wave propagation -n; r is the position
of the electron measured by the laboratory observ-
er relative to whom the standing wave is defined.
Substituting Eqs. (2a) and (2b) into Eq. (1), we ob-

&LASER
STANDING
NAVE

DEFLECTED 4 (

ELETRONS
p

MIRROR

FIG. 1. Deflection of an electron by laser standing
wave
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E„=me " =eE,(p»sin)+ p, cos))dI3„

x [sin((dv, + y)+sin((d~ + y}].
(5c)

In the experimental investigations of the Kapitza-
Dirac effect cited earlier, only the deQections of
the electron beam along n were measured. There-
fore, the following calculation on the electron mo-
tion is restricted to the n direction unless other-
wise stated. Equation (5c) ean be further simpli-
fied by eliminating P» and P, obtained from Eqs.
(5a) and (5b). Let the initial conditions be r= r»
P=PO, and p„=p~=r~/c=-v, 0=v o at t=0. The
integration of Eqs. (5a) and (5b) is trivial and is
given by

P»= Po» —2(e&o/mc(d)[sin((dt+ y)sin(dp„

-siny sin(dp~]sin] 2 (6a)

P& = Po, —2 (e&0/me(d)[sin((dt + y) sinu p„

-siny sin(d p~]cos), (6b)

where P» ——0 because the electron beam is experi-
mentally always aligned on the n-1 plane. With
these results, we obtain from Eq. (5C),

-»tm" = 2 t (dpo( cos) cos(dp„sin((d t+ y)

velocity along the direction n. With condition wt

»1, we obta, in

dP ~l /2" = 2 . P()( cos) cos(dp„
dt

," = -e(d sin(2(dp„), (8)

which ha. s exactly the same form as the equation of
motion of a simple pendulum whose solution is
well known. " From Eq. (8), we obtain the invar-
iant relation

&„=- p'„—& cos(2(dp„) = p~ —(. Cos(2(dp, „)-=e,„. (9)

Further integration of Eq. (9) gives the interac-
tion time t for the electron of velocity P, to pass
through the laser beam of dia.meter D. Thus

dan

„2 [ecos(2(dp„)+E~]'~' eP, ' (io)

x [cosy —eos((dt + y)]
—e(d sin(2(dp„) .

For simplicity, let cos) = 0; this means the polar-
ization of the laser is adjusted perpendicular to
the electron path. ' The effect of the first term of
Eq. (7) for cos(220 shall be discussed later. Now

we have

1-4 sing sinmpo„cosmp„—

x [cosy —eos((dt + y)] (6d}

where p„and P„are the time-average position and

-2 e(d[sin(2(dp„)sin'((dt + y)

-2 siny sin(dpo„cos(dp„sin((dt+ y)], (Ge)

where e= (eE,/mc(d}'. Note that each term on the
right-hand side of this equation consists of a sin-
usoidal function of time. Since the velocity of the
electron in the experiments is much smaller than
that of light, the rapidly time-varying parts of the
electron field interaction can be neglected. This
assumption has been used in Refs. 12, 13, 15, and
16. As a matter of fa,ct, these time-varying parts
only cause a small broadening of the electron
beam. Thus we take the time average of Eq.
(6c),

dp„
dt t

" = 2 po( eso( cos(dp„[cosy —cos((dt + y)]

1 . 1
stn s(n(2tsp ) 1 — si 2( (s s)s ntssinsi(s)

2Qpt 2 Q)t

a,n incomplete elliptic integral of the first kind.
For given values of p,„, Po, P&, and D, the value

of p„can be calculated from Eq. (10) by numerical
method. Substituting this value into Eq. (9), we

obtain the corresponding value of P„. Consequent-

ly, the angle of deflection of the electron 4 may
be calculated:

p„=+p.„ (12)

This relation is of special interest because it is
reduced to the condition of Bragg deflection' by
taking P„=—P,„and P,„=P„e, where P„s is the in-
cident velocity satisfying the Bragg condition.

