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The authors have postulated a simple physical model for atomic negative ions and have obtained general
formulas to describe their photodetachment characteristics. Absolute photodetachment cross sections,
accurate to a factor of 2, and the angular distributions of detached electrons are at once made available for
all atomic negative ions whose I, (R )'", and E are known, where t is the angular 'momentum quantum
number for the outermost orbital electron of the anion, E and gR )" are, respectively, the electron
affinity. and root-mean-square radius of the neutral atom. Values of these three input parameters are readily
available for most atomic anions. The model seems to encompass the major physical attributes of atomic
anions required for photodetachment. Its mathematics is simple. Because of this it is suggested that the
model promises applicability to more complicated systems, particularly to photodetachment from molecular
negative ions, and to more complicated processes, e.g., negative-ion —neutral-atom charge exchange.

I. INTRODUCTION

The calculation of photodetachment cross sec-
tions has received considerable theoretical atten-
tion. Since the cross section for detachment of an
electron depends on the matrix element for elec-
tric dipole transitions from a state describing the
bound negative ion to a state of atom plus free
electron, the primary task lies in obtaining an
adequate representation of the initial bound and
final free state. The various calculations of pho-
todetacbment cross sections can be cataloged
according to the methods used to obtain the wave
functions describing these states.

The existing methods can be broken into three
categories, although the division between cate-
gories is not completely clear-cut. In one cate-
gory are contained the calculations which use the
most accurate multielectron wave functions ob-
tainable. The calculations of Geltman' and Ajmera
and Chung' for H; of Moores and Norcross' for
various alkali-metal negative ions; of Chase and
Kelly, Henry, ' Garrett and Jackson, ' and Lan
et al. for 0 are all calculations employing multi-
electron wave functions which include polarization
and/or electron correlation effects in various
ways. The use of such detailed wave functions en-
ables prediction of absolute photodetachment cross
sections which are generally in good agreement
with experiment, including situations in which de-
tachment leaves the neutral atom in an excited
state.

The second category contains those methods
which employ only the wave function of the single
electron undergoing detachment; this wave function
being the solution to Schrodinger's equation with a
spherically symmetric potential which describes
the electron-atom interaction. Calculations of this

type have been employed by Geltman' for H and
Li, by Klein and Brueckner' for 0, by Cooper
and Martin" for 0, C, Cl, and F, and by Ro-
binson and Geltman" for C, 0, F, Si, S, Cl,
Br, and I . Typically the potential has at least
one parameter which is adjusted to agree with the
binding energy. This approach also yields cross
sections that are in good agreement with measured
cross sections.

The essential feature of the third category is the
use of a bound-state wave function that describes
a single electron bound by a short-range potential.
In the actual calculation only the form of the wave
function outside the range of the potential is used.
In order to obtain this form, the electron affinity
must be known. In order to calculate absolute
cross sections, authors using this method have
employed sum rules or have matched the asymp-
totic wave function to more accurate wave func-
tions. This method has been applied to several
ions for which the electron is detached from an
s -orbital: Armstrong" and Adelman" for H and
John and Williams' for the alkali-metal negative
ions. Except for H, whose neutral core is very
small, phase shifts obtained from independent cal-
culstions were used as an additional set of known
information.

An alternative choice of bound-state wave func-
tion which retains the computational simplicity of
the third category is to use Slater orbitals. This
technique has been used by Reed et a/. "who ob-
tain a general formula for the relative cross sec-
tions of a wide variety of atomic negative ions.
By using linear combinations of the same orbitals
used for the atomic ions, these authors also did
the first calculation of photodetachment cross sec-
tions for a number of diatomic and polystomic
negative ions. Their calculations give good agree-
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ment with the experimental cross sections for the
species considered. This agreement is accom-
plished by treating the coefficients in the exponents
of the Slater orbitals as fitting parameters. In ad-
dition either the electron affinity must be known
or is to be used as an additional fitting para, meter.

