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Numerical methods are used to investigate absorption of either intense or weak electromagnetic waves

obliquely incident on a nonuniform plasma with and without the presence of a dc magnetic field, The
numerical formulation includes the full set of Maxwell's equations and three moments of the Boltzmann
equation with a ponderomotive-force description. The investigation includes a study of the reflection and
absorption of the incident wave as a function of angle of incidence as well as the complex electric and
magnetic fields, electron-flow, dc magnetic field generation, and kinetic energy gained by resonant electrons
within the plasma. Selected field snapshots are directly compared to particle-siinulation predictions where a
thousandfold reduction in computation time allows a detailed investigation of the wave-plasma interaction
for laser wavelengths.

INTRODUCTION

The conversion, resonance, and absorption of
electromagnetic waves in an inhomogeneous plas-
ma is fundamenta, l to understanding energy tra, ns-
fer in fusion reactor models for either magnetic-
confinement fusion using QHz high-power sources
or for fusion by la, ser, where an intense light
wave is obliquely incident on a, solid inertial con-
finement pellet. " The mode conversion process
is important to the high-frequency electromag-
netic —wave-plasma interaction because, while an
incident electroma, gnetic wa, ve cannot resona. ntly
transfer energy to the plasma particles, the plas-
ma wave excited by the electromagnetic wave can.
Also, exciting plasma waves is generally an ef-
ficiently means of heating. This sa,me effect is
also of concern to inertial-confinement configura-
tions.

In the study of intense wa, ves interacting with
plasma, researchers have almost exclusively used
plasma-simulation codes, which model the collec-
tive intera. ctions of a large number of discrete
plasma particles with themselves and with exter-
nal electromagnetic forces. ' Often, the size of
the plasma that ca,n be simulated in detail is li-
mited by the available computer time and memory.
For example, studying cyclotron harmonic effects
may require many particles and hence excessive
computer time. Furthermore, in the numerical
data from a simulation, the individual physical
mechanisms at work are often not clearly dis-
tinguished.

In this paper I derive formulas, ba, sed on a
kinetic theory approach, that describe quantita, -
tively the strength of the excited plasma waves
and the role they play in the resonant absorption
of electromagnetic waves in a nonuniform plasma,

with and without the presence of a dc magnetic
field. The case treated, pictured in Fig. 1, is
that of a P-polarized TEM wave, obliquely incident
on a uniform plasma whose dc magnetic field
(when present) is taken to aligned both perpendicu-
la,r to the density gradient and the plane of wave
incidence. The analyses pertain to both kol ) 1
and k,l (1, where k, is the free-space wave num-
ber and l =n, /~ Vn, ~, is the scale length on which
the plasma density varies. We assume that the
ions a,re at rest with an assigned density distribu-
tion and take the field quantities to be a sum of a,

static part and a small high-frequency part, the
latter being treated by linea, rized equations.

Expressions for the linear current densities in
an inhomogeneous plasma in the presence of a
static magnetic field have been derived by Bern-
stein and Weenink, by Pearson, by Baldwin, by
Azevedo and Vianna, and by Sivasubramanian and
Tang. ' ' Generally, these expressions describe
the effects of electric fields and particle drifts
within plasma, and include the effect of an electro-
static field balancing the plasma nonuniformity a,s
well as the anisotropy of the unperturbed electron-
velocity distribution function. These equations
when substituted into Maxwell's equations allow us
to study the electromagnetic and plasma fields
everywhere within the hot plasma with or without
consideration of collisions.

In this paper I describe the numerical solutions
for the complex electric and magnetic fields,
electron flow, electron resonant heating, and dc
magnetic field generation within the plasma as
well as the absorption and reflection of the inci-
dent TEM wave. I also investigate the dependence
of each of the above quantities on angle of incidence
in the range -60 to +60 deg. My conclusions a,re
given in the final section.
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Y=k y0 where j=noqv and p=noq are the current and
charge densities, respectively. Equations (1)
imply the continuity law

—n, m+V (n,mv)=0,a
(2)

while conservation of momentum dictates

a-
mn —v=f0~t

FIG. 1. p-polarized electromagnetic fields incident on
and reflected from an inhomogeneous plasma.