According to Eq. (9), the total energy of the
electron in the intera, ction region is given by

h„= -2m%„'+ V„(p„)= —,
' mvm~+ U,„(p,„)= h~,

where 8„=—,
' mc'e„, 8,„=—,

' mc'&~, and the poten-
tial energies U„= —8cos(2(dp„) and U~= -g cos
(2(dpo„), with g = (e'Eo/2m(dm). Obviously, g„ is
conserved and depends on the p~ and P~ of the
electron.

where 6„ the incident angle, is very small in the
experimental setup. Therefore, 4 is a function
of (8„p~, P„D). Furthermore, if (dp„= jr+(dp~
for j= 0, +1,.. . , we obtain from Eq. (9) that
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The solutions of Eq. (9) are standard" and can
be described in a phase plane by curves of con-
stant energy as shown in Fig. 2, where e„=&p„
and e~/e =,8~/b . For different values of eo„, the
motion of the electron is described by different
curves and is discussed as follows:

(i) Since p~ & 0, we always have eo„/F& -1 in Eq.
(9).

(ii) For 1 & co„/e& -1, the curves are closed
curves encircling the center points at (n„=+j7},
P„=Q) for all integers j. The motion of the elec-
tron is periodic with n„andP„oscillating about
the center points with amplitudes a, = wp, = —,

' cos '
x(-eo„/e) and p, = (a+co„)' ' &(2F) '. The period
T of the motion in each closed curve is equal to
four times the integral of Eq. (10) integrated from
p„= 0 to p, . When the variable c/„ in Eq. (10}is
changed to P by the relation sinn„= sinn, sing, T
is given by the complete elliptic integral of the
first kind

4 '/' dgT= s (2}}' ' j (1 —k' sis*k}'1'

1+ (-')'k'+ 'k'+ ~ ~ ~ (i4)
2

-7K/2

( h

m/2
4.0

2.0
1.0
O.s
0.0

-0.5

ah= COPh

FIG. 2. Constant energy curves of the time average
motion of the electron in a phase plane.

where k'= sin'a, = p~/2 e+ sin'no„and n ~= &up~,
the incident phase. It is evident from Eq. (14)
that the period increases with the amplitude e,.
For a given P,„, the motion of the electron with
a~= 0 or +jn has the shortest period T, with k'
=k', =P'o„/2e in Eq. (14).

(iii) For e~/~= 1, Eq. (9) is reduced to P„=+P„,
icosa„, where

p„,= (2r)'/' =W(e&, /mco/) (i5)

is the critical velocity ( po„~ & p„, holds for any
electron moving along the closed curves in Fig. 2).

(iv) For q, /q & 1, p„will never reach zero and is
always either positive or negative. The curves
are open curves as shown in Fig. 2. This is al-
ways true for

~ P~ ~
& P„,.

B. Deflection of an electron beam by a laser standing wave

We have shown that the angle of deflection 4 for
a single electron is a function of 8„Po, t, Eo, &o,

and p«. For an electron beam satisfying assump-
tion (ii), the parameters (&„P„t, E„(d) for any
electron of the beam are the same, but the param-
eter p«of the electrons spreads over many many
wavelengths along p„as the cross section of the
electron beams used in the experiments are much
larger than the wavelength A. of the laser. There-
fore, the distribution of 4 of the electrons can be
calculated if the p«of each electron is known.
This is obviously impossible. However, since the
interaction potential U„=-gcos(2(dp„} is periodic
along p„with identical unit cells of dimension —, A. ,
the distribution of 4 is the same whether the in-
teraction process is considered as taking place in
a periodic array of a large number of identical
cells or in a superposition of all of them. In the
latter case, we have practically a uniform dis-
tribution of p« for a large number of electrons in
one cell. Accordingly, it is theoretically suffi-
cient if the electrons are considered to enter the
laser beam at all positions within an unit cell be-
tween the incident phases --,' ~ ~ a.«& —,

'
n as de-

fined by the dotted lines in Fig. 2.
For a given experimental condition, the corre-

sponding distribution curve of 41=4 (c(~) for n~
= --,' m to —,

' }}' can be calculated by Eqs. (10), (9),
and (11). Let 5 be the resolving power of the de-
tecting system. Since it is assumed that the elec-
trons are uniformly distributed along a,„, the
fraction of electrons deflected into 6 at 4 (the de-
flection probability) is equal to the total fractional
contribution of a« from 4' ——,

' 5 to 4+ —,
' 6 along

the distribution curve, namely,

z~~ ~' "
~(4})g

~ On jO-5/2
N

In the following, we shall briefly discuss the ef-
fects of P,„, t, and Eo on the distribution of 4 as a
function of ao„.