Within the guidelines of our rough ca,taloging, '
the following pattern develops: generally, as one
progresses from the first category to the last the
difficulty of computation, together with the infor-
mation obtained, decreases, but the number of
parameters that must be specified increases.
However, the accuracy of calculations obtained
with all categories is about the sa,me, except when
excited states of the atom become important. In
this paper we shall describe a zero-core-contribu-
tion model which leads to a method of calculating
photodetachment cross sections similar to the
simple technique of Armstrong" and Adelman, "
but which makes the use of phase shifts unneces-
sary for describing photodetachment from species
whose neutral core is considerably larger than
that of H . In place of the final-state phase shifts
used by John a,nd williams, ' or the fitting pa, ram-
eter in the exponent of the Slater original orbital
used by Reed et al. ,"the method described here
relies on knowledge of the radius of the neutral
atom, which is more readily available than the
phase shifts and can be determined independently
of a photodeta, chment experiment. This radius de-
fines a spherical core. The essential assumption
of the zero-core-contribution (ZCC) model de-
scribed here is that the contribution to the photo-
detachment cross section from inside this core
region is negligible.

VYe have applied the method to a, la,rge variety
of atomic negative ions involving detachment of
either s or P orbital electrons; Sees. II and III
will show that the method gives satisfactory a,e-
count of the general features of the total and dif-
ferential cross sections of these systems. The
method estimates absolute cross sections without
relying on sum rules or knowledge of more com-
plicated wave functions. Sections IV and V discuss
the nature of the approximations made by the zero-
core-contribution model. The empha. sis of the
present work is placed on the mathematical sim-
plicity of this method; its ability to yield a. general
formula for the absolute photodeta, chment cross
sections depending on three tangible physical pa-
rameters —electron affinity, angular momentum
of the outermost orbital electron, and the ra,dius of
the parent neutral atom', and its potential applica-
tion to photodetachment from the diatomic and
polyatomic negative ions and other processes for
which the more complicated methods of computa-
tion are likely to be rather difficult.

II. METHOD FOR CALCULATING PHOTODETACHMENT
CROSS SECTIONS OF ATOMS

The photodetachment cross section of a negative
ion can be calculated from the dipole-length ma-
trix element

do
M

da Se 2m

where

The state 0) describes the initial bound state of
the negative ion and 0) is a state describing the
neutral atom and a, free electron with momentum
k. The final state is normalized to unit flux of
the free electron. dA is an element of a solid
angle, e'/he is the fine structure constant, r, is
the coordinate of the ith electron, & is the angular
frequency, . and e is the direction of polarization of
the incident photon.

In order to simplify the computation of the ma-
trix element M», we make an ansatz about the
negative ion which is illustrated in Fig. 1. In this
figure xo is a radius characteristic of the neutral
atom from which the negative ion is formed. The
"extra electron" is pictured as being only loosely
bound to the atom, and has therefore approximate-
ly unity probability of being found outside the core.
As a result of- this ansatz the dipole matrix element
Myo coming from inside xo is negligible, and the
major contribution to it comes from the shaded re-
gion immediately outside the core. Another ansatz
is that both the wave functions of the initial and
final states can be written a,s the product of the
unperturbed atomic wave function and a one-elec-
tron wave function describing the "extra electron. "
It is further assumed that the atomic wave function

FIG. 1. Model of an atomic negative ion employed by
our method of calculation. The extra electron is loosely
bound by an electron-atom potential which is negligible
outside the atomic radius rp, The loose binding allows
the wave function of the extra electron to extend consid-
erably beyond rp. The shaded detachment region"
represents the predominant contribution to M&0.
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is unchanged from the initial to the final state.
Thus Eq. (2) is simplified to become

M~= ~
re. r

x p, (r)2 sin8d)t) d8dr. (S)

The radial integration extends from rp outwards,
in keeping with our ansatz. We shall take the wave
function describing the free electron to be a plane
wave:

q, (r) = (m/8k)'I'e'"'" (4)

The wave function describing the weakly bound
extra, electron is assumed to be an angular mo-
mentum eigenfunction

I))(r) = R) (r) Y,„(8,P)

and for r )r, where the potential is assumed con-
stant, the radial function R, satisfies

Here y is the angle between the direction of po-
larization e and the momentum of the free electron
k. j, is the spherical Bessel function of order 1.
Substituting (6) into the radial integral gives

Ne ""o 2k yr,R„=, ~, , —„' cos(kr, )

+
2 2 2 +r, sin(kr, ) . (12)
y'+Sk y

a~ a2+y'

In terms of the quantity R~„ the cross section is

da 2e' meek
cos X R~~ .

