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Correlational correction to plasmon dispersion
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The authors question the suggestion that plasmon dispersion increases for small values of the coupling
over its random-phase-approximation value, and conclude that, contrary to wjlat has been stated in the
literature, it does not: high-frequency-moment sum-rule and Kramers-Kronig arguments, when properly
treated, do not entail such a consequence.

~'= 4we'np, (do = 47le B/PB q

in the zero-coupling (y=- ~'/4vn= 0) limit exhibits
the well-known Bohm-Gross behavior with

s (y = 0) = 3 .

For finite y, however, the precise character
of the function s(y) is unknown, although a few
points have been obtained' through molecular-
dynamics simulation:

s(@=1.71) =4.96, s(y= 52.3) =0.00,

s (y = 2009) = —17.3 .
Elsewhere' we have argued that a consistent

small-y expansion of the first and second equa-
tions of the Bogoliubov- Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy, as given by costs, '
leads to

dS
&Q

dy &-,

At the same time, Baus' has found

dS
&Q

dy y-0

as a result of his approximate treatment of the
BBGKY hierarchy. The positiveness of ds jdy
is believed to be further corroborated through a
work by Ichimaru, Tange, Totsuji and Pines'
(ITTP), who argue that model-independent con-
siderations require ds/dy&0 on quite general
grounds. The arguments of ITTP rest on the
high-frequency-moment sum rules pertaining to
e(k, z), the plasma dielectric function, and on
the Kramers-Kronig relations, relating its real
and imaginary parts, e'(k, &u) and e"(k, &u), to
each other. In this work we examine what con-

The plasmon dispersion relation in a one-com-
ponent plasma (ocp) for k- 0

&d (0) = Ro(1+ S lP/K ),

sequences these two, indeed quite general, con-
straints entail as to the behavior of the plasmon
dispersion curve. %e will conclude that the
proofs of ITTP are incorrect and that there is no
a priori reason to accept ds/dy & 0. We will also
comment on the correct high-frequency behavior
of e(k, &u) for small values of y.

The plasmon dispersion function is determined
from the dispersion relation

e(k, &o) =0 (4)

where, to lowest order in y,

e(k, (u) = 1+ ao(k, (u)+yu, (k, (u)

= 1+ ao(k, (u) [I+yv(k, z)]

with ao(k, e) being the random-phase approxima-
tion (RPA) polarizability. Evidently, if we set

(5)

(u(k) = (uo(k) +5&a(k)

where &uo(k) is the RPA plasmon solution,

(~)=-y ' ' ' (k, =,(&))

„—o.o(k, oo = (uo(k))

(6)

Momentum conservation requires that in an ocp

Ilm V(k, (0) = —(0 /K )((do/(d )'U((d) (8)

ds' 2 Qo(k=0~(d=(uo)
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Since o.o(&uo) &0, (d/Cku)ao(&uo) &0, it is the signa-
ture of v(&uo) which is to be determined.

The high-frequency expansion of a'(k, co) can
be derived from a similar expansion of a(k, u),
the external polarizability,

(9)

(the —&uo/e' coefficient is inserted for convenience),
and our attention will be focused on the function
'0((u) =u'((u) +A)"(~). Thus for 0- 0
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n (k, &u) = n(k, u))/e (k, (u) .
As will be discussed below, n" (&o-~)-0 very
quickly; thus, it is sufficient to consider

n'(k, &u) = n'(k, e)/[I+ a'(k, u&)]

or

al(k, (u) = n'(k, (o)/[1 —n'(k, u))] .

the origin of the purported negativeness of ds/
dy~z, in the derivation of ITTP. This is quite
simple. Consider the expansion of 6, in powers
of y and, in addition, of x= a', /u~ and y= 0'/t('.

n(k, &u) = (a„y"y x+b„y"y x'
n, m

+c y"y x'+ ~ ~ ~ )

The expansion of n'(&v) in powers of ~ '[n'(&u),
being an even function, cannot contain odd powers
of &u], is related to the frequency moments of
6"(e) through the Kramers-Kronig relations

,
( ) t di n" (j ) g di „„(~)~2„~ 1

(13)

6 = —100 P

boo = —1

b 10

Coo + 1

c,o= 0

= 0(m x0, nx0},
b 0, = 3, b, = 0(m 0 0, 1) .

b~~W 0,
c„e0,
c„ 0,

We know (e.g., from ITTP) that

(16)

The latter then can be calculated by evoking the
fluctuation-dissipation theorem which links the
frequency moments of n" (e) to the time deriva-
tives of the equal-time two-point correlations in
the system. %e note, however, that the above
derivation rests on two considerations: (i) that
n(&u) is a plus function, and (ii) that a" (&u) con-
verges quickly enough to allow for the p/v ex-
pansion in the integrand. Although on physical
grounds one is confident that both of these con-
ditions are satisfied for the exact a(&o), it is to be
carefully examined whether they are not violated
in a particular approximation. If we expand n
in y and restrict our attention to the O(y') and
O(y') terms, evidently

I— 1
[1—(n,'+so.,') -ya'J ' (14)

b, n, is an O(y ) contribution of non-RPA origin:
the existence of such terms in the high-frequency
expansion of n has been pointed out by ITTP and
will also be discussed in the following.