BASIC FORMULATION

(»)

In the high-power pulsed electromagnetic-wave-
plasma interaction problem, two time scales are
evident, namely, the time ~ associated with the
pulse duration and a shorter time + ' correspond-
ing to the radiation period. To obtain a fluid de-
scription valid on the longer time scale, it is use-
ful to average the effects due to a high-frequency
phenomena by taking a time average ()=—T'f r&2 dt,
where ~ ' «T«7. Various quantities in the
plasma can then be treated in terms of a dc and
high-frequency-part, e.g. , f = (f @&+(f))+f "',
etc. The superscript zero refers to an equilibri-
um quantity while the superscript one refers to a
first-order quantity for which we assume a time
dependence exp(-i&et).

My model is based on the full set of Maxwell's
equations and the moments of the Boltzmann equa-
tion. Maxwell's equations are

QH
V XE= -jlo —

~ (»)

aE
VXH= j+&0 —,

where the thermokinetic and first-order Lorentz-
force density components of f are

f,=-V P,
f (1.) en ( E (1)y v (1) x E (o)

)

(4.)
(4b)

LINEAR CURRENT DENSITY

with thermokinetic tensor &. The time-averaged
(ponderomotive) force component of f is given by"

(f)=V P„, (6)

where the radiation pressure is

g [(gE "&E "&) +(g "&B&'&)]

+ I-',~,[(E"")+ (a"")]
where e= 1 —(u), /(d'.

The time rate of power absorption is calculated
through the use of the energy conservation theorem

a 1 -. .- a 3n,m(v')„, = (j—E), + —(-, n, ~T)
gt

(6)

fo1 an electron temperature 2xT, = (—,mv—')„.
Equation (6) is valid if the kinetic energy gained by
the electrons is less than mc', relativistic correc-
tions must be included when this is not the case.

ppV 'H= 0 ~

(1c)

(ld)
The linear first-order current density is given

b 6 7

(1)j
$40&p

2

=a(E-iQE xz) + —,f6V[a(V ~ R —2iQ2~ Vx E)]+' 6z x V[a(z Vx E+2iQV 'E)] -26@x Va 'V(E xz+2iQE)

+~ x V(ze Vx E)), (7)

where

a = (em~(x)/(u'(1 —Q'), 6 = —2( v2)„/e',

n = 2( v„')„a/Sc', Q = &u, /(u .

The zero -order magnetic field is B"'=zB„and
the local electron-plasma frequency is &u (x)

2 . 1/2 ~= [n, (x)e /meo]'~'. Equation (V) has been derived
under the assumption that the electron density is
large enough so that the Debye length )&.v «&. Ad-
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ditionslly, in Pearson's derivation, ' we require
&"' to be strong enough so that the electric field
and density variation are small over a Larmor
radius. On the other hand, Baldwin' has shown
that the expansion parameter in the derivation of
Eq. (7) can be either rr, /l or ( v'„)„'i'/&A, where r~
is the Larmor radius and (v'„)„ is the mean-square
x-directed thermal velocity T. hus Eq. (7) is
equally valid in the limit &u, = -eB"'/m-0. As
discussed in Ref. 7, the inclusion of Landau damp--
ing in Eq. (7) requires a more generalized treat-
ment.

With reference to Fig. 1, we assume an electro-
magnetic field to be obliquely incident on the plas-
ma at X=k~= 0. We assume the plasma to be in-
homogeneous along the x direction and take the
perturbation quantities to depend spatially only on
x. The y dependence is taken to be exp(ik„y)
=exp(in Y), where n=k„/ko= sine&, e& is the angle
of incidence, and Y= k, y. Table I gives the nota-
tion used in this paper as well as values for the
scaling parameters.

In a Cartesian coordinate frame, Kq. (7) can be

written as

j."'(x,y) = a5E,"+a'5E„'+ (a -n'a5+ 2Qna'5)E„
0

—2iQa5E„" —2iQa'5E„' —i(Qa -na'5)E„

(aa)

(1) x = a5E,"+a'5E„'+ (a —n'a5 +2Qna'5)E,
2 6060

+ 2iQa5E„" -2iQa'5E„'+ i(Qa+ na'5)E„,

(Sb)

where the primes denote differentiation with re-
spect to the parameter X.