The total cross section is obtained by integrating
over all directions, y:

8n' e' mcus
vo 3 Sc h BP

B. Detachment of a p electron

For l = 1, the solution to Eq. (6) is
1 )I 2 dR, /(I+1)R,

r2 dr dr r2 (6) R, =&(e ""/r)(1+1/yr),

where y= /2mE/f) and E is the electron affinity.
The solutions to Eq. (6) are modified spherical
Bessel functions. In keeping with the zero-core-
contribution assumption, the radial function 8, is
normalized to one in the region outside the core:

8 r ' dr=1.

We now turn to the details of the calculation of
the cross section for photodeta. chment of an s-
orbital electron, as is the ease with H and the
alkali-metal negative ions, and of a, p-orbital
electron as is the case with negative ions formed
from elements in the third through seventh col-
umns of the Periodic Table.

A. Detachment of an s electron

with

N' = 2ye'""0/(1 + 2/yr, ) . (16)

There are three P orbitals corresponding to m
=0,+1. A matrix element is to be computed con-
necting each of these orbitals with the plane wave;
the quantity ~M22

' appearing in Eq. (1) is the
average of the absolute squares of each of these
matrix elements. When the plane wave is decom-
posed into partial waves and the integrations over
angles performed, the selection rules pick out the
s and d waves. This will leave two radial inte-
grations which when performed give

¹

y"&& Sy'k + k'
ko —— ), k, ) + k, r ykr, ) sos(kr, )

+, , +y'2, Sin(k);)xy2+ y2 0

For I =0 the solution to Eq. (6) is

R,=&e ""/),
with

PP 2 2FF0

(6)

k +6y k +Sy
22 yk2 (y2 + k2 )2 y2 +

(17a)

If the plane wave (4) is decomposed into partial
waves, when the integration over angles is per-
formed only the p wave survives because of the
electric dipole selection rules. One obtains

3 3k +y
xeos(kr, )-( k +k)k +~)

yrp(, ,)
sin(kr)

M22= (4))m/h k)'i'i cosy R2, (10)
(1Vb)

In terms of these the differential cross section is
where

R~, = j, Ar Rp r r'dr.
dv 2e' m~k

[ s'y(R, —2R„)'

+ sin2y(R, 2+ R,2)2] (18)
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TABLE I. Calculated am~ and the experimental 0m~ are compared for the detachment pro-
cess which leaves the neutral atom in the ground state.

Ion
Electron affinity

(eV)
rp
(A)

~max

Theoretical
(A )

Omax

Experimental

s-orbital outermost electron

H
Ll
Na
K
Rb
Cs"

0.7542
0.620
0.546
0.5012
0.486
0.4715

1.19
2.81
3.00
3.65
3.84
4.16

0.44
1.49
1.69
2.41
2.66
3.09

0.43
1 31b
0.93 b

2.6O"

2.90

p-orbital outermost elec tron

C"
0
F
Cl"
Br
I

1.268
1.462
3.399
3.615
3.364
3.061

1.35
0.96
0.84
1.34
1.52
1.79

0.179
0.059
0.069
0.163
0.210
0.292

0.145
0.063
0 056
O. 15'
O. 12f; 0.23
0.310 0.21

Reference 19.
"Reference 20.

Reference 22.
Reference 23.

'Reference 25.

f Reference 26.
~ Reference 27.
"Reference 24.
~ Reference 28.

and the total cross section is

8 '
A'

9@c (19)

compare calculated results with experimental re-
sults.

