
VOLUME 20, NUMBER 6 DECEMBER 1979

Statistical mechanics of dense ionized matter. VIII.
Dynamical properties of binary ionic mixtures
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Molecular-dynamics calculations are reported for binary mixtures of ions of like charge in a uniform
neutralizing background. For a system simulating the mixture H+-He'+ the calculations show that the
spectrum of charge fluctuations is dominated by a propagating plasmon mode with a lifetime which is finite
even in the long-wavelength limit. At high charge densities there is an additional low-frequency contribution
to the spectrum; this is shown to arise from a coupling between charge fluctuations and fluctuations in mass
density. The results are in satisfactory agreement with a simple hydrodynamic calculation, though it appears
that in practice the hydrodynamic limit is never fully attained; it is also found that a memory-function
approach incorporating the coupling of mass and charge gives a good description of the collective. dynamical
modes at high charge densities.

I. INTRODUCTION

The work described in this paper is concerned
with the dynamical properties of strongly coupled
mixtures of classical point ions of like charge.
Attention will be focused primarily on mixtures of
protons (H') and n particles (He") at temperatures
and densities such that the electrons form a de-
generate and rigid (i.e., weakly polarizable) Fermi
gas. Under these conditions the ions may be re-
garded as moving in a uniform neutralizing back-
ground. The main body of the paper is concerned
with presenting the results of molecular-dynamics
calculations on such a system and with a phenom-
enological analysis of these "experimental" re-
sults in terms of linearized hydrodynamics and of
the memory-function formalism.

There are two main reasons for undertaking
the study. First, the static (thermodynamic and
structural) properties of binary ionic fluids have
recently received much attention. In particular,
the possibility of demixing at low temperatures
has attracted interest from astrophysicists. ' 4

Little is yet known, however, about the dynamical
properties of such mixtures. Second, the work
represents the last stage in a systematic investi-
gation of the dynamics of Coulomb fluids in the
intermediate and strong coupling regimes. In
earlier papers we have discussed the properties
of the one-component analog of the system studied
here (the one-component plasma or OCP5) and
those of binary systems of particles of opposite
charge: monovalent molten saltse and the fully

ionized hydrogen plasma (the two-component
plasma or TCP'). A mixture of particles carry-
ing different charges of the same sign is there-
fore the last in a list of simplest possible classical
Coulomb systems.

Results obtained from computer simulations of
the QCP, molten salts and the TCP have shown
that the collective dynamics in strongly coupled
Coulomb fluids differ quantitatively and even qual-
itatively from the predictions of mean-field theory
and other weak coupling approximations. How-
ever, a number of exact results concerning the
qualitative features of the collective modes in
Coulomb systems have recently been established
by Baus" in the framework of kinetic theory.
The most striking prediction for binary ionic
mixtures concerns the optical (or plasmon) mode:
this should have a temperature-dependent frequency
and a finite lifetime in the long-wavelength limit,
whereas the one-component case is characterized
(in the same limit) by a unique plasma frequency
and a lifetime which is infinite. A similar conclu-
sion was reached -on more phenomenological
grounds in a preliminary version of the present
work. '

Physically the binary mixtures considered here
exist only at densities sufficiently high that both
species are fully pressure-ionized. For the mo-
tion of the ions to be treated classically the tem-
perature must also be sufficiently high that the
thermal de Broglie wavelengths of the two species
are much smaller than the mean interionic spac-
ing. On the other hand the temperature must be
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II. DEFINITIONS AND NOTATION

Consider a mixture of N, ions of charge Z,e
and mass M, with &, ions of charge Z,e and
mass M„e being the elementary (proton) charge.
Let V be the volume of the system and let Ã=N,
+N, be the total number of ions. Then the num-
ber concentration of species n (= &, 2) is x
=N /N and the partial number density is p
=N /V We may a. lso define a dimensionless
fractional charge z and mass m by the relations

z =Z/Z, m. =M./M, (2.l)

low compared to the Fermi temperature of the
electrons in order to justify the assumption of
complete degeneracy. The physical limitations
of the uniform-background model have been dis-
cussed elsewhere, ' but it should be said that the
extreme conditions of temperature and density
under which the model can be considered as fully
realistic are at present relevant only to certain
astrophysical problems. Our primary concern
here, however, is with building a more complete
picture of the dynamical properties of Coulomb
fluids and with discussing the theoretical treat-
ment of such systems.

Section II of the paper contains the definitions
and basic properties of the various correlation
functions and their spectra. Section III summar-
izes briefly the molecular-dynamics procedure
used in this work and the single-particle (or self-)
motion of the ions is discussed in Sec. IV. Sec-
tion V is concerned with collective modes de-
scribing fluctuations in charge and mass densities.
The molecular-dynamics calculations lead to a
quantitative estimate of the frequency shift and
linewidth of the optical mode as a function of the
coupling strength (or temperature). The most
striking conclusion we reach is that in the strong
coupling regime the characteristics (frequency
and width) of the optical mode are independent
of the coupling strength. In particular, the long-
wavelength limit of the characteristic optical
frequency is temperature independent in that
regime, and is slightly higher than the kinetic
(or Vlasov) plasma frequency. The molecular-

. dynamics results are analyzed in Sec. VI on the
basis of phenomenological hydrodynamics and the
memory-function approach of Mori and Zwanzig. "
The latter proves to be successfuly only if proper
account is taken of correlations between the fluc-
tuating partial densities. When this is done the
theory gives a fair description of the "experimen-
tal" facts, at least at strong coupling, without
the introduction of any adjustable parameters.
Some concluding remarks are contained in Sec.
VII.

where

Z =x,Z~+ x2Z2, M =x~M, + x~~, (2 2)

are, respectively, the mean charge and mean
mass of the ions.