NONLINEAR CURRENT DENSITY

The nonlinear current density, the source for
many effects observed in plasma irradiated by
strong electromagnetic waves, can be derived

TABLE I. Notation and numerical parameters used in text and figures.

Parameter Symbol and formula Value or comment

Normalized spatial parameter
Source wavelength
Debye length at critical density
Source wave number
Source frequency
Normalized dens ity factor
Local dens ity gradient
Normalized temperature parameter
Normal. ized scale length
Upper hybrid resonance

(cr itical. density)
Sine of angle of incidence
Time average (slow time scale
of a quantity I)

Spatial average (over
electrostatic-f ield
oscil. lation frequency) of a
quantity u

Irradiance
Incident-f ield strength
Mean-square x-directed

thermal velocity
Smal. l-magnetic-f ie Id

expans ion parameter
Quivering velocity

Thermal vel. oc ity

F ield-strength parameter

X=kpx
Xo= 1.06

X~E =0.02 p
kp= 5.93x106m ~

+= 1.77 x10' rad/sec
a = co&2/(v2 —v)

(~2 ~2)-1g~2/~
~ = —3&v„2&/c2

L = k p l = k p(V'n~/n~) = a/a'
Xp, (a=1)

n= sin8;

Ip= &pcgEp1 2

&o
2 1/2

V/&7

V @ = ieEp/mg& I
«)

= 0,25Xp~Io msec
&o (p), Ip (8/cm )

V~= (~ Z' /~, )'y2

=1.3x10'v'7'„,~ msec '
'0= Vg/Vp
=1 9x10 Xo(IO/T~v) i

10 W/cm, 2 x 10 W/cm
8.7 x10 V/m, 4 x10 V/m

-3 x10 m/sec

6 x10 3

(VE/c = 0.13)

(v ~/c 0.1)

0,3' 1.3



2558 A. L. PERATT 20

from the ponderomotive -force description. We
rewrite Eq. (5) as

(f ) =(e,/p, ,)'~'(j xX,) —(e,aE VE), (9)

co . (d a co j
2

VXVXE —
2 E —22 2 E= 2 ~C2 C2 at C2 i&~0

Substitution of Eq. (8) into (14) yields

(14)

where K, =—(go/e, )'~'H, = iE„' -nE-„ follows from
Faraday's law [Eq. (1a)]. (Some controversy re-
mains in the Quid and kinetic descriptions as to
which terms the gradient operator operates on. "'
Hora" finds, in our notation

(f ) =(e,p, )'~'(j x X,)

-(e,aE 'VE+&,(1 a)E-V ' E —e,EE 'Va) .
(10)

I have investigated numerical results using both
repr'esentations [Eq. (9) and (10] and find only
slight waveform modification for the density gra-
dients in this paper. The calculations presented
here are those using Eq. (9), which yields cur-
rents [Eq. (12)] identical to those in a region of
validity of the Poisson approximation [Eq. (13)].}

Equation (9) may be reduced to x- and y-compo-
nent form:

(f„)= koeoa(-E„E„' —inE„E„)+ e(n) + 6(6),

(f„)= k,e,a( E„E„'—-inE„') + 8(n)+ g(6),

a (z) I, (,) (15)

where the elements of the operator I- are given
approximately by

I-» ——a5 V „+a'6V„+ a —1+n'+ 20na'6,

L» —L,*,= i2Qa6V'„+ i(2 Qa'6 + n)V„+ i(Qa+ na'6),

L22 —-V„'+a'5V„+ a -1+20na'6.