(i) P~ Dependence: For a given value of P~
x(= Po8o), we can see from Fig. 2 that the motions
of electrons with different n«are described by dif-
ferent curves in the phase plane. Thus 4 is dif-
ferent for different electrons. When

~ Po„~ & P„„ the
motions of all the electrons are described by open
curves in which the variations of P„are small.
Consequently, 4 is small for all incident phases
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from --,' r to —,
'

7t and 4 —0 as p,„-+1. When

~
p~ ~

& p„„ the motion of the electrons is divided
into two groups: (a) Those electrons of incident
phases between +-,' v and icos '(p~/p„, ) are de-
scribed by open curves with small 4. (b) Those
of incident phases between icos '(P,„/P„,) and 0
are described by closed curves .Since P„ in a
closed curve is oscillating between +P„ the latter
group of electrons may be deflected in large angles
depending upon the interaction time t. As P,„-0,
more and more electrons are described by the
closed curves. Those electrons leaving the laser
beam with -p,„are reflected. In this classical
picture, any electron with

~ p,„~ & p„, may be re-
flected which is different from that of the quantum-
mechanical picture in which the Bragg condition
Po„=P„s= I'&u/mc' must be strictly observed by
any reflected electron.

(ii) t Dependence: Although the condition e~ &e
is satisfied, an electron may not be reflected if
the interaction time is not suitable. Obviously the
reflection of an electron occurs periodically with
respect to t. When t= (j+ -,

' )T for j=0, 1,2, . .. ,
reflection occurs. When t=jT, no reflection oc-
curs. Similar dependence of the deflection prob-
ability on the interaction time has been discussed
in quantum-mechanical approach by Gush and
Gush.

(iii) E, Dependence: According to Eqs. (14) and
(15), T and P„, are functions of E,. By increasing
E„P„,will be increased and more electrons will
satisfy e,„&~. On the other hand, an increase of
E, will decrease &. In general, the probability of
reflection increases with laser intensity.

III. THEORETICAL PREDICTION

AND EXPERIMENTAL RESULTS

The application of this theory to the recent ex-
periments is discussed in this section. Digital
computer is used for the numerical calculation.
The laser power and intensity are respectively
given by &= cepapEp and &= 2CGOEO, where 60 is the
permittivity and a, is the beam area.

A. Bartell's experiment

The following is a description of Bartell's ex-
periment'.

Laser beam.'Peak power I'= 70 MW, D= 1.2
cm, E,=1.5x10' V/m, and ~=2.72x10" rad/
sec.

Electron beam: Incident energy= 1640 eV, P,
=8.0x10 ', p~=3. 5x10 ', p„,=4.6x10 ', and
t=5.0& 10 ' sec.

The deflection pattern calculated is plotted in
Fig. 3. With 5=10 ' rad for the detecting system,
we obtain the angular dependency of the integrated
deflection probability as shown in Fig. 4 which is

Parameters:
1p

t = 5.0 X 10 sec
g „=3.5X 10

E =1 5X10 /m

A 2.1 %
anaio n (' 38

I 3.1 %
/ 4.7 %

/ 6.3 %
e.8%

&S.S I.
3.8 %

11.7 %
l. . 21 Oil

ir ll'
/4 ( ~0 011 /2

V' 6.6 I.

':28a Brala
8

6--

L

K
O

p

w
-2. -

LU
O

INCIDENT PHASE CL „
FIG. 3. Classical prediction of the electron deflec-

tions of Bartell's experiment for —27r~~o. o„~z7r. (The
motion of the electrons with o. o„between I ] aredes-
cribed by the closed curves in Fig. 2.)

