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Some recent numerical results for complex resonance eigenvalues of the helium isoelectronic sequence are
analyzed in terms of 1/Z perturbation theory in order to study the physical factors governing resonance
lifetimes. It is pointed out that principal trends in the asymptotic behavior of resonance positions and widths
can be rationalized in terms of Hund’s rules and familiar principles of bound-state electron-correlation
theory, particularly in terms of the radial correlations and their third-order coupling to angular correlations.
Such analysis shows, for example, why resonance lifetimes may often shorten with increasing Z, even
though the Z = « (hydrogenic) limit seems to imply an infinite lifetime. The analysis also suggests the
possibility of highly correlated, two-electron “bound states” embedded in the continuum for certain critical )

noninteger values of nuclear charge Z.

I. INTRODUCTION

The finite lifetimes of autoionizing “resonance”
states are pure correlation effects. In the absence
of electron-electron repulsions, such states would
exist indefinitely as bound states in the continuum,
subject only to the usual radiative decay processes
which limit the lifetime of ordinary bound states
below an ionization threshold. Recently, the po-
sitions and lifetimes of several atomic and mole-
cular autoionizing resonances have become avail-
able from variational calculations based on the
complex-scaling formalism.! While accurate data
of this type are still scant, it is desirable to ana-
lyze such results in terms of the physical factors
affecting resonance lifetimes, in order to gain
a clearer physical picture of the autoionizing pro-
cess and to guide the construction of variational
trial functions which can accurately represent
resonance decay. In the present work, correlation
effects in autoionizing states of two-electron atoms
are studied by analyzing recent variational re-
sults in terms of the 1/Z perturbation formalism.
From this analysis we propose a qualitative pic-
ture of the decay process in terms of correlation
effects familiar from studies on bound states.

Such a picture may serve as a provisional guide
to suggest where further data are needed, and to
anticipate broad trends in the autoionizing life-
times of other atomic and molecular systems.

II. ANALYSIS OF RESONANCE EIGENVALUES BY
1/Z PERTURBATION THEORY
The resonance position E, and width (inverse
lifetime) I" of an autoionizing state can be as-
sociated with a complex eigenvalue W = E, — (T’
of the cgmplex-scaled Hamiltonian operator
Ho(F)=H (re'®)

iIe‘P:W‘P; WzEr "%Z‘P (1)

with square-integrable eigenfunction ¢.? In the
1/Z perturbation expansion® for an atom of nu-
clear charge Z, Hg can be written

Z 2, =HY + 27 HY | (2)
where
7Y =em0 ) —lV?—e"'e}:—L (3a)
i 2 i 7y
AP =ei0)" 2 (3b)
I TTIRAT

The perturbed energy up to order N is

N

- (n)
zowm =y T (4)
. n=0

Since I}%’) is of separable hydrogenic form, both
W© and WO are real,?* so that

E,=ZW©O + ZW® + ReW @ + Z=1ReW ® +0(2"?)
(5a)
r=r® +zZ=1r® +O(Z-2) , (5b)

with T®™ = _2ImW ®. The width T is non-negative,
so that necessarily I'® > 0. It was shown by
Simon?® that this leading contribution to the width
is equivalent to the “Fermi Golden Rule” for the
decaying hydrogenic state.

While the leading terms of the expansions (5)
might be calculated directly by perturbation
theory, we have chosen to fit them to Ho’s® recent
variational calculations for 'S, 3P autoionizing
resonances of the helium isoelectronic sequence
above the #n=3 threshold [see Figs. 1(a), 1(b) and
2(a), 2(b)]. Related results for the 2s2p 3P re-
sonances were calculated by Drake and Dalgaino®
by another procedure, and are shown in Figs. 1(c)
and 2(c). Graphical analysis of the variational
widths leads to the estimates of the perturbation
coefficients I'?, I'® summarized in Table I.
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FIG. 1. Resonance positions of the helium isoelec-
tronic sequence, with dominant orbital configuration
assigned as described in the text. ‘(a) 'S resonances,
from the data of Ho (Ref. 5); () 3P resonances, from
the data of Ho (Ref. 5); (c) 2s2p, "3Presonances, from
the data of Drake and Dalgarno (Ref. 6).
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FIG. 2. Resonance widths of the helium isoelectronic

sequence, with dominant orbital configuration assigned

as described in the text.

(a) 1S resonances, from the

data of Ho (Ref. 5); (b) »3P resonances, from the data

of Ho (Ref.