Equation (15) is similar to that used in a hybrid
numerical-simulation study. " In the steady
state, the high-frequency fields E„„may be ob-
tained in the following way: We combine Eq. (15)
into a single fourth-order differential equation for
E„. Expressions for the fields E„and X, can then
be obtained by matching external tangential fields
to the solutions of this differential equation at the
boundaries. The electric field E„can then be re-
covered with the use of Faraday's law V x E
= i&up, oH. Setting the left-hand side of Eq. (15) to
zero, we find'

leading to the induced currents AE~ + BE~"+ CE" + DE'+ I'E = P,

where

(18)

1%60

2(d&p

, ' a(E„E„'+znE„E„)+ 6(6),
co m

, ' a(E„E„'+inE„') + 6 (6) .

(12a)

(12b)

A = 1 + pn' (a —1 + n'),

a a+2 2aB= —— + yn' —(a —2+ 2n'),
a a-2 a

Similar expressions for the nonlinear current den-
sity may be obtained by substituting Poisson's law
into the current density, yielding

(j)=p(v)=((,V E)v)=f ' ((V f)E) (1»)

or

C=p2A+ hybrid resonance terms,

D= -(a'/a)(a —2) + yn (a'/a6),

p2q2 + A+2 p2 q2 Q2 a 1 + z2

„(./ ) '( „.)i
0 (E E'+inE E )2m X X X

0
(12b)

y = [a6(a -2)'w', /~']-',

' (E'E + fnE')
i(de 402m x s' s'

0
(13c) and the hybrid resonance terms are approximately

equal to
In each of the above derivations, the nonlinear cur-
rent density is determined by the iterative pro-
cedure of initially solving for the first-order field
quantities.

WAVE EQUATIONS

Since E is taken to be composed of both slow and
fast (harmonic) time scales associated with inci-
dent-wave pulse length and frequency, a high-fre-
quency wave equation for the electric field follows
from Eq. (1),

The quantities p and q are given by

a —1 c'(aP~ —(u'+ (u', )(4(u', —(u')

( V2) %2&2a6

(au), /(u)' —(a —1)'

[QPp —(d ((d + (d~)][(d& —(d((0 —C0~)]

~2(~2 ~2 + ~2)
(18)
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and represent the refractive indices of the plasma
and electromagnetic waves, respectively.

Away from the critical density, Eq. (16) can be
decoupled into two second-order homogeneous
(nonforced) equations. Ignoring terms of 8(6) with
respect to unity, while making use of Faraday's
law, we recover"

10

3
V

dl
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V
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FIG. 2. Befractive indices vs kox for an inhomogeneous
plasma having a ramp profile with kol =26, T~=5.1 keV,
co/co~=100, and 8&=11 deg: (a) and (b), v =v&=0; (c) v

= 0, v&= 0.6&.

CE„"+—E„'+p'E„= O,a

(20)

Equation (19) describes longitudinal plasma waves,
while Eq. (20) describes the electromagnetic cold-
plasma field, as can be verified by setting ( v„)
equal to zero in the previous formulation. Equa-
tion (20) has been previously used to study resonant
absorption of obliquely incident laser light. " This
was accomplished numerically by introducing a
phenomenological collision frequency, which re-
moves the cold-plasma singularity associated with
the X,' coefficient by displacing it off of the r'eal
axis in the complex-x plane. However, at the
singularity a = 1, Eq. (20) is invalid and Eq. (16)
must be used in its entirety.

The nature of the wave solutions at hand is il-
lustrated in Fig. 2. The real and imaginary roots
of Eq. (16) can be identified as the refractive in-
dices P and q. Here k,l = 26, T, = 5. 1 keV, and.
8, = 11 deg. The damping increment is $, a con-
sequence of the kinetic theory. " Thus for the col-
lisionless case, right- and left-propagating q
waves connect to damped q fields at the turning
point a= 1 -n . To the right of the singularity
a= 1, only damped p and q waves exist. The root
modification and increased damping due to colli-
sions is shown in Fig. 2(c).

NUMERICAL SOLUTION

In this section we describe QUELLE, a code that
solves for the electric and magnetic fields, current
densities, energy flux, reflection, transmission,
and absorption of an electromagnetic field of ar-
bitrary wavelength obliquely incident on a planar
inhomogeneous plasma. ' The code numerically
integrates (by the implicit Adams method with
functional iteration) the complete set of coupled-
'wave equations with suitable initial and boundary
conditions.

