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Debye thermodynamics for the two-dimensional one-component plasma
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The internal and free energies of a two-dimensional one-component plasma model, in the high-
temperature Debye approximation, are reinvestigated, and a domain of validity for this model is discussed.
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Recently' ' a great deal of attention has been
paid to the canonical thermodynamics of the two-
dimensional, two-component classical plasma in-
teracting through a logarithmic Coulomb potential
in~ x/L ~. This potential is a solution of the two-
dimensional Poisson equation

aP(r) = -2tt5(r),

The distance L is a scaling length, which is arbi-
trarily set equal to unity.

Important to this theory is the parameter T,
=e'/2kn, which represents a critical temperature.
This parameter has proved significant in a num-
ber of. analyses of various two-dimensional sys-
tems. "' The so- called one- component-plasma
model (OCP) -obtained by taking simultaneously
the limits N-~ and e-0 with Ne &~ and spread-
ing out one of the components into a continuous
and. mechanically rigid background is also of a
great interest. ' The purpose of the present com-
ment is to revisit the high-temperature domain of
the two-dimensional OCP for two main reasons:
First, to emphasize the special status of the Debye
treatment for Coulomb systems when the space
dimensionality is less than or equal to 2. This
point is frequently overlooked in the current lit-
erature. The second is to correct several calcu-
lational mistakes' in Ref. 3.

I.et us start from the definition of the potential
energy W(R) of N classical pointlike charges in-
teracting through the logarithmic potential intr I

in the presence of a neutralizing background. "'
After elementary algebra we obtain

W(R) —= Ws~+ Ws s+ Ws s

The volume of the system is mR'.
The first term in W(R) is the particle-particle

contribution to the energy, while the second and
the third terms represent the particle-background
and background-background (self- energy) contri-
butions, respectively. In contradistinction to OCP
models with a spatial dimensionality greater than
2', 8"~ ~ and 8'~, do not vanish when. the average
size R of the system becomes very large. This
peculiarity shared by all OCP' s with dimensional-
ity smaller than 2' explains that the usual transla-
tion-invariant Debye-Hiickel (mean-field)" treat-
ment of the high-temperature thermodynamics
(pertinent to the virial quantities of first order in
&= e'/knT) is only approximate. That is, beyond
the neglect of &' and higher-order terms, one
finds that this analysis also neglects the symmetry-
breaking term N'~ ~ arising from the nonvanishing
coupling with the background. At sufficiently low

temperatures, this harmonic contribution W~ ~

may be responsible for the appearance of a long-
range ordered crystalline phase. In this regard
the ground state of the two-dimensional QCP de-
fined through (2) has been shown to crystallize in
a tr iangular lattice. ' The corresponding potential
energy of the Wigner-Seitz cell has also been com-
puted. ' This quantitative result may be under-
stood quickly by the following semiquantitative ar-
gument. The potential energy of N charges inter-
acting through the logarithmic potential is expec-
ted to be mig. imized when all the charges are lo-
cated at the vertices of a regular N polygon. '
Moreover, the Peierls argument requires that
each site become a center of symmetry for the
whole system which selects out the triangular lat-
tice. However, it has not been determined if this
triangular lattice persists at high temperature, as
is the case for the OCP in one dimension. ' We
mill investigate this problem in the so-called mean—
field approximation. Within this approximation the
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F'*'= —ksT In[N'~ '(L/R)],

20

E p2m= 1+ dr r [g,(r) —1] —e' ln— derived for AT =—,'e' from the canonical partition
function (Z, =r, /R)

becomes

1+ 2v dxx lnx+ ln—&K,(lx I),pg 2e2 CO

XD

B 0
(3)
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(&R2) N

= exp[--', Pe'N ln(R/L)]exp( —', Pe'N')

where

x=r/XD, XD=keT/2wpe', p=N/V.

In obtaining (3) the pair correlation function g, (r)
has been approximated by g,(x) = 1 —M, (x). The
function K„(x) denotes the modified Bessei func-
tion of the second kind

f I'

x exp --'Pe'N Z'
=1

with the angular integration exactl.y performed,
through'

K,(x) = du exp( —x cosh u),
0

together with the identities

OO 1
dQ 2=1
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dxx lnx exp( —x cosh u) = 1 —y —ln(cosh u)
(cosh B)

(5 b)
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This agreement clearly demonstrates that the
translation- invariant Debye approximation, rele-
vant to the domain «& 1, may al, so be appropriate
in the strong coupling limit (e =2 here)

The corresponding specific heat at constant vol-
ume

where y= 0.5772 is Euler 's constant.
Recently, Calinon et al.' have remarked that the

right-hand side of Eq. (8.6) in Ref. 3 is incomplete.
This is because the factor 1 was omitted in the
r ight- hand side of the integral

c = —=ks(1+—'e)y ~y B 4
V

an.d the entropy per particle

(10)

ln (cosh u)
(cosh u)' (6)

gy exc
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When this is corrected, we obtain

E/NksT = 1+—,
' &[In(21~/L) y],

which differs by a constant from the result quoted
in the last line of Ref. 3, Eq. (8.6).

The correct excess free energy then reads

pI'"'= dp' E'"' p'
0

= —2& [ y+ —,
' + In(2XD/L) ],

It is highly significant that (8) is in very good
agreement with the only available exact result'

appearing in Ref. 3 are left unchanged.
It is also worth mentioning that the extrapola-

tion of E taken from Ref. 8, Eq. (8.6) (of which
Chui'chas made use) for the internal energy to a
two-component plasma is not affected by the pr e-
sent modification if one allows the condition ln Ka
»1 —y to be extended to the equivalent ln Ka»1
—y+ln2, K=AD'. The length a is part of a wave-
funetion normalization used in the one-dimensional
Tomonaga model with imputities and electron-elec-
tron interaction. '

As a final remark, it is interesting to compare
the present thermodynamics derived for the OCP
model with the corresponding results obtained by
Seiler" for the two-component Coulomb gas with
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periodic boundary conditions, in the random-phase
approximation. In this finite model, the logarith-
mic Coulomb law is replaced by the Ewald poten-
tial

27t'

, exp[ik. (r, —r,)].
k

Both systems display the same equation of state,
while their internal energy [cf. Eq. (22) in Ref. 11
with the present Eq. (7)J differ only by a constant
in the T- ~ limit. However, the free energy and

the entropy are markedly different (see Sec. III in

Ref. 11).
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