
PHYSICAL REVIE% A VOLUME 20, NUMBER 1 JULY 1979

Generalized low-frequency ayyroximation for scattering in a laser field. II
Leonard Rosenberg~

Joint Institute for Laboratory Astrophysics, University of Colorado, and ¹tional Bureau of Standards, Boulder, Colorado 80309
(Received 12 February 1979)

A time-independent formulation of the problem of scattering in an intense radiation field is used as the
basis for a derivation of a low-frequency approximation in which field-free scattering amplitudes enter into
the determination of transition amplitudes in the presence of the field. A single-mode field of arbitrary
polarization is assumed and the scatterer is represented by a local, short-range potential. In the present
derivation the dipole approximation for the field is not assumed. As a result, recoil corrections to earlier-
versions of the low-frequency approximation are obtained in explicit form. The low-frequency approximation
for bremsstrahlung in the absence of a background field, derived some time ago by Low and others, appears
as a limiting case of the result obtained here.

I. INTRODUCTION

In a previous paper' (referred to in the following
as I) a time-independent formulation of the problem
of scattering in the presence of an intense radia-
tion field was applied to the derivation of alow-fre-
quency approximation. The result obtained in I
provides a generalization to arbitrary polarization
of the low-frequency approximation for a linearly
polarized field derived (using time-dependent
methods) by Kroll and Watson. ' These earlier
results were obtained within the dipole approxima-
tion. This amounts to ignoring recoil corrections,
o'f the order v/c, which are expected to be small
in many of the situations of interest. ' Neverthe-
less, it seems desirable to determine these recoil
corrections explicitly, not only for the purpose
of obtaining accurate numerical estimates of these
effects but also as a way of sharpening our calcula-
tional tools. Here, by following the approach taken
in I but without imposing the dipole approximation,
we obtain a generalized version of the low-frequen-
cy approximation which reduces to the form ob-
tained earlier in the static limit. We retain the
assumptions of a single-mode field and a local,
short-range potential.

It is helpful to keep in mind the close analogy
which exists between these intense-field results
and the original low-frequency theorems for
bremsstrahlung in the absence of an external field.
The first result of this latter type was derived by
Low using the I.ippmann-Schwinger equation. '
Subsequently, Low's nonrelativistic result was re-
derived with recoil corrections included. "As
will be seen explicitly, these earlier versions are
recovered in the weak-coupling limit of the low-
frequency approximation derived below. This is
to be expected, since the particle-field interaction
is treated here nonperturbatively; by expanding

II. SOME USEFUL IDENTITIES

A. Particle-field solutions

The asymptotic states appropriate to scattering
in a laser field, which play a role analogous to the
plane waves of field-free scattering, satisfy the
Schrodinger equation

+llroa~a) ~r„~) =z„~(r„p).
—eA/c)'

(2.1)

The vector potential for the single-mode field con-
sidered here is

X = (21TKC2/(d j )r (~8r " r+ & pter
-e'"'rr

) (2 2)

Here ~ =Ac and L,' is the quantization volume. The
polarization vector is represented as

(2.3)X = 0, cosX + s0, sinX,

8, and 8, are orthonormal and orthogonal to k.
It follows that k- X =0, A. ~ X*= 1, and A, ~ X = cos2X.
The state ~g„-) is that which evolves from the un-
perturbed state Q; p) (corresponding to the field
containing g photons, the electron having momen-
tum p) as the field is switched on adiabatically.
The solution of Eq. (2.1) was discussed in I within
the approximations that photon depletion effects
may be ignored and corrections of order K&o/p, c'

the transition amplitude in powers of the electronic
charge we recover, as the leading term, the re-
sult of first-order perturbation theory.

Some properties of the asymptotic states of the
particle-field system and of the field-free scatter-
ing amplitude which will be required are collected
.in Sec. II; With these properties in hand the actual
derivation, given in Sec. III, is quite straight-
forward. I conclude by pointing out how the limit-
ing cases mentioned above can be recovered from
the generalized version derived here.
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E„=p;/2 p, +gS (d +6, (2.4)

are negligible. Here I record those properties of
the solution required in the following.