For simplicity, we start our calculation at x=D,
where the solutions of E„and E, consist of a linear
combination of four damped waves, two of which
can be identified, initially, as longitudinal p waves
a,nd the other two as electromagnetic q waves. We
decompose the right-hand side of Eq. (16) into 32
first-order differential equations (16 real and 16
imaginary) and initiate independent solutions by
use of the Kronecker initial conditions.

To numerically calculate the general solutions
E„and E„within the plasma, it is necessary to
determine four arbitrary constants associated with
four independent solutions. These four constants
plus an additional two representing the reflection
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P y«EX«p '~ (21)

coefficient at X=0 and the transmission coefficient
at X=D must be found by using six boundary con-
ditions to match the incident, reflected, and trans-
mitted fields to a linear combination of independent
solutions.

Continuity of E, and $C, ~ dE/dx across the plasma
boundary provides two of the boundary conditions at
X=0. For the third boundary condition we use a
method based upon the continuity of the displace-
ment suggested by Bernstein and Weenink. ' We
assume the conditions that the scale length in the
equilibrium sheath, which provides for the con-
tainment of the particles at the edge of the plas-
ma, is smail compared to the length of the per-
turbation quantities but large compared to a radius
x described below. Thus we require the condition

that selected snapshots of the fields can be directly
compared to known simulation code predictions.

ELECTRIC AND MAGNETIC FIELDS

Figure 3 illustrates the complex fields E„, E„,
and K, for v~/vr«1 and ve/vr &1 (IO=10"W/cm').
The turn-on fields depicted in Fig. 3(a) show E„/E,
» 1 and are the linear fields initially present at
the start of some applied pulse or cw wave when I,
is small. The largely cold-plasma E, and X,
fields of Fig. 3(b), uncoupled from the hot-plasma
longitudinal fields h,s a result of efficient absorp-
tion, are seen to display the same characteristics
found by Friedberg et al."

Particle collisions have been included in the pre-
ceeding formulation in the following way. Asso-
ciated with the cold-plasma permittivity ( = 1 —a

in the sheath region, where r is either: ~~ (strong-
magnetic-field limit) or v, „/&u (weak-magnetic-
field limit) and &X=X, -X, =a/a' is the width of
the density discontinuity (sheath thickness). These
conditions insure that Eq. (7) is valid throughout

The assumption given by the left-hand side
of the above inequality is clearly violated for a
uniform plasma or a plasma with sharp boundaries.
In deriving Eq. (21), we have used the fact that the
fastest variation of the perturbation electric field
is roughly that of the longitudinal waves with as-
sociated refractive index P. If Eq. (21) holds for
the longitudinal field, it is necessarily satisfied
by the electromagnetic field.

Following Baldwin, ' we can now integrate either
the pair of Maxwell's equations or, equivalently,
the coupled-wave equations (15) over a thin disk
lying in the boundary surface. Within this thin
plasma layer, the physical, quantities are assumed
to change continuously. This integration is car-
ried out in the Appendix. We find the third boun-
dary condition to be continuity of the parameter

I"—= (a6[ E„' —iE„'+ n (E, —iE„)] )"a = 0
1

(a)

IU

X
LLI

p %/I

-20

15—

CI
LU

.—X
LU

-15

CI
LU

p
LU

o
LU

p
LU

4

0

(b)

I I I I I

a,cross X= 0. Note that when n= sin&& —0, this
boundary condition reduces to that used by Bern-
stein and Weenink' for the case of normal wave
incidence. The remaining three boundary condi-
tions at X=D, which connect the region of large
density gradient with a quasiuniform plasma re-
gion, are simply taken to be the continuity of the
tangential fields E„and X, with E„set equal to 0.