~44 25"

IXI

O
tK
CL

O

LL
LLJ

A
0 2 4 6 8 10

DEFLECTION ANGLE + (10 rad j

FIG. 4. Angular distribution of the integrated de-
flection probability for Bartell's experiment with re-
solving power 10 5 rad.

in good agreement with the experimental result
reported in the Fig. 4 of Ref. 6. Most of the scat-
tered electrons do not satisfy the Bragg condition
but rather appear at smaller angles. Since in re-
cent theoretical treatments with quantum-mechan-
ical approach, the maximum deflection probability
must occur at the Bragg condition, our classical
theory then gives a better explanation. Further-
more, Bartell also reported that "Spicules were
not observed with normal burst mode with peak
power of 0.3 MW. With 80 MW spicules up to
20% of the incident beam height were often ob-
served. With 15 to 40 MW spicules were observed
less frequently and were lower in height than those
observed at higher laser powers. " This can be
well explained with Eq. (15). For P„,~ P„~= 3.5
x 10 ', the power required should be at least of
39 MW. It is unequivocal that 0.3 MW is much too
low to produce any noticeable deflection. For a
laser beam with peak power between 15-40 MW,
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P~ of some of the misaligned electrons may well
be within the critical values P„, corresponding to
these laser powers. Thus deflection can be ob-
served. As the laser power is increased, P„, is
also increased and the requirement P~ &P„, is
easily obtained. This is the very' reason why
Bartell could observe that "The reflection proba, -
bility of electrons encountering a hyper-intense
portion of a giant pulse would be high even if
alignment were imperfect. "

B. Takeda's experiment

The following is an account of Takeda, 's experi-
ment'.

Laser bea, m: Peak power P=20 MW, D =0.5
cm „Eo= 1.96 x 10' V/m, and += 2.72 x 10" ra 1/
sec.

Electron b'earn: Incident energy= 300 eV, Po
= 3.43 x 10 2, po„= 3.5 x 10 ', p„,= 6.0 x 10 ', and
t=4. 86&& 10 "sec.

The 4-&O„curve is plotted in Fig. 5. In this
experiment, the detector only detected those elec-
trons which were not stopped by the movable metal
plate. When the movable stopper was set to the
position of the Bragg angle, =2.0 x 10 ' rad, the
fraction of electrons detected was 0.6%. Accord-
ing to Fig. 5, our theoretical result is 0.9/0 for
electrons deflected with an angle greater than the
Bragg angle.

C. Pfeiffer's experiment

The following describes Pfeiffer's experiment'.
Laser beam: Intensity I= 5 x 10' W/cm', D = 1.1

cm, E,=9.7x10' V/m, and +=2.72x10" rad/
sec.

Electron beam: Incident energy=36 eV, Po
= 1.19 x 10 ', p,„=3.5 x 10 ', p„,= 2.9 x 10 ', and
t=3.1x 10 ' sec.

Since P~) P„„ there should be no Bragg reflec-
tion. In this experiment, no deQected electron
was observed at the Bragg angle.

D. Schwarz's experiment

The following explains Schwarz's experi-
ment """:

Laser beam: Peak power P= 32.5 kW (normal
nonstanding wave operation), D=0. 3 cm, ~=1.76
x 10" rad/sec

Electron beam: Incident energy=10 eV, Po
= 6.26 x 10 ', p„s=2.29 x 10 ', f = 1.6 x 10 sec.

In this experiment, Schwarz reported that the
laser intensity in the resonator was at least a
factor of 6 higher if a mirror was used to form a
standing wave because the Q value of the system
was increased although the actual power used was
uncertain. However, according to our theory, we
can find that for high deflection probability at
Bragg condition, E, of the laser beam should be
much greater than 5 x 10' V/m which corresponds
to a peak power of 0.45 MW, a factor of 14 higher
than that without a mirror. Such a high power
could not be obtained from the laser used by
Schwarz. Therefore, he found minimum deflection
probabilities when the center lines of the electron
beam and the laser beam fulfilled the Bragg condi-
tion (P~ = P„e). In order to obtain a maximum
number of electrons deflected to one side, Schwarz
had to rearrange the orientation of the two bea, ms.
Thus the Bragg condition was violated.