The energy eigenvalue is

bined by vector addition. The formula (2.13) rep-
resents a generalization of the well-known Graf
addition formula for Bessel functions, ' to which it
reduces when n and n are set equal to zero. %e
have, in fact,

with the continuum level shift given by
y„(P, 0) = e ' Z (p) . (2.14)

a =(e'/2p, c')(4vnhc2/(uI. '). (2.5)

~)I)„-)= P y„~n+m;p —mh. k);
m=

(2.6)

the expansion coefficients y are defined by the
integral representation

y (p, o) = —exp[ 2m(p+ip sin(8+ (I)))

d ()))

-. 2r

The eigenstates may be expanded in terms of the
unperturbed states as

This limiting case is appropriate for a circularly
polarized field [}t= —,'m in Eq. (2.10)] or when the
dipole approximation is used. In either case the
A term in the particle-. field interaction plays no
significant role.

B. Field-free scattering

The amplitude for scattering by a local, short-
range potential V in the absence of an external
field can be obtained by solving the Lippmann-
Schwinger integral equation

+2oi sln2$] . (2 'I)
&(e;p', p) = &(p'- p)

Here I make use of the following notation: I intro-
duce

q =he& —p. 0k/p, , (2.6)

in terms of which the complex number p is defined
as

~2p = (2mne'n/p'(uL2)'"(p 7);
p and 19 represent the magnitude and phase, re-
spectively, of p. %e a1.so have

n =a cos2X/2q . (2.10)

The essential properties of the expansion coef-
ficients y are given as follows.

(i) Recursion relation: According to Eq. (2.7)
we may write

imy =(iw) 'f d(e' i)exp(ip sin((i + p)

+io. sin2$]. (2.11)

Integrating by parts, we immediately obtain

2my„+ p[e y, +e ' y, ].2 [y... y. .l=o

(ii) Addition formula:

(2.12)

=y. .(p P' ~ —-~'-) (2.13)

Here the primes on p and cy indicate the appearance
of the momentum p' rather than p inthe definitions
(2.9) and (2. 10). Equation (2. 13) is readily verified
by using the integral representation to evaluate
the left-hand side. The sum over l can then be
performed and the complex numbers p and p com-

p -p

(2.15)
Here l'(p —p) —= (p' ~V~ p) and the usual limiting
procedure in which the energy e is given a small
positive imaginary part is to be understood. The
physical "on-shell" amplitude is obtained by set-
ting p"/2p, =p'/2p, =e. When the scattering takes
place within a larger system one generally re-
quires a knowledge of the off-shell amplitude.
The striking feature of the low-frequency approxi-
mations derived previously, as well as that ob-
tained below, is that the amplitude need only be
known on the energy shell. In the course of our
derivation it will be necessary to evaluate a quan-
tity of the form

d'p"t p' 2p, ,'p', p'

where p' and p differ by a first-order quantity,
in terms of the amplitude t and certain derivatives.
of that amplitude, correct to first order in the
small quantities g and 'U. The following identities
are useful in this connection.

(iii) Energy increment: It follows directly
from the integral equation (2.15) that, to first order
in g,

&(p'/2p + &; p', p) &(p'/2p; —p', p)

d'P f(P'/2p;p, p )

( 2/2 il2/2 )2 f(p / p') p i p) '

(2.16)
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It will be convenient to express the left-hand side
of Eq. (2.16}in terms of certain scalar variables
employed by Heller. ' Thus, suppose we express
the amplitude t(e; q, q), for arbitrary values of
the energy and momentum variables, as t(v, v, (, P, ),
where

dp t p 2p, ,p, p

~It'Q ~ p 2 2 ~/P

(p2/2 ptd2/2 )2 t(P / g t P t P)

(p+p') tt tt, tt
)='0 ~ -p -p

2 Bv B( Bg
(2.20}

v = —2(q2/2(u +q"/2t), ), 7 =(q' —q)',
(2.17)

f ) (p2/2 pd)2/2 )2

x t(p'/2~; p", p) =-~ —+
B~ Bg' (2.18)

the derivatives are evaluated at (v, ~, 0, 0).
(iv} Momentum increment: It follows from Eq.

(2.15) that, to first order in l3,

t(p'/2g, p'+(u'U, p+ p'U) —t(p'/2@, p', p)

]=e-q'/2p, , ('=e-q '/2p, . '

We expand the amplitudes on the left-hand side of
Eq. (2.16) about their values for v = v—= —2'(P2/2p,

+p '/2g), v =7-=(p' —p)', (=0, g'=0. This leads
to an alternative version of Eq. (2.16), somewhat
more convenient for our later purposes, of the
form

III. LOW-FREQUENCY APPROXIMATION

The amplitude for scattering from an initial un-
perturbed state g; p) to a final unperturbed state
~n,'p'), in the presence of the radiation field, is
given by'

T. p. ..P=((1&. l, 17'(E.(,)lk. l, }
where the scattering operator T satisfies

T(E„;)= I + «.(E:,)T(E:,).