In the remainder of this paper, the density gra-
dient is initially taken to be linear, with the criti-
cal density located at either X,=11 or Xp:26.
The incident wavelength is taken to be A.,= 1.06 LI,
and the plasma electron temperature is either 4
or 5. 1 keV. These values have been chosen so

I I I t I

p
LU

C
LU

0

20

I
I

I
I

I
I

I

I I I I I I

10 20 30
I

40 0 10 20 30
k0x

40

FIG. 3. Complex fields E„/Eo, E~/Eo, and X~/Eo vs
0'0~ for koE =26, T,= 5.1 II"eV, co/v~=100, and 8&=&& deg:
(a) eollisionless ease, (b) v&

——0.6', v~=v«. The noise
in E„for small box results from underdamped plasma
waves.
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is a fast-wave collision frequency v, (ur - &u+ iv, )
so that a —a„+ia, . We take the average electron-
ion collision frequency to be

v, v, 2a "']nA
(22)

where A = 12m, ~D', . To discuss energy absorption
resulting from the slow waves, we must consider
the effect of turbulence, which will produce an in-
creased effective electron collision frequency v, ff
= v~. This second collision frequency is entered
into the formulation + —&+ iv~ through the electron
temperature term 5-5„+i5&. Appropriate to the
problem considered here are intensity-dependent
collision models. ""We take"

0

JX

~2
a/= pa

v 2s KT
(23) X= is

where w, and v, are the ion-acoustic rotational and
collisional frequencies, respectively. For the
case of critically damped acoustic waves, Eq. (23)
yields v,«/&u= 0. 66 at the upper hybrid resonance
for I,=2.2 x 10"W/cm'. In comparison, another
model gives"

-3
-3

jX;

Q2 g 1/2
et& &&/2 C, o»~ (2&P I)-1/4(y~ )I/2

Jg gT )
0 De ~ (24)

CURRENT FLOW

The two-dimensional current flow associated
with Fig. 3(b) is illustrated in Fig. 4. The elec-
tron flow, opposite the current flow, is most rapid
through the upper hybrid resonance where it is
seen to be canted somewhat to the x direction.
This current density indicates that the plasma
electrons are accelerated in the direction of de-
creasing density owing to the force density when
the wave frequency of the incident TEM field is
much greater than the cyclotron frequency.

INDUCED MAGNETIC FIELDS

An important phenomenon observed in simula-
tion studies is the generation of a MG dc magnetic
field, a topic that has received considerable in-

Here we replace the Denisov parameter" C (de-
rived for k,l » 1) with (wA)'/', where the absorp-
tion A is that obtained from the following sec-
tions. At maximum field absorption (A is known'
to depend only weakly on T,), Eq. (24) yields
v,«/&u =0.2 at a = 1. A best fit between QUE LLE
a,nd simulations is found to occur when v~/~ =0.6,
that is, when the irradiance lies in the range 1-2
x 10"W/cm'. Of course, in any experimental
situation, it would be good to have a specification
of the effective charge number Z as a function of
spatial coordinate in the collisional representation.

FIG. 4. Complex current flow in inhomogeneous plas-
mas. (Electron motion is opposite to arrows. ) Para-
meter values are the same as in Fig. 3(b).

terest. " ' (The numerical work of W. Woo et al.
has also shown this phenomenon. "") The source
of this field can be traced to the time-averaged y-
directed nonlinear current density. From Am-
pere's law it follows that

(25)xin(B, ) -y —(B,)=—' (j ).
a '=a,

Thus (B,) can be determined once j is specified.
Substituting Eq. (12b) into the y component of Eq.
(25) while ignoring terms of order 8(n, ru„6), we
find

(B,) = (e p,e,/mop)a(iE, Ey) . (26)

I Analytic solution of Eq. (16) shows that, in the
vicinity of the upper hybrid resonance, Eq. (26)
can be broken down into a simple form

(B,) = (e p,e,/2m(u)aE„™-E„',, (2'I)

where E&, is the imaginary cold-plasma, y-directed
electromagnetic field and E~ is the real x-directed
longitudinal field, which is finite for 6, = 0 only if
B"'40. The separation of the longitudinal and
electromagnetic field components is not possible
in simulations or the numerical treatment. ]
Figure 5 illustrates (B,) vs B ~o' as a function of
e, for &,= 10"W/cm'. Figure 6 compares
(E„E,)/Eo and (B,) derived from this theory to
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FIG. 5. Time-averaged magnetic field (B~) vs B' and 0; for Ip ——10 %/cm . Parameter values are the same as in
Fig. 3(b).
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calculations from the relativistic 2—,-dimensional
particle simulation code ZOHAR. ' I have found
these fields to be excited even after the electro-
magnetic wave has tunneled through an overdense
plasma of thickness X=20 and again reached a,

critical layer (as could occur when a mirror image
is connected to the geometry under consideration).
Thus we expect that in an experimental situation
"spontaneous" generation of magnetic fields should
occur even when only a very weak wave of length
A.0 is present.