The zeros of e(~) come from the infinities of
the denominator in Eq. (12). If n'(e) is expanded
in u ', no finite number of terms can lead to such
an infinity. The infinite series representing
n,'(&u) can be easily resummed into the RPA
n,'(v) = n,'(&u) /[1+ n,'(~)], expressed in terms of
the known RPA polarizability a,,'(&u). No such
resummation, however, is known for a', (&u) or
hat(~) Moreov. er, if one restricts oneself to a
'finite number of terms in the latter, a glance at
Eq. (14) makes it evident that no shift in the plas-
mon dispersion can result.

This observation should be sufficient to demon-
strate the fallacy of any derivation that proposes
to calculate the shift of the plasmon dispersion
from the analysis of a finite-order ~ expansion
of a'(e). It will, however, be instructive to see

Expansion of (14) to order y now yields

I 2 A

Eo+yEou

eo = 1/[1- (uo+ano)] .
(17)

Substituting this into (7) and taking into account
that, as previously pointed out, momentum con-
servation requires both 6y and An, to be at least
of O(k') [cf. (14)], we find that the order k' con-
tribution of &e(k) is

&(u(k) =—yn, (k, (u=(u, ) „'
f 0(k = 0~ (d =. 420)

d(d

Depending now on the order x at which one elects
to terminate the series, one finds, successively,

~&(b) = ayybi„~&(~) =ayy(c„-b„),
6(d(b) = ayy(d ||—c|g) ~

(20)

In particular, in view of (14), termination at x'
yields

ds 4
dy 7-0 15

while termination at x' converts this into

(21)

ds 4
dy ~0 15'

Equation (21) is the earlier result of Ichimaru
and Tange, ' and Eq. (22) is the "corrected" result
of ITTP. It is obvious that by suitably choosing
the power of x at which the series is terminated,

(22)

Since e,(k= 0, + = z,) = 0, this is in accordance with
our previous observation that, to any finite order,
beg(b) =0. However, if we now formally apply an
x-expansion, before setting x= 1, we can write

6(u(b) = ,'yyx'~'(b „x'+c-„x'+ ~ ~ ~ )(1 -x)'
=-,'yyx'~'b„x'+ (c„—2b„)x'+ ~ ~ . (19)
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practically any desired value of 5(v(k) can be
generated: none of them can claim superiority
over any of the others. As already pointed out by
Baus, ' the arbitrary termination of the high-fre-
quency expansion for the purpose of the analysis
of dispersion phenomena in the vicinity of x = l
is completely unjustified.

We now turn to examining the consequences of
the Kramers-Kronig (KK) relations. First we
note that the real and imaginary parts of c(k, (())

have rather different analytic structures as func-
tions of y: while c' is analytic in y (at least for
(v's in the vicinity of (v,) i.e., limz, e'-y, e", in
addition to having a y-proportional contribution,
contains a so-called "dominant" term which ren-
ders lim&, ~"-@logy '. In view of the linear
relationship between c' and e", as required by the
KK relations, the Hilbert transform of the domi-
nant term must vanish. The second observation
we make is that, to assure the requisite plus-
function character of e((v) in the k- 0 limit in the
expression lim, ,a, (k, (()) = ((vo/&()~)(k'/z')'U((v),
the I/(v' is to be properly interpreted as
(I/(()) lim, , I/((v+ io)'. ITTP, on the other hand,
implied the assumed dominance of the Hilbert
transform of n,"~, i.n determining n,' and claimed
that

aI. corn((vo)
=

with

below.
The precise reason for which ITTP's evaluation of

Eq. (23) is incorrect can be understood by letting (v,
—0; with this choice ITTP would have I--~ and
J—0, whereas the properly interpreted singular
denominator (I/p)'=I'(I/p)' —(iv/2)II(p) yields,
instead of (23),

dg 1 ~,. (V)a,',. ((v,) =(v', —", -, , Im
w ~P —e,~

(25)

with

, k' du 1 v,". (p, )
K 7f (l). —(()0) p

= —,2 [Ua. ((vo) -&a. (o) -2(v.'4. (o)],

The equivalent of ITTP's I is now K [due to
P(l/P)'], which is exactly cancelled by I. [due to

(P)] giving a', ~, (((),) =0, consistent with our
first observation that the Hilbert transform of the
dominant term must vanish. At the same time,