A. Shape. of the cross section and its dependence on I, ro, and E
The cross sections predicted by Eqs. (18) and (19)
should be multiplied by a fractional parentage co-
efficient of 0.3 or 0.6 when applied to anions having
respectively four or five outer-shell p electrons.

III. COMPARISON WITH EXPERIMENTAL RESULTS

The electron affinity E, core ra.dius r„and an-
gular momentum quantum number of the outer
shell, /, are the three input values required for
the theoretical calculations of the zero-core-con-
tribution model. Values of / for most atomic neg-
ative ions are well known. The values of E and

ro we employ are shown in the first two columns
of Table I. The electron affinities are taken from
the recent review of Hotop and Lineberger. " The
core radius r, is established as r, = 1.3(R')'~',
where (R )'~' is the root-mean-square radius of
the outermost occupied orbital in the neutral atom
taken from Lu et a/. " We have taken the factor of
1.3 for all ions because it yields the best overall
agreement of the calculated cross sections with
experimental results. This choice implies a core
region la,rge enough to envelop almost a.ll of the
charge distribution of the neutral atoms. We now

The experimental curves (dashed lines) shown
in Figs. 2 and 3 clea.rly indicate that the angula. r
momentum quantum number / has the prima. ry con-
trol over the shape of the cross section. That
is, the photodetaehment cross section of an
s -outer-shell negative ion rises to a peak and then
declines, while that of a p outer shell shows a
rapid rise and then levels to a plateau. The cal-
culated results strongly reflect such a systematic
dependence on /.

Examination of the experimental curves seen in
Fig. 2 shows that the photodeta, chment cross sec-
tion for s-outer-shell ions has a peak energy which
shifts closer to the threshold energy for the heav-
ier elements and that the width of the peak (FWHM)
tends to narrow. The calculated results exhibit
the same systematic behavior. In fact, examina-
tion of Eqs. (12) and (14) shows that the two ratios,
the FWHM of the peak divided by the electron af-
finity, and the threshold-to-peak energy difference
divided by the electron affinity, both decrease as
the product yr, increases. Table I shows that
pro increases as one progresses from H to Cs .

The shape of the cross section of p-orbital ions
does not depend strongly on either the core radius
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FIG. 2. Comparison of cross sections for detachment of an electron from an s orbital. The solid line shows in (a) the
calculated cross section for H" divided by a factor of 1.0; (b) the cross section for Li divided by 1.14; (c) that for
K divided by 1.01; and (d) that for Cs divided by 1.07. The experimental cross sections are denoted by dashed lines.
For H the experimental data is that of Smith and Burch (Ref. 19) and for the alkali metal ions is that of Kaiser
et al. (Ref. 20).
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FIG. 3. Comparison of cross sections for detachment of an electron from a p orbital. The solid line in (a) shows
the calculated cross section for C divided by 1.23; (b) shows the calculated cross section for 0 divided by 0.94;
and (c) that for I divided by 1.06. The experimental cross sections are denoted by dashed lines. For C the experi-
mental data is that Seman and Branscomb (Ref. 22), for 0 that of Branscomb et al. (Ref. 23), and for I that of
Steiner et al. (Ref. 24).
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three variables. Figures 4 and 5 show that the
theory correctly predicts that the primary depen-
dence of the peak value is on /. That is, the peak
value of the s-orbital group is in the neighborhood
of 10 ' cm', while that of the P-orbital group is
about one order of magnitude smaller (see also
Figs. 2 and 3). Figures 4 and 5 also show that
for ions of a given l the peak value is more depen-
dent on the core radius .than the electron affinity.

Closer examination of the rightmost columns of
Table I shows that excellent agreement with ex-
perimental data is obtained for 311 s-orbital cases,
except for Na . Even in the case of Na, our val-
ue is in excellent agreement (+5%) with other cal-
culated 0. ,„."'" The agreement with experimen-
tal data for P-orbital cases' are not as good. The
calculated values tend to be larger than the exper-
imental ones, as might be expected. Note that the
electron affinity is considerably larger than 1 eV
in the cases evaluated, which probably indicates
that the probability of finding the additional elec-
tron inside the core is no longer insignificant.
Hence the normalization factor &, calculated in
accordance with the zero-core-contribution as-
sumption, becomes artificially large.

v, ~ uk""'(a, +a, k'+a, k ' ' ') (2O}

in the limit of very small k. Here the exponent l

is the smallest angular momentum allowed in the
final state.