(3.1)

(3.2)

The particle-field propagator is represented by
the eigenfunction expansion

Note that t(v, Ã, 0, 0) and Bt/Bv can be determined
from a knowledge of the on-shell scattering am-
plitude over a small range of energies and angles.
on the other hand, one must go off the energy
shell to determine Bt/B) and Bt/B)

dp t P 2pr'p rp ( i v d2 I(1).-P-)(4.-%-1 (3.3)
~II'U p

( 2/2 ptt2/2 )2 t(P t P P)t P) ' (2.19)

The derivation appears in Ref. 6. [The result
can also be obtained by combining Eq. (2.16) with

Eq. (3.37) of L] By expansion of the left-hand
side of Eq. (2.19) we obtain the equivalent form

Energy conservation requires that

p" /2p, +n'ilute =p'/2p +nb'&u. (3.4)

Our starting point is a low-frequency approxi-
mation for G,. When the expansion (2.6) is inser-
ted for the particle-field states Eq. (3,3) becomes

2 n2

E,(E„t)=g f d p gg 'I5""(-p)EElE&' t(-&+Epro- t -E".E~l y&dl&, f,i „-. t(') t"ittE-
n 1

(3.5}

D =P /2p, —P /2p, +nb&2) —n"hq". (3.6)

Suppose that for each value of pg"' the integration
variable p' is shifted to p -n Sk. This has the
effect of removing the index n" from the momentum
states in Eq. (3.5). The coefficients y, „„and
y&+„are unchanged. This can be verified by ob-
serving the effect on the variables defined in Eqs.
(2.8}-(2.10) resulting from a shift in the momen-
tum p by a multiple of hk. In Eq. (2.8} we may
thus neglect corrections of order (leak)2/p,

=ti~(ti(d/p. c2) in the nonrelativistic limit considered
here. Furthermore, p in Eq. (2.9) is unaffected
by such a shift since k X =0. The shifted value
of the energy denominator in Eq. (3.5) is, with q

'
= Ku& —p". tlk/p,

We introduce the low-frequency approximatiop.
by writing

=P'/2~ -P"'/2v. '(P'/2I -P"'/2v, )' ' "'"
neglecting terms of order (bur)2. If we retain only
the first term on the right-hand side of Eq. (3.7)
we are left with the approximate Green's function

E, = p f d'p" lt) pp" —tpk&

x —,, „»2 (p —life l(l i ~ (3.8)

The summation over n" has been performed using
the addition formula (2.13) in the form
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P yf ."-(p", ct")y& .-(P", u") =yr'-i(0 0}
n"

5 7 gl (3 9)

with

1"= Q (n'7) ' —n@(u)y„, „„(p"—P', n" —n')
n"

T = V+VGQT. (3.10)

From the momentum-space representation of Eq.
(3.10) we find, by comparison with Eq. (2.15),

the second equality following directly from the
integral representation (2.7). The scattering oper-
ator associated with Q, is defined by

x y, ,(P—P- (3.15)

n"q" nh~ —= (n"- n)q"-np" hk/p, (3.16)

Here we have used Eq. (3.12), but with momentum
shifts of order Sk dropped in the argument of the
t matrix since I is itself of order @co. In order to
carry out the summation in Eq. (3.15) we write

«'l(p'IT lp&IV

= 5...t(P'/2 p, ;p + thk, p +

leak)

. (3.11)

and consider the two terms separately. Since the
second term is independent of n', the summation
can be performed using the addition formula after
first making the replacement

This result enables us to evaluate T„.p..„p
=($„&.lTlg„g. Using Eq. (2.13) to carry out the
summation over photon states, we obtain

~l ~II I II=y.*- . (p -p, o' —u ) (3.17}

x t( p'/2 p, p' n+'K.k, p +n@k) . (3.12)

in Eq. (3.15); this can be justified from the rep-
resentation (2.7). Taking into account the first
term in Eq. (3.16), we use the recursion relation
(2.12) in the form

I("- ).-.
With the t matrix expanded in terms of the scalar
variables introduced in Sec. II, and with terms
of order (h&u)' dropped, Eq. (3.12) becomes

/A AI
Tn'p', np ~n'-n(P —P ~ ~ —~ j

n p ' hk np Sk Bt np Sk et
X t+~ +

[4(p -0")y-.- ...+k(P P')'-y. - . ,

+(o. - u")(y. -.-+y.- .-2)]-
According to the definition (2.9) we have

(3.18)

(3.19)

n p ~ Ak Bt
+ n -n Sm — I, . 313

Xn the following we use the approximation

Here and in the following the t matrix and its de-
rivatives are evaluated with the scalar variables
taking on the values v = —,'(p'/2p +p '/2p, ), ~
=(p'+n'hk-p-nhk)', $ =0, t =0.