5); (c) 2s2p, 1*3P resonances, from the data

of Drake and Dalgarno (Ref. 6).
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TABLE I. Leading terms in the 1/Z expansion of the
resonance width, I'=T® 4+ I'®z1 4 0(Z?), for the heli-
um isoelectronic sequence.

State r'? (au.) ™ (a.u.)
(3p)%, 15(2) 0.026 —0.040
(3p)(4p), 15(5) 0.015 —0.032
(3s)%,15(1) 0.005; —0.006;
(3s)(4s), 1S(4) 0.004, —0.007,
(3s)(3p), *P(1) 0.019 —0.035
(3p)(3d), 1P(2) 0.0055 —0.009,
(3s)(3p), 3P(1) 0.004, —0.002,
(3p)%,3P(2) . 0.001; ~0.001,
(2s)@p), 1P 0.0048 —0.006 6
(2s)@p), °P 0.00033 +0.00011

These numerical values form the basis for the
analysis given below.

III. RESONANCE POSITIONS

Although Ho’s variational resonance states were
labeled only by energy order, it is possible to
assign the leading electron configuration in each
of these states on the basis of the Z~! asymptotic
dependence of resonance positions, as plotted in
Fig. 1, and familiar rules for the ordering of
bound-state levels. As Z -, resonance positions
converging toward E, = — (£)3Z? must be associated
with doubly occupied hydrogenic z =3 levels (e.g.,
3s2, 3p2, or 342 for 'S symmetry), while those
converging to E, = — (3 + $)3Z® are open-shell
states with =3, n =4 orbitals occupied (3s4s,
etc.). On the basis of the usual “n+1 rule”, the
ordering of resonances of each type is expected
to be’

E(3s3) < E(3p%) < E(3d?)
E(3s3p) < E(3p%) < E(3p3d)
E(3s4s) < E(3p4p) .

Each of the states shown in Figs. 1(a) and 1(b)
has accordingly been labeled with an electron
configuration based on these assignments, to-
gether with Ho’s original label [*S(1) for the
lowest S resonance, and so on]. It will be seen
that these assignments are all consistent with -
Hund’s rules for the ordering of members of a
multiplet, so that resonances of triplet spin multi-
plicity fall below corresponding singlets of the
same orbital configuration, and P resonances

fall below S resonances. The rationalization of
these orderings would be similar to that employed
for ordinary bound states, and is not discussed
further here.

IV. RESONANCE WIDTHS: SECOND-ORDER
CONTRIBUTIONS

Since nonzero resonance widths are a pure cor-

- relation effect, it is interesting to see to what

extent these widths can be understood in terms

of an approximate proportionality I'c« E o, to the
electronic correlation energy. Correlation effects
of two-electron atoms have been extensively ana-
lyzed, so that simple predictions of resonance
lifetimes should be possible in terms of known
principles of bound-state correlation theory.

The physical picture underlying a relationship
between electron correlations and resonance life-
time can be sketched as follows: When two elec-
trons occupy a hydrogenic orbit of large radius
7, their correlations will tend to give a “split-
shell” state with inner (%, . =7 —0) and outer
(#puter =7 +0) orbits, similar to that of H~. Radial
correlation thus tends to drive one electron in-
ward to a low-energy orbit (higher effective nu-
clear charge, lower effective quantum number),
and the other outward to a loosely bound or un-
bound orbit, from which the electron may escape.
Correlation interactions, particularly of radial
type, which induce this orbital splitting, can
thereby cause the original doubly excited state to
decay in a finite lifetime, with emission of an
electron, to a low-energy state of the ion.

The 1/Z expansion (5b) shows immediately that
resonance widths should be insensitive to nuclear
charge in the limit of large Z, since the leading
contribution to I" is Z independent. This is in
accordance with the near constancy of E , with
respect to Z, which follows similarly from the
Z independence of the leading (second-order) con-
tribution to the correlation energy.®*!* The Fermi
Golden Rule, T'=T'®  which neglects all Z-de-
pendent terms, would therefore predict that the
resonance width is a constant for all members
of the isoelectronic sequence, but as Fig. 2 shows,
this is not a good approximation for small Z.
Note that although the result of setting Z=x is
to give the uncorrelated hydrogenic approximation
(with no resonance states), the asymptotic value
of the width for large Z is nevertheless nonzero.

For a given electron configuration, correlation
effects are expected to be stronger in singlet
states than in triplets, since (following the usual
argument) the “Fermi hole”? in the latter states
is already effective in preventing electrons from
being in the same regions of configuration space,
and thus from correlating strongly. By a similar
argument, the widths of singlet states should
generally exceed those of corresponding triplets.
This is strongly confirmed in the data plotted in
Figs. 2(b) and 2(c) where, for example, the width
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of the 3s3p 'P resonance is seen to be nearly five
times that of the corresponding triplet.