B. Peak value of the absolute cross section and its dependence

onl, ro, andE
C. Angular distribution and its dependence on I, ro, and E

By grouping terms, Eqs. (13) and (18) can be put
in the form of

Examination of the last column of Table I shows
that the measured peak value of the absolute photo-
detachment cross sections are in surprisingly good
agreement with those calculated from the zero-
core-contribution model. What may be more sig-
nificant, however, is the way the model sorts out
the systematic dependence of the peak value on l,
x„and E, and the order of importance of these

=—' [I + P(-,
' cos'y ', )],

where P, the anisotropy factor, is equal to 2 for
the s-orbital cases and becomes

P= 2(R~q —2RqpR, q)/(2R~~+ R,q) (22)
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FIG. 4. Estimate of the peak amplitude of the cross
section am~ can be obtained when the photodetachment
process leaves the neutral atom in the ground state.
Shown here is such a 0m~ plotted as a function of the
electron affinity and the atomic radius of the neutral.
This diagram is applicable only to atomic negative ions
having s-orbital outermost electrons.

FIG. 5. This diagram is applicable only to atomic
negative ions having p-orbital outermost electrons.
Otherwise it is the same as Fig. 4. The om, „shown
above should be multiplied by a fractional parentage
coefficient of 0.3 or 0.6 when applied. to anions having
respectively four or five outer-shell p electrons.

or the electron affinity. The theory and experi-
ments are in qualitative a,greement.

The structure which shows up as a shoulder in
the Li experimental cross section at around 2. 5

eV and in K at about 2. 1 eV and the sharp rise in
0 cross section at around 3.4 eV are due to photo-
detachment leaving the neutral atom in an excited
state."" Such a photodetachment process is not
accounted for by our present method which as-
sumes that the photodetachment always leaves the
neutral atom in its ground state [see discussion in
Sec. IV and Eq. (26)].

Comparison of the calculated and experimental
results for the shape of cross sections of Na and
Rb in the s-orbital group and F, Cl, and Br in
the P-orbital group are not shown. It suffices
to state that the agreement is no worse than that
shown in Figs. 2 and 3.

We also note that our calculated results fit the
well-known threshold behavior"
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for the P-orbital cases.
Theory predicts that the variable having the pri-

mary influence over the angular distribution of the
photodetached electron is the angular momentum
quantum number. That is, for s -orbital negative
ions-the differential cross section shows a pure'
cos'X, dependence regardless of r» E, or the en-
ergy of the incident photon. For the P-orbital
ions, the differential cross section will be uniform
at photon energies slightly above the detachment
threshold, and vary between uniform distribution
and a sin'X dependence at higher incident photon
energies. One also finds that the variation of P
with photon energy is more rapid for p-orbital
anions of larger yx0.

Excellent agreement is obtained in the s -orbital
cases. Experiment by Kasden and Lineberger"
showed that P= 2 within a very small experimental
error for photodetachment from alkali-metal neg-
ative ions. For P-orbital cases, values of P have
been measured at two different energies for C
and at a single energy for 0 by Hall and Siegel. "
Figure 6 compares calculated values with measured
ones. Also included are the results computed by
Cooper and Zare" using a method that employs
phase shifts in the final-state calculated from a
model potential. Although the calculated values in
the P-orbital cases do not fall within the limits of
experimental error, they have the general features
of the calculated values of Cooper and Zare.