The molecular=dynamics calculations are made
with periodic boundary conditions. We therefore
restrict our attention to finite periodic systems
and define the microscopic partial densities as

&n

p (k, t) = Q exp[tie. r, (t)], (2 3)

where k is a reciprocal-lattice vector of the peri-
odic system, r,.(t) is the position of the ith ion of
species n at time t, and the sum extends over all
ions of that species. The Fourier components of
the microscopic densities of mass and charge are
given as linear combinations of the partial den-
sities by

p„(k, t) =m, p, (k, t) + m, p, (R, t),

p, (k, t)=e,p, (k, t)+e,p, (R, t). (2.4)

The interaction Hamiltonian for the periodic
system can be expressed in terms of the density
p, (R)=p, (k, t=0) in the form

4mZ2e2
[p, (k)p, (-k) —N(Z ),/Z J,

where (Z') „=x,Z', + x,Z2; omission of the term k
=0 takes account of the presence of the uniform
background.

As a unit of length we shall use the ion-sphere
radius as defined by

(2.5)

a'= 3/4mp, (2.6)

where p=p, + p, is the total number density of
ions. The static properties of a binary ionic mix-
ture depend on only two variables, which are con-
veniently taken to be the concentration x, and the
dimensionless parameter

r = e'/aha T (2.7)

which, apart from a factor Z', is the standard
coupling parameter used to describe the thermo-
dynamic state of the OCP. Since we are interested
in dynamical properties, we must also introduce
a scale of frequency and time. The natural
choice of unit of frequency for a charged system
is the plasma frequency. However, as we have
already pointed out, the binary mixture cannot be
characterized by a unique plasma frequency. o "
We may instead define a "hydrodynamic" plasma
frequency m~ in terms of the macroscopic den-
sities of charge, p~=Zep, and mass, p„=Mp,
as
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(oz~ = 4v p2e/p~ =4'p(Ze)'/M, (2.8)

and a "kinetic" plasma frequency A~, which occurs
naturally in mean-field (or Vlasov) theory, as

where T' is the transpose of T; we use the symbol
[A;&] to denote a matrix with components A;, The
t-0 limits of the partial density correlation func-
tions are the static partial structure factors

Q~= Q2~, + Q~ =4mp, (Z,e)'/M, +4vp, (Z,e)'/M,
E~(k, t=0) =S 8(k) (2.18)

4&p(Ze)' ~e' ~e'
&~Xg +X2

M m, m, &

while in the same limit the functions E,~(k, t) re-
duce to the static mass-mass, mass-charge, and
charge-charge structure factors

=@7 X +X e2m
1 2

(2.9)
E„(k, t = 0) =S,~ (k) . (2.i8)

so that Q~~ e~. Note that A~=co~ in the "sym-
metric" case, i.e., when Z,/Z, =M, /M„' for H'

—He" mixtures the two plasma frequencies differ
by only a few percent at any concentration. We
have chosen +~ to be our unit of frequency and
co~' our unit of time.

In the study of collective modes the quantities
of primary interest are the three correlation
functions

E,~(k, t) = (1/N)(p, (k, t)p, (-k, 0)), (2.11)

where the indices a and b stand for m (mass den-
sity) or e (charge density). The three correlation
functions are real functions of time and the cross
correlation functions are equal, as a consequence
of invariance to space reflection, time transla-
tion, and time reflection, i.e., E (k, t)=-E, (k, t).
This reduces the number of independent correla-
tion functions from four to three. The collective
modes can also be discussed in terms of the three
correlation functions of the microscopic partial
densities

The difference Q~- ~~ may be cast in the form

Q2~ ~2~ = Q', = (g',x,x,m, m, (e,/m, —e,/m, )' ~ 0,
(2.10)

»m S.,(k)=[(-1) 'Z. Z, /D](p. o )
'" (2.»)

0~0

with

Z2»' +Z2»2
k~T ' BP,. T~P2 '

BP2 T~P,

2z,z. . . ),(3 p.

BP2 Ty P~
(2.18)

where p. is the chemical potential of species z,
and o, '(P')=1 if a(P)=2 and conversely. From
Eqs. (2.14) and (2.16)-(2.18) we conclude that
S„(k=0) =S (k = 0}= 0, while S„„(k=0) has some
nonzero value. The behavior of the three struc-
ture factors at small 0 can be deduced from fluctu-
ation theory: the formulas turn out to be identical
to those obtained for a binary system of ions of
opposite charge (a molten salt or TCP) and are
given explicitly elsewhere. " It follows from
these expressions that S„,(k) and S„(k) behave as
k2 for small k. In particular

Note that S„(k) differs by a factor (Z')„/Z' from
the charge-density structure factor S'(k) introduced
in Ref. 3.