One would expect that E_,, for a doubly occupied
closed-shell configuration would exceed that of a
corresponding open shell (i.e., n#n’, all else
being equal), and therefore also that T, ., > Lipen -
This indeed seems to be the case. For example,
the widths of 3s? and 3p%1S resonances are about
50% greater than the corresponding 3s4s and
3p4p widths, as shown in Fig. 2. Resonances with
configurations nsn's might similarly be expected
to be narrower for n’=n+2,n+3,...than for n’
=n+1. Note that such trends run counter to the
naive expectation, familiar from barrier po-
tentials, that resonances of higher energy have
shorter lifetimes. )

One might similarly anticipate that resonances
of higher orbital angular momentum have nar-
rower widths, if the orbital structure is other-
wise the same. This would be consistent with the
Hund’s Rule argument that electron repulsions
(and hence, correlation corrections) are less se-
vere in states of larger L.

V. RESONANCE WIDTHS: THIRD-ORDER
CONTRIBUTIONS

It is striking that the T'® coefficients often ex-
ceed I'? in the data of Table I. This suggests
that low-order perturbation theory is inadequate
for such resonances (as has been noted in direct
perturbative calculations*), and that Fermi’s
Golden Rule omits significant contributions to the
resonance width for low Z. Here we seek to
analyze the signs and magnitudes of the observed
r'® corrections (which give the leading Z-de-
pendent contribution to resonance width), taking
account of the expected relationship to radial cor-
relation energy.

It is a familiar result that second-order energy
expressions make electron correlation effects
independent and additive.'® This seems generally
to result in “overshoot” of E. at the second-
order level, since too much flexibility is intro-
duced if the various types of electron correlating
motion are allowed to occur independently. The
effect of the third-order terms is then to couple
these correlations, and thus to correct for the
second-order overshoot by a contribution of op-
posite sign. This is evidently also the situation
for the resonance widths, since usually I'® <0.
However, the unusually large magnitudes of the
third-order coupling terms are quite striking in
the resonance states.

The physical picture of this third-order coupling
term can be sketched as follows: In atoms, the
dominant correlating motions in second order are

of radial (“in-out”) and angular type. The first

- causes the electrons to separate into inner and

outer orbits, as described previously, while the
second keeps electrons on opposite sides of the
nucleus. Each of these effects is exaggerated when
considered independently. The effect of the third-
order coupling of radial and angular correlations
is then to bring the electrons back closer to-
gether, for the outermost electron, initially in
an orbit corresponding to no coupling of radial
and angular correlations, will now “see” the
other electron tending to lie behind the nucleus,
thus “descreening” the nuclear charge. This per-
mits the outer electron to move closer to the nu-
cleus, and to reduce the radial separation that
was established in lower order. It is evident that
the magnitude of such “angular descreening” cor-
rections should be Z dependent, becoming less
important for large Z when the fractional effect
is smaller. The coupling of radial and angular
correlation was extensively studied by Moiseyev
and Katriel,!! who showed it to be the leading
contribution to the Z-dependent correlations in
two-electron atoms. Evidently, these third-order
effects are still more strongly pronounced in the
doubly excited autoionizing states. One may think
of the strong angular correlation as tending to
increase the effective nuclear charge binding each
electron to the nucleus, thus lengthening the life-
time of the metastable state.

The results of Moiseyev and Katriel suggested
that coupling of radial and angular correlations
is more important for diffuse orbitals than for
tightly bound ones, more important for singlets
than for triplets, and more important for p orbi-
tals than for s orbitals. Similar trends are seen
in the third-order widths I'® of Table I. How-
ever, unlike the bound-state E,,, the resonance
widths (which depend most strongly on the »adial
correlations) derive such strong negative con-
tributions from I'® that the total width might be
reduced to small or vanishing values for suf-
ficiently small Z. For example, crude extra-
polation of the data of Fig. 2(a) for the 3p21S(2)
state suggests that I' might vanish in the neighbor-
hood of Z ;= 1.5. Such a limiting case would evi-
dently correspond to a bound state embedded in
the continuum,'® as discussed by Wigner and von
Neumann, Stillinger, and others.'® It would be
interesting to trace further the fate of several
of these resonances for smaller noninteger Z.