IV. JUSTIFICATION OF THE ONE-ELECTRON MODEL
ASSUMING ZERO CORE

In a rigorous treatment, the photodethchment
cross section is to be computed using the matrix
element connecting multielectron wave functions as
shown in Eq. (2). However, in the zero-core
model, this matrix element is approximated by the
one-electron matrix element of Eq. (3). In this
section, the properties of the model which bring
about this simplification are illustrated for a sys-
tem in which there are two electrons participating
in the detachment process. We will take both elec-
trons to be s electrons, and their spins to be
aligned so as to give a singlet state (this would
correspond to H, or the outer shell in an alkali-
metal negative ion). An analysis along similar
lines for any number of electrons, with any per-
missible combination of orbital and spin angular
momenta leads to the same conclusions reached
in this simpler example.

With only two indistinguishable outer-shell elec-
trons considered, the matrix element of Eq. (2)
becomes

-I 0-

& -0,8-

-0 6-

-0 4-

-0.2-

I.O

-I 0-

&-0.8-

-0 6-

-0.4-

-0.2-

I.O

2.0 3.0 4.0
Photon Energy (eV)

2.0 5.0 4.0
Photon Energy (eV)

FIG 6 Comparison of
anisotropy parameter P
with experiment for C
(a) and 0 (b). The
points marked g are the
experimental results of
Hall and Siegel (Ref. 34).
The dashed lines repre-
sent the theory of Cooper
and Zare (Ref. 35).

assumptions of Sec. II is

Q, (r» r, ) = q[g(r, )g, ( r, ) + $0(r, )$(r,)], (24)

M =(|Ij e'r +,
since

(28)

where g is the normalized wave function of the
neutral atom, and $0 is a normalized wave function
with asymptotic behavior befitting that of an outer-
shell electron of the negative ion. g represents
the normalization constant, which is

1" ~(&+ &q + ')'" '

The appropriate wave function for the final state is

4r = (I/~)[4(r, )q, (r2)+ 4,(r,)4(rg)]. (26)

g» is the wave function representing the detached
free electron. The use of ( in Eq. (26) implies
that the photodetachment always leaves the neutral
atom in its ground state.

Symmetry with respect to the two-particle co-
ordinates permits Eq. (23) to be reduced to

M„=2q(l/W)

x((g e'r g)(g g,)+(g e'r g,)(g g)

+(g e r g)(g tI'0)+(g e'r +(g g)]'.

(27}

The first integral in Eq. (2'I}., (g e'r~g}, is zero
since the neutral atom has no intrinsic dipole mo-
ment. The second integral, (( e 'r Pg, is zero
because of the selection rule, since the wave func-
tions representing the two outer-shell electrons
possess the same angular momentum quantum
number. The third is much smaller than the fourth
term, since its overlap integral, (g gg, is very
small compared to I, if g, is chosen in accordance
with our model. Hence

M„=(yr(r„r,) e r, +e r, y, (r„r,)). (23}

An initial-state wave function appropriate for the

2'~=~/(2+2 &0 4) '}'"
1 ~ (28)
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TABLE II. Comparison of moments: (r»(++2). Moments for II computed using a 444-para-
meter wave function by Pekeris (Ref. 36), an asymptotically correct 35-parameter wave func-
tion by Rotenberg and Stein (Ref. 37), an asymptotic wave function with a predetermined nor-
malization coefficient by Adelman (Ref. 13), a Hartree-Fock calculation by Lyons et al. (Ref.
38), and the wave function of Eq. (24) with Eq. (8) by the zero-core model.

Pekeris Rotenberg-Stein Adelman Hartree Fock Zero core

5.42036
23.827

5.4202
23.826

152.03
1290

13697

5.6350
23.919

152.29
1292.9

'13720

5.0078
, 18.824
97.381

652.02

5.9491
26.249

160.5
1306.7

13516

Thus the dipole matrix element reduces to an
integral involving the one-electron orbitals g, and

g» [Eq. (3)]. In the approximation we are making,
one may think of a negative ion of two indistin-
guishable outer-shell electrons, each giving equal
contribution to photodetaehment, in terms of an
"equivalent" system. In this "equivalent" system,
one electron occupies the outer-shell orbital of
the neutxaE atom and does not contribute to photo-
detachment. The other electron occupies an outer-
most orbital described by )t)„having a zero core,
and is exclusively responsible for photodetachment.