The long-wavelength limits of the partial struc-
ture factors are related to certain thermodynamic
derivatives in the form

E 8(k, t}=( } ~ (p (k, t)p~(-k, 0) S„(k)= a'k'/31'Z'+ 0(k'), (2.19)

(o., P=1, 2).
(2.12)

x'/'nl x'/'nl
1 1 2 2

T=
x'"z x'"zI 1 2 2

(2.13)

Since p, (k, t) and p„(k, t) are linear combinations
of the p, (k, t), the correlation function matrix
[E„(k,t)] is related to the matrix [E,~(k, t}]by a
linear transformation. If T is the matrix at „8'(E/V}

2
pz

(2.20)

where E/V is the Helmholtz free energy per unit
volume. The quantity

a relation which follows also from the usual charge
neutrality and perfect screening conditions. "
Fluctuation theory also yields the conditions for
thermodynamic stability. Apart from the posi-
tivity of the specific heat at constant volume these
lead to the single inequality

the transformation may be written

[E„(k,t)]=T[E ~(k, t)]T, (2.14) can, however, be either positive or negative.
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This result should be contrasted with the case of
mixtures of neutral particles, where thermody-
namic stability leads to two inequalities. ' The
situation here is more reminiscent of the QCP,
a system which is thermodynamically stable even
when the compressibility is negative. "

The spectra of fluctuations in mass and charge
densities are described by the dynamic structure
factors defined as

f„(q)= — t Q„(x)—I]x 'j, (qx) dx,
0

(2.30)

where g,~(x) is the radial distribution function
for ions of species a and P, and j,(qx) is the
spherical Bessel function of second order. The
frequency moments can therefore be computed
from the known' static pair structure of the mix-
ture. They serve as a convenient check on the
molecular-dynamics results and prove to be of
major importance in the theoretical analysis
presented in Sec. VI. The small-q expansion of
the fourth moments is given in Ref. 10. When x,-0 or 1, the expressions (2.23)-(2.30) reduce
correctly to the corresponding frequency moments
of the OCP. ' The frequency moments of the par-
tial dynamical structure factors S z(q, (d) can be
obtained by forming the appropriate linear com-
binations of the moments of the functions S,~(q, ur).

S„(k, (o) =— e'"'F„(k, t) dt
7T

(2.21)

with analogous definitions of the partial dynamic
structure factors S,B(k, (()). The even moments
of the spectra S,„(k, &u}, given by

(2.22)&(d'„")„= (O'"S,„(k, (d) d(d,

are linked in the usual fashion to the short-time
expansion of the functions E„(k,f). Introducing
the dimensionless wave number q = ak and separa-
tion x =x/a, we obtain for n = 0, 1, and 2 the ex-
pressions

III. MOLECULAR-DYNAMICS CALCULATIONS

The details of the molecular -dynamics calcula-
tions are almost identical to those described in
our earlier work on the OCP. ' In each simula-
tiori the classical equations of motion of the ions
were solved by stepwise numerical integration
for a total of N, steps with a time step bt. In all
cases the system consisted of 250 ions, 125 of
each species (i.e., x, =—,'.), contained within a
periodically repeating cube. A total of five runs
were carried out, four for the mixture H'+He"
and one for the symmetric mixture D'+ He"; the
results 'for the symmetric mixture are discussed
only in the concluding sentences of Sec. V. Some
technical details of the calculations are summar-
ized in Table I; the quoted values of I' are time
averages over the run.

The main problem in any simulation of an ionic
system lies in taking proper account of the long
range of the Coulomb potential. In the calcula-
tions reported here the interionic forces were
calculated by the Ewald method. The alternative
sometimes used is to compute the force on a given
ion by summing only on those neighboring ions
lying within the periodic cube centered on the ion
in question. It has been known since the pioneer-

(2.23)&(d.'s&.,(q) =S.~(q),

(2.24)&(d'„„)„(q)= &(d'„,)„(q)= (o~q'/31'Z' —= (d()(q),

&~'„).,(q) = ~'.(q) 8, (2.25)

3(d2(td' ).,(ql=af td(q) ((+ . 'P

2 2
—')g gx.x,z.z,r.,(~)),

a=1 /=1

(2.26)

&~,',).,(q) = ~',~'.(q) &'+ 3$'u)', (q)
COp

&~' ).,(q)=(d', (d'.(q)I&8+3
P ~ y e

x.x, 'I ,(q)), . .
0.=1 /=1

(2.27)

1 z, z~)('+ —xxz z —'-—'
~1 2 1 2 ~ ~ )( TABLE I. Details of the molecular-dynamics calcu-

lations.

with

2'P
tB~ Q)p

(2.28}

(2.29)

System

H+ + He~+

D'+ He~'