By observing the deflection distributions with
different sets of E, and j3~, it can be found that

25--
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TABLE I. Comparison of the classical deflection probabilities with the experimental results
for different laser povrers in Schwarz's experiment.

Peak power
(xw)

0.243
0.137
0.104
0.045

.0.019
0.006

Effective filter
factor,

(1 33)2
(1.oo)'
(0.87)'
(o.57)'
(0 37)
(0.21)'

(10' Vf~)

3.6
2.7
2.4
1.5
1.0
0.6

Deflection probability
obtained from

Figs. 6(a) and 6(b)

0.78
0.61
0.54
0.25
0.14
0

Probability
measured

0.80
0.60
0.55
0.22
0.08
0.06

~ geference 9.
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FIG 6 (a) Classical
prediction of the electron
deflections of Schwarz's
experiment for —

& 7t

&go &zg with EoOy

=3.6x10, 2.4xlo~, 1.0
x10 V/m. (b) Classical
prediction of the electron
deflections of Schwarz's
experiment for —~i g
~(eo„~c&71- with ED=2.7
x10, 1.5x10, 0.6x10
V/m.
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the probability deflected to one side has a maxi-
mum of 78/0 when ED=3.6x10 V/m (P„,= 1.7
&& 10 ) and Po„——6 x 10 . This corresponds to a
peak power 0.24 MW of the laser beam, a factor
of 7.4 higher than that without the mirror reflec-
tor. Since Schwarz stated" that 80%%uc of the deflec-
tion probability to one side could be obtained if the
laser was used in its maximum, it is reasonable
to assume that the maximum peak power is 0.24
MW.

In order to reduce the laser intensity, Schwarz
inserted filters between the laser rod and the re-
Qecting mirror. However, this would also de-
crease the Q value of the system. Thus the effec-
tive filter factors are assumed to be squares of
those reported in Ref. S. In Table I, the experi-
mental results and the theoretical predictions cor-
responding to different peak powers and E, are
listed. The maximum power is 0.243 MW. All
other laser powers in column 1 are calculated
with the factors in column 2. The deflection dis-
tribution curves corresponding to different E, in
column 3 are plotted in Figs. 6(a) and 6(b) from
which the theoretical results in column 4 are ob-
tained by subtracting the lower-half deflection
probabilities from that of the upper-half for the
region outside +1.5 x 10 ' rad from the undeflected
electron beam. The value 1.5 x 10 ' rad is deter-
mined by the resolving power of the detection sys-
tem. The experimental results are listed in col-
umn 5. Although the experimental measurements
of the actual peak powers are not known, the close
agreement of the experimental and theoretical re-
sults indicates that the experiment, the theory,
and the assumptions are self-consistent. It may
suggest that this method can be used to measure
the laser intensity inside a resonator.

Finally, all the experimental results and the

IV. DISCUSSION AND CONCLUSION

(a) According to our classical theory, the orien-
tation of the polarization of the laser light affects
the deflection of the electron beam. As shown in
Fig. 1, if the polarization is perpendicular to the
incident electron path, then g = 90' and the first
term on the right-hand side of Eq. (7) will vanish.
The motion of the electron along the n direction
will obey Eq. (8). However, the electron also
moves in the k direction. From Eq. (5a), we ob-
tain

p»= -(2e&,/me&@)l sin(art + y)sin&op„

-sing sin&op, „]. (17)

The phase factor p varies arbitrarily as the elec-
trons enter the laser beam at arbitrary time,
hence the deflected electrons will spread over a
certain region in the k direction. However, the
speed of the electrons along this direction must
be within +(4eE,/me&a). As far as the Bragg scat-
tering condition is concerned, we find that (4eE&/
mero) & P„,& P„s. Thus the deflection along the k
direction is easily detected. However, in most of
the recent experiments except that of Takeda, the
motion of the electrons in this direction has been
overlooked. Although the effect in the k direction
in Takeda's experiment is not apparent because
he has adjusted the polarization nearly parallel to
the electron path, the small deflection observed in

the k direction does give evidence that the polar-
ization effect does exist. The classical theory
gives a clear description of this effect.

theoretical predictions of the scattering effect are
summarized in Table II. Very good agreement be-
tween the experimental and theoretical results is
noted.