When the particle-field Green's function is cor-
rected by inclusion of the second term on the right-
hand side of Eq. (3.7) we are led, with the aid of
an analog of Eq. (2.16), to a correction term C to
be added on to T. It takes the form

Ps

q" /q-= 1+p ~ k/pc —p ~ k/p, c, (3.20)

I' = g +'U - p

where

g = -JL(2vhe'n/p'(u L') 'i'

(3.21)

valid in the nonrelativistic limit. Equation (3.15)
can now be put in the form

d'p" t 2p, ,'p', p" x [(1+p ~ k/p, c)(p ~ xy„. „„+p~ X y„. „,)]
x(p'/2 p, —p"'/2 p, ) 't( p'/2 p, ;p", p) I',

(3.14)

A,

+-2b, cos2X(p. k/p, c)(y„.+& +y. -.-2))

(3.22)

and

~ =-(nh'k/u}y„. „(2+he'nv/p'vL')'"[k/. pc(p ~ Xy„„,„+p X y„„,)+&y„„,i+I y„„,]
+ —,'L cos2y (k/p, c)(y„„„+y„„,) . (3.23)
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Here and in the following the arguments of the y coefficients are understood to be (p —p', n —n'j. With
the aid of Eqs. (2.18) and (2.20) the correction term in Eq. (3.14) is evaluated as

p+p 8t 8t I 8t—-(g+p. V) —-(h+p' V)
2 av a) a$

(3.24)

Combining Eqs. (3.13) and (3.24), we find, after some simple algebra, the low-frequency approximation

1 8t 27758'g ' '" ~ -S(d ~, - Shl ~ ~~5(d ~, -g@(d
Tn'p', np —yn -n~ 2 2 3 p p I yn -n+I +28v p. (dL, 'g 'g xf g

+-',a t:osmy[gi+p'[. It/gc](y„. „„+y„„.)I . (3.25)

Note that the off-shell derivatives at/a( and at/a)'
have cancelled in this final result.

I conclude by commenting on several limiting
cases obtained from Eq. (3.25). First, considering
the static limit, in which terms of order p/pc
and p /p, c are dropped, we find

p+p 8t
~n'P':a. P

= yff'-ytt X
2

(3.26a)

with

&/2

p, ML

(3.27)

Since n —z vanishes in this limit, each of the y
coefficients in Eq. (3.26) is a phase factor multiply-
ing a Bessel function, as shown in Eq. (2.14).
Equation (3.26} is in agreement with the result
which was obtained in I within the dipole approxi-
mation. If we further specialize to the case of
linear polarization we find, using the recursion
relation (2.12} with o. and 8 set equal to zero,

~e) 2val "'-,
(dL ]

~--~ t+- p +p
p& 1 m[d , g[vl at

,

q] 2 g q i 8v

(3.29)

in agreement with Heller's result. ' The static
limit of Eq. (3.29) reproduces the form originally
obtained by Low.

The presence of the A.
' term in the particle-field

interaction is reflected in the form of the y coef-
ficients and in the appearance of the-last term in
Eq. (3.25), the term proportional to b, . To see
this more clearly, suppose we drop the p- A con-
tribution and take H' =(e'/2pc')A' as the interac-
tion. Consider now the bremsstrahlung amplitude
for two-photon creation from the vacuum, to
lowest order in H . The low-frequency approxi-
mation for this process can be determined directly
by using a simple modification of the methods of
Ref. 6. We find the amplitude to be

7T@
+2p &.pp = — 3 cos2X

p, (dL

(1 1
i

(p+p') ~ Kk at
(7/ 'g j 8(dp, ave

so that

(n' -n)h[d (p+p') - at

(x t-~ ~) (3.28)

This is precisely the form obtained from the weak-
coupling limit of Eq. (3.25}, after dropping terms
arising from the p X contribution to the interac-.
tion. In arriving at this result we use yo(0, o. )
=—1 and y, (0, n) = ——,'n, valid to lowest order in a;
these approximations are.readily obtained from
the integral representation (2.7).

This is equivalent to the result of Kroll and Watson. '
Returning now to Eq. (3.25}, we consider the

weak-coupling limit in which a single photon is
created out of the vacuum (the standard brems-
strahlung process}. Working to first order in the
electronic charge, and using the small argument
approximation for the Bessel function, we find
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