0.4
24.5
40.0
61.5
0.4

4.0 x 104
8.0 x 103

4.5 x 104
8.0 x 103
2.5 x 104

0.02
0.20
0.20
0.20
0.03
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FIG. 1. Velocity autocorrelation functions for I'
= 40.0. Circles: H'; dots: He 2 '. The unit of time 's
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FIG. 2. Function 0«(q, ~) for q=0.619. Circles:
I'= 0.4; squares: I'= 24.5. dots: I"=40.0. crosses: I'
= 61.5. The unit of frequency is co&.

ing work of Brush et al."that use of this so-called
minimum-image method leads to serious syste-
matic errors in static properties for I" & 10, but
yields staisfactory results at lower charge den-
sities. Since the minimum-image summation is
computationally more economic, we adopted this
in place of the Ewald sum in our earlier calcula-
tions' on the OCP at low I'. %e now believe,
however, that the fact that static properties are
satisifactorily reproduced can be misleading and
that the study of cooperative dynamical effects
requires the use of an Ewald or related method
at much lower charge densities than had previously
been thought. %e should add finally that since the
neutralizing background is assumed to be rigid,
it has no effect on the motion of the ions.

IV. SINGLE-PARTICLE MOTION

The self-motion of the ions can be described in
terms of the velocity autocorrelation functions,
defined as

Z (t)=(v,. (t).v,. (0))/(iv,. i'),
where v, (t) is the velocity of an ion i of species
n and (~v, ~') =3ksT/M . The self-diffusion co-
efficient D is related to the corresponding vel-
ocity autocorrelation function by the well-known
formula

D, =(k~T/M ) Z (t)dt. (4 2)

5
0
X

At I"=0.4 the two velocity autocorrelation func-
tions are found to decay monotonically to zero
in the manner characteristic of a dilute gas, the
lifetime of the correlations being greater for the
lighter ion. At I"=40.0, however, the most
prominent feature of the curves is a strong oscil-
lation at a frequency close to w~, the oscillations
being more pronounced for H' than for He"; the
results are plotted in Fig. 1. The onset of these
oscillations shows that at high charge densities
the motion of single ions cannot be considered
separately from the plasma oscillations and con-
firms the overwhelmingly collective character
of the dynamics of strongly coupled plasmas.
Qualitatively similar behavior is seen in the OCP.

0.4
24.5
40.0
61.5

4.89
0.0228
0.0112
0.0051

1.54
0.0135
0.0064
0.0029

TABLE II. Diffusion coefficients for H'+He~'. E

X000000 0 050000000000 0' 0 0 ooIx ~ oo
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FIG. 3. As Fig. 2, but for q=1.384.
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FIG. 8. Time correlation functions for I =40.0, q
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difference in the be'havior at the three higher
charge densities (I'=24.5, 40.0, and 61.5) com-
pared with that seen at 1"=0.4.

1h o ooOOOO Ooooooooo oooo«ooooooo,ooooooooooooooooo
0

The long-wavelength spectra at large va]ues of
F appear to separate into two rather well-defined
components: a sharp peak around co =0, repre-
senting a diffusive-type mode, and a broader peak
centered close to the plasma frequency, corre-
sponding to a propagating optical-type or plasmon
mode. As q increases, the optical peak shifts to
lower frequencies in the manner shown in Fig. 6,
i.e., the dispersion is negative, in agreement with
results obtained. previously' for the OCP. It is
also striking that the dispersion, intensity and
shape of the optical peak are almost independent
of I'. By contrast, the height of the central peak
is a rapidly increasing function of I', as shown in
Fig. V. Furthermore the intensity plotted as a
function of q shows a maximum in the neighborhood
of q = 1.5, again almost independent of 1. Both
the central and optical peaks broaden with increas-
ing q and this behavior, coupled with the frequency
shift of the optical peak, eventually causes the
two peaks to merge into a single, featureless
curve. At still larger values of q the spectrum
takes on the Gaussian shape characteristic of
free-particle behavior. The shift with q of the
characteristic optical frequency at maximum in-
tensity is in qualitative agreement with a simple
dispersion law" based on the moments (2.23) and
(2.28), i.e.,

~' (q) = (~',g,„(q)/4 '„)„(q) (5.2)

0.5-

g+tangy X X x
I gg+PPQ ~)tPxx ~ ~

yqx
~X X

l I

0 1 2

1.5-

1.0-

X ~ ~
x

0

x
~ ~ ~ ~ x

~ ~ 0 P xxx x
x ~

x ~ ~Xxx ~ ala a

FIG. 9. Function g (q, &) for I'= 0.4. Below: q
=0.619; above: q=1.857. Dots: H'+He '; crosses:
D'+ He2 '. The unit of frequency is co&.

though the theoretical curve is somewhat flatter
that the "experimental" one. Extrapolation of
the molecular-dyna~i. cs results reveals that at
long wavelength (q = 0) the frequency of the optical
mode is shifted positively with respect to or~ by
approximately 10%%u&, in fair agreement with the
estimate obtained from Eq. (5.2), i.e. , u& (q=0)
=1.076. This last result is again independent of