"(~) . (ITTP)
W P —(do

In the literature"" there is a general agree-
ment concerning the dominant part of V"((v),

&,"..((v) = (8/I~~)(logy ')((v./(v) . (24)

In choosing (v, in Eq. (23) to be sufficiently small,
ITTP correctly estimate that I is negative. How-
ever, they erroneously argue that J is also nega-
tive, leading to a', ((v,) negative and ds/dy positive.
Their line of reasoning rests on two premises:
(a) that a" (i() = ao(p)+yaf(p, ) &0 for p, &0 and, (b)
that for small k, a,"- k', a,"- exp(- p, '/k'v('„), and
thus n", dominates. The fallacy of this argument
lies in ignoring the fact that "small k" actually
means kv,„/p «1 in this context, and in calculating
the Hilbert transform for any small, but fixed k,
one always runs into (positive) p domains where
kv(„/p, &1, and where a," is not dominant. Thus,
for p sufficiently small in the interval (0, (v,), a"
is positive, as it should be, even though a," does
not have to be: that n," is indeed negative and
therefore J positive is demonstrated, however,

In the above line. of reasoning, we have tacitly
assumed that the (v

' behavior of af((v), known
to be exact for frequencies above the collision
frequency, can be used to represent o.," down to
~-0. This is almost certainly not so, but this
point is not crucial to our argument. Our model
only illustrates that the plus-function character
has to be preserved correctly to any order of the
approximation. Any other reasonable perturbative
mode], (e.g., a "hydrodynamic" one' with a,"- (v

' for &v- 0) gives basically the same result:
a large positive contribution to the integral for
cu- 0, coming from a large negative value of n,".'

We conclude that neither of the proposed proofs
of the positiveness of (ds/dy) can be regarded as
being correct and that at the present time there is
no general information available to determine the
sign of (ds/dy). Nevertheless, a concrete calcula-
tion based on Coste's' formulation can be per-
formed, which provides both 'U'((v) and z"(&()).

They can easily be shown' to satisfy the combined
Eqs. (25) and (26), with a', ((vo) & 0 leading to
(ds/dy) «.

We have already remarked that the satisfaction
of Eq. (13) requires a sufficiently rapid vanishing
of a" ((v) = a" ((v) for (v-~. The calculated'U" (a),
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however, does not satisfy this criterion. This can
already be seen from Eq. (24): Ii~ „n",~, (e)
= C,/e'. At the same time, Bf „,„~, (&u) can be
shown to have the behavior lim „nf „,„.~, (e)
= (C. Iogl ~ I

+ C.)/~'.
This unphysical behavior of o.,"(&u) for u&-~ is

also reflected in the pathological high-frequency
properties of o. ', (&u). Indeed, while the calculated
value of n,'(u&) satisfies the I/e' moment sum
rule, it already fails to satisfy the I/uP sum rule.
Moreover, in the high-frequency expansion of
o. ', (~) an anomalous I/~&@~' term appears. The
origin of all these problems can be traced back
to the well-known nonuniformity of the y expan-
sion: it is expected to fail both for &u &O(y) and

up &O(1/y). Thus the actual high-frequency be-
havior of a(e) cannot be predicted on the basis
of the y expansion. On physical grounds, however,
one expects the collisional damping to vanish ex-
ponentially for frequencies higher than the inverse
duration time of a typical collision, &uo/p. Con-
jecturing that this effect can be well represented
by cutting off the integral in Eq. (26) at g = &u,/y,
all the. anomalies cure themselves in a straight-
forward manner. At the same time, however, the

introduction of the y-dependent cutoff in the Hil-
bert transform eliminates the simple power-by-
power correspondence between n'(&u) and n" (e)
in their respective y expansions. En general, a
term of order y" in n" (~) contributes to a term
to order y" (n' &n") in o.'(v). In particular, a", (~)
contributes to u,'(&u), thus providing a zero-order
term of non-RPA origin. ITTP discovered the
existence of such contributions by analyzing the
structure of equal time two-point correlations;
the qualitative analysis outlined above indicates
how terms of this type emerge in the perturbation
expansion of the dielectric function. Once the
convergence of all the moment integrals is as-
sured, there is no 1/~&u~' term generated in o.'(&o);

moreover, the possible contribution of the higher
order r'a2'(e) to zn', (e) opens the way to the emer-
gence of a correct coefficient for the I/uP term.
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One could also correctly observe that all perturbation
expansions in y break down below the collision frequen-
cy (-p) . Should one use the unexpanded n" (p, ) for
—~&& p& u&, the splitting of e "(p} into "dominant" and
"nondominant" parts becomes, of course, meaningless
in this domain, and one expects that the resulting J, in
addition to cancelling I, provides a contribution to the
nondominant e'(~0).