ABSORPTION AND REFLECTION OF THE INCIDENT FIELD
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ory are for kpl =26& T~=5.1 keV M/M~=100 and Ip=2.2
&&10 8 W/cm .

Associated with the fields derived in the previous
sections is the ref lectivity p, transmissivity 7,
and power absorptivity 4= 1 — p

' —tv~'. Figure
7 illustrates the evolution of & with 0, and field
strength 8 'O'. The effect of a finite B'0' is to con-
vert the incident electromagnetic field into an ex-
traordinary field within the plasma. This provides
for an excitation field E„when 8&

—0 and E„ is the
source for absorption of normally incident fields.
The case of zero absorption now occurs at some
negative angle of incidence. Figure 8(a) shows
zero absorption at -10 deg for a, 5-MG, L = 26
plasma. The large absorption occurring at +8
deg is contrasted. by a maximum absorption of
only 10% for negative angles of incidence. The
la.ck of absorption symmetry with 8, is a conse-
quence of asymmetrical terms (n= sine, ) in the
current density eiluation (7). ' In Fig 8(b) the dots
represent simulation calculations at late time.
Thus, for the parameters used here, we can esti-
mate that about 3 to 5% of the absorbed light at
e, = 0 results from resonant absorption in a mag-
netized plasma. The remainder can be attributed
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FIG. 7. Evolution of the absorption A and reQectivity
~ p ~

vs positive angles of incidence. Parameter values
are the same as in Fig. 3(b).

to the generation of ion-a, coustic waves, leading
to Brillouin backscatter. The calculated magnitude
and phase of the wave ref lectivity, necessa, ry for
the design of any focusing-diagnostics system for
laser light, is given in Fig. 9.

KINETIC ENERGY OF RESONANT ELECTRONS

The conversion of the extraordinary field into a
slow electrostatic wave is the mechanism whereby
electrons resonant with this wave acquire momen-
tum and energy. The energy gained by the elec-
trons, which in steady state attain a temperature
higher than the field-free equilibrium value, is
equal to that lost in collisions with ions and in
thermal conduction. To correctly calculate the
increase in temperature &, requires the simul-

taneous solution of Eqs. (3) and (6), which requires
knowledge of the thermal conductivity" or diffus-
ivity. " I do not solve this complete problem, but
we can determine the kinetic energy gained by
resonant electrons by using the first term on the
right-hand side of Eq. (6), which in steady state
yields

where T, is the equilibrium temperature of the
plasma (a relativistic derivation is appropriate
when the kinetic energy is of the order of or great-
ter than the rest energy' ). Figure 10 depicts this
coherent electron energy. These oscillations can
be viewed as a source for plasma heating. In a
one -dimensional, two-temperature hydrodynamics
code, the deposition of local energy corresponding
to that calculated here yields increa, sed, spatially
varying electron and ion temperatures in the un-
derdense region. "
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APPENDIX: BOUNDARY CONDITIONS

Under the condition of Eq. (21)

u, j «nx« ip-'i, (Al)

we integrate the right-hand side of Eq. (15) to find

@ATE„'+ a —1+n E„dX+2 —'n a'5E„dX

-i —' aE dX-in a'5E dX-i2 —'a5E'
('d

+inE„= C (A2}

E„'-@ATE„' — a —I E„dX-2 —' n a'5E„dX

more computer time, it would still be considerably
shorter than that presently used in plane-wave
simulations.