The situation for I'=0.4is rather different. We
see in particular that there is no clearly defined
central peak, even at the smallest accessible
value of q; the optical peak is much broader than
at high charge densities; and there is a pronounced
high-frequency wing, a feature which is entirely
lacking at larger values of I". The optical peak
now broadens so rapidly that little significance
can be attached to the way in which the peak posi-
tion varies with q. This is marked contract to
results obtained' for the QCP at a comparable
value of I', where the dispersion is well defined
and strongly positive. No evidence for such be-
havior is seen in the present calculations. The
approximate relation (5.2) does predict a strong
positive dispersion, a result which illustrates
the danger of relying on arguments based on mo-
ments when the spectrum is broad and, in particu-
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lar, when there is an appreciable high-frequency
contribution to the intensity. Calculations ~for

smaller values of q are required before it can be
established how close the limiting value of the
optic frequency lies to the kinetic plasma frequency
Q~. We should add here that a similar molecular-
dynamics calculation at I =0.4 based on the mini-
mum-image convention gave broadly similar re-
sults for v„(q, ur), but the optical peak at small q
was shifted to lower frequencies by almost 10%.
This calculation was abandoned when it was found
that the low-order moments were in poor agree-
ment with results based on the hypernetted-chain
approximation, which in this range of I is very
nearly exact. No such discrepancy appears when
the Ewald method is used.

It can be shown on rather general theoretical
grounds, as we shall see in Sec. VI, that the
physical effect giving rise to the two-peak struc-
ture in g„(q, u) at small q and large 1" is the
coupling of fluctuations in charge and mass den-
sities. The same conclusion can be reached in
a more direct way by examining the form of the
time correlation functions E„(q, t), E „(q, t), and

E,(q, t), examples of which are plotted in Fig. 8.
For the particular choice made here for q and I'
we see that E„(q, f) is dominated by a weakly
damped oscillation at a frequency close to (but
somewhat above) &&. At the same time it is clear
that E„(q, t) is oscillating not about zero but about
a small and positive level which itself is slowly
approaching zero. In other words the plasma
oscillation appears as a relatively short-lived
modulation of a much lower frequency motion.
At the other extreme the function E „(q, t) is dom-
inated by a slow and almost monotonic relaxation
towards zero, except that at short times there is
a superimposed small amplitude "ripple" at a
frequency close to +~. Finally, the cross corre-
lation function F,(q, t) combines the main features
of the charge and mass fluctuations in roughly
equal measure, changing from a strongly oscilla-
tory behavior at short times to a slow relaxation
at large times.

The extent to which charge fluctuations are
coupled to fluctuations in mass is a function not
only of q and I' but also of the charge ratio Z,/Z,
and the mass ratio M,/M, . In the special case
when these two ratios are equal, the three corre-
lation functions F„(q, t), E„„(q,t), and F„,(q, t)
become identical. Thus for the system D'+ He'
we find the behavior shown in Fig. 9, where re-
sults on o„(q, &o) at I"=0.4are given for two values
of q. At small q the spectra differ in striking
fashion from those obtained for H'+ He" at the
same value of 1". The high-frequency wing is
absent, and the optical peak is much sharper and

shows a positive dispersion, tending with decreasing
q towards the value &~. In fact the curves re-
semble in all essential respects the spectra ob-
tained' for the QCP at a comparable charge den-
sity. As q increases the differences rapidly dis-
appear, and at q= 1.384 (see Fig. 9) have almost
completely disappeared.

VI.'
DISCUSSION

We want now to show how the spectra discussed
in the previous section can be described in terms
of the memory-function formalism of Mori and
Zwanzig. " This approach is strongly phenomeno-
logical in character, but has the merit of yielding
quantitative results which can be compared in
detail with data obtained in the course of the mo-
lecular-dynamics calculations. A rigorous but
more qualitiative analysis of the collective modes
in a binary ionic mixutre has been given recently
by Baus." Baus distinguishes between two types
of modes: genuine hydrodynamic modes, charac-
terized by a vanishing frequency and infinite life-
time in the limit k-0; and so-called relaxation
modes, for which either the frequency or lifetime,
possibly both, display nonhydrodynamic behavoir
in the same limit. Only two longitudinal modes
are hydrodynamic: these are diffusion modes,
mixing heat conduction with mutual diffusion of
the two species. The remaining longitudinal
modes are of the relaxation type, included among
which are the two charge relaxation modes asso-
ciated with plasma oscillations. Baus's analysis
also shows that the plasma frequency itself is a
function of I', reducing to A~ in the I"-0 limit
and to the lower "hydrodynamic" frequency +~ in
the strong coupling limit. Since these results
are exact, they serve as useful constraints on
approximate treatments of the problem.