The assumption that go= 0 for x (ro does not
imply that the charge density is small in the core
region. The single-electron density resulting from
the wave function of Eq. (24) is

Numerical calculation shows that this charge dis-
tribution is about 40%%uo inside the core region for
H, using our Po and the 1s hydrogen wave function
for g.

Another way to test the validity of our zero-core
model is to check the accuracy of moments gener-
ated from our Eq. (24) and using our zero-core
wave function as go. Such a test requires the ex-
istence of "established" moments of a negative
ion to serve as standards of comparison. H turns
out to be the only candidate since it is the only
negative ion for which an accurate wave function is
available for all values of x. Table II shows that
the moments generated from a zero-core wave
function compare quite well with those generated
from the 444-parameter wave function of Pekeris"
and the asymptotically correct 35-parameter wave
function of Rotenberg and Stein. " The higher mo-
ments are very accurate. The first two moments,
which are more related to the accuracy of the
photodetachment cross section calculation than the

higher moments, are off by about 10%%uo. Table II
also shows that the moments generated from the
zero-core model, despite its simplicity, are sig-
nificantly better than those obtained from the
standard Hartree-Pock computation. " Adelman's
asymptotic approach" yields accurate moments.
However, his approach is not applicable to any
negative ion whose normalization coefficient for
the wave function is not known.

V. DISCUSSION

We believe that the simplifications of the zero-
core-contribution model are inapplicable to physi-
cal processes which depend strongly on the elec-
tron-atom interaction potential, e.g., elastic scat-
tering of electrons by neutral atoms. Another
example is the absence of logarithmic terms" in
our Eq. (20), since these terms arise from the
long-range I/x electron-atom interaction which
is ignored in our model. The model also does not
apply to physical processes which depend strongly
on the wave function inside x, or on correlation
effects, and is therefore not applicable, for ex-
ample, to the calculation of electron affinities (or
photodetachment cross sections when the neutral
ends up in an excited final state. )

Even for a physical process for which the sim-
plifications are ordinarily valid, such as photo-
detachment from atomic negative ions, the range
of validity has limits. For example, (a) when
the kinetic energy of the outgoing electron exceeds
several electron volts, so that its deBroglie wave-
length is comparable to xo, the contribution of the
region inside xo is no longer negligible; (b) when
the kinetic energy of the detached electron is so
small that it is comparable to the electron-atom
potential energy in the photodetachment region
whence the differential cross section is likely to
be less accurate; (c) when the electron affinity is
so large that the wave function of the extra electron
in the negative ion does not extend very far beyond
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( y(y'+ 3u')x I cos5+, sln5 (31)

where 5 is the phase shift caused by the short-
range potential considered in their bound-free
transition. The comparison suggests that the kx,
factor in the argument of the sine and cosine ex-
pression of Eq. (14) may be related to such a shift
in phase.

The zero-core model has the potential weakness
of assuming an unduly large core size in order to
compensate for the absence of phase shifts. How-
ever, if this is the case, it should not be able to
predict with equal success the photodetachment
characteristics of H and Cs whose polarizability
differ by about two orders of magnitude. The ap-
proximately equal degree of agreement in the
cases of H and Cs shown in Fig. 2 is obtained
using the same formula for the core size, namely,
r, = 1.3(R')'~'. This argues against the suspicion
of a big bias in our current selection of the core

the radius of the neutral atom. This occurs when

1/yg r„as is the case with halogen negative ions
tsee Fig. 3(c)].