Assuming that the quantities a, E„, and E„are
finite and smoothly varying across &X (whereas
a' is a sharply peaked function), we can then ap-
proximate Eq. (A4) by

(a5E„') 2+ (a —1+n )„E„nX
1

X2
+2 —'n a'5E„dX —i —'(aE,)„b,X

Xl

X
in -a'5E„dX —i2 —' (a5E„')z'+in(E„)zx2= 0,

Xl

(A5)
where the variables in angular brackets represent
average quantities. Because a5E„'=E„P '»E„4X
and a6E„'=E„P '»E„&X, the second and fourth
terms in (A5) are negligible when compared to the
first and sixth terms, respectively. Thus, Eq.
(A5) reduces to

x2 x,
a5 E„' —2i —'E„' +inE„

Xla 1

X2
+ 2 —'n a'6 E„-i E„dX=0. A6

(d
1

x

Now if we integrate Eq. (A2) between X, and X,
while assuming that E„and fa'5[E„—i(&u/2(d, )E„]dX
are finite between X, and X„we find

~

~a5 E,'-2i 'E,' idX=O. — (AV)
CO )

Similarly, we evaluate Eq. (AS) at X, and X,
and subtract to obtain the expression

(E,')„' —f (a —1)E„dX 1 —' a a'ad„dX
x, GO X

X2 X2
aE„dX— g5E„' dX

40 Xl Xl
X2

—in a'5E„dX —2i —' (a5E„') ' —inE„
i

'=0.
X

(A8)

aE dX-in a'~E dX-2i —'a~E'
X X X

-inE„= C, (AS)

where C, and C, are constants of integration. If
we evaluate Eq. (A2) at X, and X; and subtract, we
obtain

X
(a5E„') 2+ (a —1+n')E„dX

Xl

X2
+2 —'n &igE„dx i —' ~„dx

(d Xl

X2
-in a'5E„dX —i2 —' (a5E„') 2 + in(E„) =0.

l 1
& Xl

(A4}

(E' —inE, ) — a5 i
E„'+2i —'E,'

i~ x, (d j
X2

-in a'~ E„-i2—'E„dx=O.
Xl CO

By integrating Eq. (AS) between X, and X, while
assuming that E„and fa'5[E„—i(2ar, /&o)E„] dX
are finite, we obtain

I,

(A9)

(A 10)

Because a, E„, and E„have been assumed finite
and smoothly varying across &X, Eq. (A8) re-
duces to
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( 2 X2
—4~ —~~ —1 a'6E„dX=O.

X~
(A11)

To estimate the integral in Eq. (All), we assume
that at most E„, which is finite, has a maximum
value E„,„. Then

X X
~'&EydX ~ Ey~,x

a'6d&
X~ X

Thus we have four equations, (A6), (A7), (A9),
and (A10) that represent boundary conditions at a
density discontinuity satisfying (A1). These condi-
tions can be cast into more convenient forms in
the following way. To obtain a first boundary con-
dition, we multiply Eq. (A7) by 2iv, /u and add to
(A10), in which case we find, after integrating by
parts,

0 (A13)

I'=—(a6[E„' —iE,'+ n(E„—iE„)]) '= 0. (A15)

i.e., E„ is continuous across the boundary.
Similarly, we can obtain a secondary condition

by multiplying Eq. (A6) by 2i v, /m and adding to
Eq. (A9) while making use of (A13) to find

(E, fnE„)"=0, (A14)

i.e., X, is continuous across the boundary. Thus
we have recovered the electromagnetic boundary
conditions that are, of course, also valid for a
plasma density with sharp boundaries.

A third condition at the boundary X=O follows
by making use of the electromagnetic boundary
conditions in the previous analysis. Substituting
Eq. (A13) back into (A6) or substituting (A14) back
into (A9), integrating by parts, and neglecting
terms of order k,'z' yields

= fz, ,„f(a6) '. (A12)

Using this argument in Eq. (A11) and neglecting
terms of order k',r, we find that (All) gives the
boundary condition

Therefore, under the restriction given in Eq.
(Al), we have three boundary conditions on the
plasma slab, given by Eq. (A13)-(A15), i.e., con-
tinuity of E„X„and j. across X=O.
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