A. I.inearized hydrodynamics

Before passing to the analysis in terms of mem-
ory functions it is worthwhile looking briefly at
the results obtained from a calculation based on
the linearized equations of hydrodynamics. The
basic equations for an ionic mixture of the type
of interest here (expressing conservation of
charge, mass, momentum, and energy) are in
fact nearly identical to those appropriate to molten
salts (mixtures of oppositely charged ions) and are
given explicitly in Refs. 12 and 17. The only
difference is in the definition of the stress tensor
[Eq. (13) of Ref. 12], since in the present case
there is an additional first-order term stemming
from the electrostatic potential of the background.
The' stress tensor now has components
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v„=p™&v„v„+P5„„+ep~P 5„„

(~2 —1 M2)1 /2 —I
ZM (6.2)

where &~=4me'n and z, the interdiffusion coeffi-
cient, is a phenomenological transport coefficient
apeearing in the dissipative part of the electric
current [see Eq. (1V) of Ref. 12]. The main con-
clusion to be drawn from Eq. (6.2) is that the
optical mode is damped (i.e., it has a finite life-
time) even in the long-wavelength limit. This
arises as a consequence of interdiffusion and
therefore has no analog in the one-component
case (the OCP). Comparison with Baus's exact
results shows that the behavior predicted by Eq.
(6.2) is qualitatively correct, but the fact that the
shift of the optical frequency from w~ and the
width of the plasmon mode are determined solely
by the coefficient z is an oversimplification. The
disagreement with Baus's work stems from the

—
4 (&Q„——,'&'„5„„)—o'.„(v, p =x,y, z), (6.1)

where p&" & is the macroscopic local mass density;
pz is the charge density of the uniform background;
v is the local velocity field; P is the pressure;
is the local electrostatic potential; E=-eVQ is
the local electric field, related to the macroscop-
ic local charge density by Poisson's equation;
and the quantities 0„' are the components of the
dissipative (viscous) part of the stress tensor
[cf. Eq. (16) of Ref. 12]. On linearization of the
hydrodynamic equations the terms quadratic in
the local electric field vanish, which explains
why linearized hydrodynamics does not predict
an optical mode in molten salts, but the back-
ground electrostatic term remains. It is this
last term which is responsible for the plasmon
modes.

The determinant of the hydrodynamic matrix
has four frequency roots, The first two are
purely imaginary and correspond to diffusive
hydrodynamic modes involving thermal conduc-
tion and interdiffusion of the two species; this is
is good accord with Baus's results. The two re-
maining roots are complex conjugate and corre-
spond to damped, propagating plasmon modes.
In the k-0 limit they are given by

fact that the plasmon mode is not a genuine hydro-
dynamic mode, but rather a relaxation mode, and
hence cannot be described rigorously by the phe-
nomenological hydrodynamic equations, even in
the k-0 limit.

The four modes discussed above contribute in
different fashion to each of the three normalized
spectra c,~(k, a&), defined as in Eq. (5.1) (a, b

=m, z). The diffusive hydrodynamic modes give
rise to a central peak and the plasmon modes con-
tribute symmetric optical peaks centered approxi-
mately on +&~. In Table III we list the amplitudes
and widths of the peaks to dominate order in k,
together with the location (at positive frequency)
of the maximum in the optic peak. It is clear
from the table that the central peak should be the
main feature of o„„(k,&o), the optical peaks should
dominate o„(k, &u), and the two types of peak
should be of similar strength (area) in o„,(k, &u).

These predictions are in good accord with the
moelcular-dynamics results at small k and large
r.

B. Memory-function analysis

From the discussion just given it is clear that
at large values of I' fluctuations in the densities
of charge and mass are strongly correlated. Any
successful microscopic theory must therefore
treat the two densities on an equal footing. This
can be achieved within the context of the Mori-
Zwanzig theory by working in terms of a two-com-
ponent vector of dynamical variables defined, in
the notation of Ref. 11, as

(1/~&, )p, (q, f)
(6.3)

(1/~&.)p,.(q, f)

with a correlation function matrix Y(t) given (in
unnormalized form) by

Y(f) = (A(f).X*)
(6.4)

= [E.,(e, f)].
From Eq. (2.15) it follows that

Y(0) = [S (q)]. (6.5)

The standard calculation based on a suitable choice
of projection operator leads to an exact equation

TPQ3LE QI. Predictions of hydrodynamics for the position, height, and width of the central
and optical peaks in the normalized dynamic structure factors.
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(6.6)

(6.7)

of motion for the Laplace transform Y(&o} of the
correlation function matrix in the form"

Y((o) = [M(&o) —i(ol] 'Y(0),
CL

where I is the 2 &2 unit matrix and M(ro) is the
Laplace transform of a memory-function matrix
Sf(t). The latter may be written

M(t) =m(t) Y-'(0)

D(q &}= (c&'(q)~:(q)[Q', (s) —p,'(s)]
+ s 4,(s)x(q) p(q}(o,*(q) —s'a(q)p
+ $2(s)r (q)(go(q)

& [2cp, (s)7'(q)(o', (q) —sX(q)]'
and

(6.16)

with

m(0)=(A A )

= ~'.(q) (6.8)
0 m, '

where the dots denote time derivatives and &o', (q)
is defined by Eq. (2.24}. The time dependence
of the matrix 5(t) is determined by a time-evolu-
tion operator acting in the subspace orthogonal to
the vector ~A(t)}.