The apparent success of the zero-core model in
the discussion of photodetachment of atomic nega-
tive ions, without the use of the phase shift, calls
for some discussion. We believe that it may be
derived from the combination of the following two
factors. (i) The shift in phase of the outgoing wave
may be small over the range of x where the photo-
detachment process is predominant, i.e., the
shaded 'detachment" region shown in Fig. 1. This
certainly is the case for H whose total phase
shift, accumulated over the entire range of x, is
very small. That this may be the case for alkali-
metal negative ions, whose phase shifts are large,
may at first seem surprising. We note that the
large phase shift of an alkali-metal negative ion
is predominantly caused by its exceptionally large
polarizability. The large resulting long-range
polarization potential causes much of its shift in
phase to occur over a range of x»x„where the
photodetachment probability is small. The shift
in phase appropriate to the detachment region is
only the part of phase shift accumulated up to
ra r„and is therefore small. (ii) The shift in
phase appropriate to the detachment region is
caused mostly by the short-range potential within
the core. It is roughly accounted for in the zero-
core model by the use of the parameters, E and

One notes the remarkable resemblance of Eq.
(14) to the Bethe and Longmire formula" for
photodestruction cross section which is

32tt' e 2N2=, —,;:-.„)'

size and supports the view that photodetachment
calculations are not very sensitive to large phase
shifts caused by the presence of long-range po-
larization forces.

VI. CONCLUSIONS

The zero-core-contribution model is a one-elec-
tron model. It depicts a negative ion of n indis-
tinguishable electrons in terms of an "equivalent"
system of a neutral atom and an extra electron.
This extra electron has a zero-core wave function
and is exclusively responsible for photodetachment.
The limitations of this model are discussed in Sec.
V. The accuracy of its prediction for the absolute
photodetachment cross section is estimated to be
better than a factor of 2. Its mathematics is sim-
ple. The results are generally applicable. It
requires three input values —l, x„and E. Infor-
mation about these parameters are usually much
more readily available than the cross sections to
be calculated from this method. The size of neu- '

tral atoms are tabulated by Lu et al." A very
complete list of the electron affinity of atomic neg-
ative ions is seen in Ref. 17 by Hotop and Line-
berger. In the sense that the zero-core model
provides general formulas whose input values are
readily available, it is quite powerful. Photode-
tachment information, both in the form of absolute
cross section and in the form of angular distribu-
tion of detached electrons are at once made avail-
able for all atomic negative ions whose value for
/ is zero or 1 and whose x, and E are known.

The model also makes the role of the major
physical attributes of negative ions stand out clear-
ly. So far as photodetachment is concerned, it
shows that / has primary influence over all photo-
detachment characteristics, be it the shape, the
peak value or the angular distribution of the cross
section. The role of x, and E are less significant.
The peak value v of the cross section has a
moderate dependence on r, but is nearly indepen-
dent of E. On the other hand, the shape of the
cross section is influenced by the product yr„
where y is proportional to vE.

We conjecture that the method is likely appli-
cable to a number of processes beyond the single-
photon detachment of negative atomic ions which
is considered in this paper. We conceive its po-
tential use in calculating photodetachment cross
sections of diatomic and polyatomic negative ions,
multiphoton detachment cross sections, negative-
ion-neutral-resonant-charge-exchange cross sec-
tions at low relative energy, and negative-ion-
positive-ion recombination cross sections at low
relative energies.



290 R. M. STKHMAN AND S. B. %00 20

~ate added. Since this manuscript was submitted,
Lamm et a/. published an article [Phys. Hev.
A 17,238 (1978)]which calculated the photodetach-
ment cross section and multipole polarizability of
alkali-metal anions. That article employs a
mixed-zero-core method. The zero-core concept
is used to determine the normalization coefficient
for the bound-state wave function. However, the
bound-state wave function present in the integrand
in the calculation of photodetachment cross section
does not have a zero core. As a result of such a
mix, the values of ~'p chosen by I amm et al. are
approximately one-half of ours and the resulting
o,„are about 0.85 to 0.9 those of ours.

In an effort to improve the final-state wave func-

tion, I amm et al. incorporate a pseudopotential
chosen to match phase shifts calculated by Moores
and Norcross. ' It is interesting to note that if the
phase shifts are arbitrarily set to zero, the am~
from their calculation decrease by only about 10/p.
This supports our belief that a final-state wave
function with a realistic shift in phase in the "de-
tachment region" will yield nearly the same result
as obtained with a plane wave.
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