TABLE II. Comparison of the experimental results and the classical theoretical predic-
tions.

Experimental results
Deflection Deflection

angle 4 (rad) probability P

Class ical predictions
Deflection Deflection

angle 4 (rad) probability P

Bartell

Take da

Pfieffer

Schwarz

8.8xl0 '
(Bragg angle)

5.0 x 10
x10 4

(Bragg angle)
Bragg angle

Bragg condition

Bragg condition
is violated

0.05

0.10 (max)
0.006

0
minimum {no
quantitative
result)

0.80 (max)

8.8 xl0 5

3.0 x10
x10 4

Bragg angle

Bragg condition

Incident angle 00
=9.6x10 5 rad

0.036

0.155 (max)
0.009

0

0.78 (max)
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On the other hand, if the polarization is parallel
to 1, (=0. The motion of the electrons in k di-
rection will vanish, but the first term on the right-
hand side of Eq. ( I) affects the motion of the elec-
trons in the n direction. The relative contribution
of this term, in comparison with that of the second
term is given by the ratio R = (2mcp„/eE, t). Using
the data of the four experiments, we obtain that
R (Schwarz) = 0.4%, R(Bartell) = 4%, R(Takeda)
= 1%, and R(Pfeiffer) = 0, 2%, Thus the effect of
the first term in Eq. (V).is to broaden the deflected
electron beam in the n direction only by a factor of
a few perceive. As the deflection probability being
measured has been taken by integrating over the
unresolved region of the system, this-broadening
effect can in general be neglected.

(b) Finally, we conclude that the classical theory
actually gives a better explanation to the experi-
ments than those recent quantum-mechanical and
semi-quantum-mechanical theories. The scatter-
ing process seems to be in classical nature. How-
ever, in order to have a deeper understanding of
this process, more work should be done in the fol-
lowing directions. First, since the measurements
in recent experiments have been concentrated at
the Bragg angle, information of the scattering
process has not yet been sufficient. Therefore we
suggest a reexamination of the problem experimen-
tally in the light of the classical point of view.
The angular distribution of the deflection proba-
bility should be obtained for different sets of pa-
rameters (P~, f, Eo) and the dependence of the
critical value p„, on the electric field strength
should be investigated. Second, the polarization
effect on the scattering along the k direction should
be measured carefully as discussed in (a). Third,

more work should be done in the quantum mechan-
ical approach to see whether a more satisfactory
theory can be found to explain the experiments.
This is of particular interest if the polarization ef-
fect is considered. However, it must be noted
that the Ehrenfest theorem may not be applied to
our classical theory. The replacement of the pos-
ition and momentum coordinates in classical can-
onical equation of Hamiltonian with the Hamiltonian
of Eq. $13) by the average values of the position
and momentum operators in Ehrenfest equations is
not justified2' because the interaction potential is
in the form of cos'k, z which is a polynomial exceed-
ing the second degree in z. In addition, since a
monochromatic and spatially coherent electron
beam is used in our classical theory, the dimen-
sions of the corresponding electron wave packet
is not sufficiently small at all times to satisfy the
Ehrenfest's theorem. Therefore, our classical
theory may not be explained as just the classical
approximation in quantum mechanics.
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APPENDIX

Under the experimental conditions given by the
recent experiments, the first-order deflection
probabilities of the "Kapitza-Dirac effect" pre-
dicted by those quantum-mechanical and semi-
quantum-mechanical theories which are not limited
by the experimental conditions are given in Table
III for comparison.

TABLE III. First-order deflection probabilities of the "Kapitza-Dirac effect. "

Ez awa- Ehlotzky-
Theories Schoenebeck Namaizawa Gush-Gush Leubner Measurement

Experiments PEN PGG PEL P

Schwarz
Bartell
Take da
Pfeiffer

0.04
0.08
0.012
0.03

0.58
0.74
0.007
0.71

0.74
0.75
0.025
0.69

0.32
0.02
0.016
0.01

0.80
0.05
0.006
0

' Beference 14.
Beference 15.
Beference 16.
Beference 18.
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