At this stage it is necessary to introduce some
approximations. We therefore suppose that the
variation of m(t) may be characterized by a
single q-dependent relaxation time v'(q) and write

m(t} = m(0)f(t/r(q)} (6.8)

and further assume that the function f has the
Gaussian form given by

f(t/v(q)) =exp[-(t/r(q)}'] . (6.10)

The real and imaginary parts of the Laplace trans-
form of (6.10) are

X(q) = ( 1/m, )S„(q)+ (1/m, )S„(q),

S(q) =S„(q)S„(q)—S'„(q),

6„(q)= (1/m, )S'„(q) + ( 1/m, )S,', (q),

(6.18)

(6.19)

(6.20)

5 .(q) =6.,(q) =(1/m, )S„(q)S,.(q)

+ (1/m, )S„(q)S„(q), (6.21)

5„(q)= (I/ m)S'„(q) + ( I/m, )S'„(q) . (6.22)

The charge-charge, charge-mass, and mass-
mass dynamical structure factors S„(q, co) are
obtained finally from the transformation (2.14).
The resulting spectra satisfy the zeroth- and
second-frequency-moment sum rules (2.23)-(2.25),
irrespective of the choice of the relaxation time
r(q}. In practice we have calculated 7(q) as a
function of q by forcing agreement with the fourth
moment sum rule for S„(q,&o), that is to say we
have determined v(q) numerically by solving the
implicit equation

f'(~) = 7(q)0, (&) f"(~) = ~(q)4, (s),
where s =+r and

(6.11) co ~„q, (o S„q Ar =(o'„q S„q, (6.23)

with

e ~(q s}='c6 8(q}&'(q)~;(q)[p', (s)+ @',(s)]
—2sg, (s)cd(q)(go(q)a(q)S ~(q)

+ s2~2(q)G:, ,

(6.15}

y, (s) =-,' v~v exp( —,'s'),
a/2

P, (s) = exp( —,'s') exp(x') dx =S(-,'s), (6.13)
0

where X) denotes Dawson's integral.
An explicit expression for %(&u) can now be ob-

tained by substitution in Eq. (6.6); the matrix of
partial dynamical structure factors, [S 8(q, ur)],
is then g~iven (apart from a factor m ') by the real
part of Y(e). After some lengthy algebra we
find that

S 8(q, ~) = (I/~) I".~(q, ~)
(6.14)

= r'(q)(oo(q) P,(s}

iA(t)) =

p.(q, t)

(6.24)

where S„(q,&o) is given by Eq. (6.14) and (&o'„),„(q)
by Eq. (2.28).

There are a number of general points to be made
here. First, it would clearly be more satisfac-
tory to introduce three independent relaxation
times which could be determined by imposing the
three fourth-moment sum rules (2.26)-(2.28).
This leads to very heavy algebra and tedious
numerical calculations. Moreover, the improve-
ment obtained could be not more than marginal,
since the values derived for the single relaxation
time by imposing the exact (&o' „)„(q)or (&o',)„(q),
rather than (&u4„)„(q), differ by less than 20% for
any coupling I' or any concentration x, . Second,
it would be equally appropriate to choose for the
vector of dynamical variables the set represented
by

p (q, t)
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FIG. 10. Function 0 (q, e) for I'= 40.0. Reading
from left to right and top to bottom: q=0.875, 1.384,
1.857, and 2.316. Dots: molecular-dynamics results;
curves: results of the memory-function analysis des-
cribed in the text.

This choice is equivalent to (6.3) only if the calcu-
lation is carried through exactly, and not, for
example, when the single-relaxation-time approxi-
mation is used. In practice the results obtained
are very similar to those based on the choice (6.3).
Finally, the static structure factors which deter-
mine the quantities defined in Eqs. (6.18)—(6.22)
can be taken directly from the molecular-dynam-
ics (or Monte Carlo') calculations or obtained by
solving the coupled hypernetted-chain euqations
for the mixture. Since the differences in the
calculated spectra are only small the hypernetted-
chain results can be used with confidence in com-
puting spectra at values of I' and x, for which no
simulations have been made.

The spectra o„(q, u) predicted by the theory
are shown in Figs. 10 and 11 for comparison with
the molecular-dynamics results at I =0.4 and
40.0; for technical reasons the q values do not
match exactly, but never differ by more than a
few percent. In the strongly coupled case (Fig. 10)
the agreement between theory and "experiment"

.4- ~ ~
0

.5-

~ ~

~4-

, l

2 0
I

2

FIG. 11. Function 0 «(q, e) for I'= 0.4. Reading from
left to right and top to bottom: q = 0.619, 0.875, 1.384,
and 2.316. Dots: molecular-dynamics results; curves:
results of the memory-function analysis described in
the text.

is generally good: the central peak is well repro-
duced, both in amplitude and in width, and the
dispersion of the optical peak is correctly repro-
duced. The main failing is the fact that the theo-
retical optical peak is too sharp at small q; this
is a familiar weakness of memory-function de-
scriptions which ignore the coupling of the particle
densities with other dynamical variables, in this
case the energy and momentum desnities. A
series of calculations carried out for I'& 20 con-
firms the insensitivity of the optical peak in

S„(q,e) with respect to coupling which is such a
striking feature of the molecular-dynamics calcu-
lations. The variation with I" of the amplitude of
the central peak in o'„(q, ~) is also in good agree-
ment with the "experimental" results. The relaxa-
tion time r(q) is insensitive to I', for fixed values
of q, in the strong coupling regime, and decreases
with decreasing I" at intermediate couplings, as
would be expected.