VI. CONCLUSIONS
It seems that principal trends in the dependence
of resonance lifetimes on nuclear charge, spin
multiplicity, orbital angular momentum, and other
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variables can be crudely understood in terms of
general principles of bound-state electron-cor-
relation theory, and a simple physical picture
relating the radial correlation energy to the auto-
ionizing decay “mechanism.” These trends sug-
gest the importance of corrections to the ordinary
second-order (Fermi’s Golden Rule) theory of
resonance decay, and point to areas where ad-
ditional data could further clarify the physical
picture of such states. It will be interesting to
determine whether the outlines of the picture

sketched here can be extended to cover the sys-
tematics of resonance decay in other atomic and
molecular systems.

ACKNOWLEDGMENTS

We thank Dr. Y. K. Ho for communicating his
numerical results to us in advance of publication.
The financial support of NSF Grant No. CHE77-
19941 and CHE76-22760 is also gratefully ack-
nowledged.

1See the special complex-scaling issue of the Int. J.
Quantum Chem. 14, 4 (1978), as well as B. R. Junker
and C. L. Huang, Phys. Rev. A 18, 313 (1978);

G. D. Doolen, J. Nuttall, and C. J. Wherry, Phys.
Rev, Lett. 40, 313 (1978); T. N. Rescigno, C. W.
McCurdy, and A. E. Orel, Phys. Rev. A 17, 1931
(1978); P, Winkler and R. Yaris, J. Phys. B11, 1
(1978); N. Moiseyev, P. R. Certain, and F, Weinhold,
Mol. Phys. 36, 1613 (1978) and Int, J. Quant, Chem.
14, 727 (1978); C. W. McCurdy and T. N. Rescigno,
Phys. Rev. Lett. 41, 1364 (1978); N. Moiseyev and

C. T. Corcoran (to be published).

2(a) E. Balslev and J. M. Combes, Commun. Math.
Phys. 22, 280 (1971); J. Aguilar and J. M. Combes,
Commun, Math. Phys. 22, 269 (1971); B. Simon,
Commun, Math. Phys. 27, 1 (1972); (b) B. Simon,
Ann, Math, 97, 247 (1973).

33. O. Hirschfelder, W. Byers Brown, and S. T.
Epstein, Adv. Quantum Chem. 1, 255 (1964).

‘F. Weinhold, J. Phys. Chem. (to be published).

Y. K. Ho, J. Phys. B 12, 387 (1979).

6G. W. F. Drake and A. Dalgarno, Proc. R.Soc. London
A 320, 549 (1971).

"Several other resonance configurations with n=3, #’
=4 would be possible, but were apparently not calcu-
lated by Ho. In assigning Ho’s 1S(4) and 1S(5) to be
3s4s and 3p4p (instead of 3d4d), we implicitly assume
that Ho’s resonances were the lowest of their sym-
metry type.

8p,-0. Ldwdin, Adv. Chem. Phys. 2, 207 (1959); J.
Mol. Spectrosc. 3, 46 (1959); J. Linderberg and H.
Shull, J. Mol. Spectrosc. 5, 1 (1960). )

%R. J. Boyd and C. A. Coulson, J. Phys. B 7, 1805
(1974), N. Moiseyev, J. Katriel, and R. J. Boyd, J.
Phys. B 8, L130 (1975); N. Moiseyev, J. K. Katriel,
and R. J. Boyd, Theor. Chim. Acta 45, 61 (1977).

103, Lennard-Jones and J. A. Pople, Philos. Mag. 43,
581 (1952); P. R. Taylor and R. G. Parr, Proc.
Nat. Acad. Sci. U.S.A. 38, 154 (1952); O. Sinanoglu
and K. A. Brueckner, Three Approaches to Electron
Covrelation in Atoms (Yale University, New Haven,
Conn., 1970).

1IN, Moiseyev and J. Katriel, Chem. Phys. 10, 67
(1975).

12An exception might occur if E, < Eqyegora fOT Zepyy, but
this does not seem likely except (possibly) for 2s2p1pP.

133ee, for example, J. von Neumann and E. Wigner,
Phys. Z. 30, 465 (1929); F. H. Stillinger, J. Chem.
Phys. 45, 3623 (1966); F. H. Stillinger and D. K.
Stillinger, Phys. Rev. A 10, 1109 (1974); F. H.
Stillinger and T. A, Weber, Phys. Rev. A 10, 1122
(1974); F. H. Stillinger and D. R. Herrick, Phys.
Rev. A 9, 446 (1976); B. Simon, Commun, Pure Appl.
Math. 22, 531 (1967); N. Moiseyev and J, Katriel,
Theor. Chim. Acta 41, 321 (1976); W. P. Reinhardt,
Phys. Rev. A 15, 802 (1977); F. H. Stillinger, Phys.
Rev. A 15, 806 (1977),