At I'=0.4 the agreement is less satisfactory,
since the theoretical and "experimental" spectra
have rather different band shapes. The barely
resolved central peak is somewhat enhanced by
the theory, while the "experimental" spectra have
more pronounced high-frequency tails. The opti-
cal peak is poorly defined in both cases, but the
peak in the molecular-dynamics results is every-
where displaced to higher frequencies. The the-
oretically determined optical peak sharpens and

becomes rather well-defined for q s0.5; in that
region the characteristic optical frequency is
found to increase with q, in agreement with the
approximate dispersion relation (5.2), while in
the strong coupling regime the dispersion is
plainly negative. The theory predicts that for H'
-He" mixtures of concentration x, =—,

' the cross-
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over from positive to negative dispersion takes
place around I'= 4; a similar behavior is found
for the OCP. '

In the q -0 limit the theoretical experession for
the charge-fluctuation spectrum takes on a particu-
larly simple form. On combining Eqs. (2.14),
(2. 19), (5.1), and (6.16), we find that

Pr'(0)y, ( s)

(&'~(0)4,( )P+[e~(0)y,( )- j" (6.26)

r =~'„(0)/t' —1

by the expansion which begins

(6.27)

1/5'7'(0) = ,'r + r'-+ ~ ~— ~ (6.28)

and the characteristic frequency of the optical
mode is given by

~(9=9)=6(1+,'y+ —y'+ (
y'+ ), (6.99)-7 . 133 .

8

where, as always, the unit of frequency is +~.
Since g = Q~/a&~, it follows that the optical fre-
quency at long wavelength is shifted above the
mean-field frequency Q~. Furthermore, the
shift depends only on concentration and not on the
strength of the coupling. For a H'+ He" mixture
with x, = —,', Eq. (6.28) yields 7(0) =6.5. Thus,
from (6.29), ~(q=0)= 1.079. This result, and the
fact that the shift is independent of l, are in good
accord with the molecular-dynamics results at
large I', but are in disagreement with a calcula-
tion by Baus which is exact in the weak coupling

where P is defined by Eq. (2.29), s= mr(0), and
the relaxation time 7(0) is determined by E(l.
(6.23). Since the ratio

(d'„(q) = ((d,'g „(q)/(&,',)„(q)= ((d,',)„(q)/& S„(q)

(6.26)

is independent of 1" in the limit q -0,"it follows
that'r(0) and hence o„(q=0, (d) are also independ-
ent of I', in agreement with the molecular-dynam-
ics results in the strong coupling regime. The
numerical results for 7(0) at small q suggest that
r(0) is sufficiently large to justify neglecting P, (s)
in comparison with (()),(s); if the asymptotic expan-
sion of Dawson's integral is used to approximate
Q, (s), the integral (6.23) can be evaluated analy-
tically. The relaxation time 7 (0) is then given
in terms of the small parameter

limit. Our approach therefore represents a
strong coupling theory; the main conclusion we
draw is that the characteristic optical frequency
is always greater than A~ and hence, from the
inequality Q~~ ~~, can never reach the "hydrody-
namic" value e~. This surprising result is in
contradiction with the speculation in Hefs. 9 and
10, but is in good agreement with the "expe ri-
mental" data.

The mass-mass and mass-charge dynamical
structure factors predicted by the theory exhibit
the qualitative features of the hydrodynamic calcu-
lation summarized in Table III, and the three par-
tial dynamical structure factors S ~(q, (d) are
nearly identical, again in good agreement with the
molecular-dynamics results.

9

VII. CONCLUSIONS

The molecular-dynamics results show that the
dynamical properties of the binary ionic mixture
are in some respects very different from those
of the corresponding one-component system, i.e.,
the OCP. In particular, interdiffusion causes a
broadening and shift of the optic mode, effects
which persist even in the limit k -0. Qualita-
tively the main features of the observed spectra
are in good agreement both with the predictions
of a simple hydrodynamic calculation and with
some exact results due to Baus." The most
striking "experimental" result is that the hydro-
dynamic limit is apparently never reached: the
characteristic frequency of the optical mode is
always larger than the "hydrodynamic" plasma
frequency ~~, and is essentially independent of I'
at high charge densities. A memory-function
treatment which incorporates the coupling of mass
and charge fluctuations accounts well for the ex-
perimental" results at large I' but is less success-
ful in the intermediate regime (I'-1), where tem-
perature fluctuations clearly play an important
role. The same formalism should also be useful
in the analysis of the behavior of related systems,
particularly of the two-component plasma (or
TCI ').

Overall the work described here and in earlier
papers' ' "illustrates the remarkable variety of
behavior that can be found in the dynamical prop-
erties of ionic fluids.
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