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Numerical methods are used to investigate absorption of either intense or weak electromagnetic waves
obliquely incident on a nonuniform plasma with and without the presence of a dc magnetic field. The
numerical formulation includes the full set of Maxwell’s equations and three moments of the Boltzmann
equation with a ponderomotive-force description. The investigation includes a study of the reflection and
absorption of the incident wave as a function of angle of incidence as well as the complex electric and
magnetic fields, electron-flow, dc magnetic field generation, and kinetic energy gained by resonant electrons
within the plasma. Selected field snapshots are directly compared to particle-simulation predictions where a
thousandfold reduction in computation time allows a detailed investigation of the wave-plasma interaction

for laser wavelengths.

INTRODUCTION

The conversion, resonance, and absorption of
electromagnetic waves in an inhomogeneous plas-
ma is fundamental to understanding energy trans-
fer in fusion reactor models for either magnetic-
confinement fusion using GHz high-power sources
or for fusion by laser, where an intense light
wave is obliquely incident on a solid inertial con-
finement pellet. 2 The mode conversion process
is important to the high-frequency electromag-
netic—wave-plasma interaction because, while an
incident electromagnetic wave cannot resonantly
transfer energy to the plasma particles, the plas-
ma wave excited by the electromagnetic wave can.
Also, exciting plasma waves is generally an ef-
ficiently means of heating. This same effect is
also of concern to inertial-confinement configura-
tions.

In the study of intense waves interacting with
plasma, researchers have almost exclusively used
plasma-simulation codes, which model the collec-
tive interactions of a large number of discrete
plasma particles with themselves and with exter-
nal electromagnetic forces.® Often, the size of
the plasma that can be simulated in detail is li-
mited by the available computer time and memory.
For example, studying cyclotron harmonic effects
may require many particles and hence excessive
computer time.* Furthermore, in the numerical
data from a simulation, the individual physical
mechanisms at work are often not clearly dis-
tinguished.

In this paper I derive formulas, based on a
kinetic theory approach, that describe quantita-
tively the strength of the excited plasma waves
and the role they play in the resonant absorption
of electromagnetic waves in a nonuniform plasma,
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with and without the presence of a dc magnetic
field. The case treated, pictured in Fig. 1, is
that of a p -polarized TEM wave, obliquely incident
on a uniform plasma whose dc magnetic field
(when present) is taken to aligned both perpendicu-
lar to the density gradient and the plane of wave
incidence. The analyses pertain to both 2,/ >1

and &,/ <1, where &, is the free-space wave num-
ber and I=n,/|Vn,|, is the scale length on which
the plasma density varies. We assume that the
ions are at rest with an assigned density distribu-
tion and take the field quantities to be a sum of a
static part and a small high-frequency part, the
latter being treated by linearized equations.

Expressions for the linear current densities in
an inhomogeneous plasma in the presence of a
static magnetic field have been derived by Bern-
stein and Weenink, by Pearson, by Baldwin, by
Azevedo and Vianna, and by Sivasubramanian and
Tang.%® Generally, these expressions describe
the effects of electric fields and particle drifts
within plasma and include the effect of an electro-
static field balancing the plasma nonuniformity as
well as the anisotropy of the unperturbed electron-
velocity distribution function. These equations
when substituted into Maxwell’s equations allow us
to study the electromagnetic and plasma fields
everywhere within the hot plasma with or without
consideration of collisions.

In this paper I describe the numerical solutions
for the complex electric and magnetic fields,
electron flow, electron resonant heating, and dc
magnetic field generation within the plasma as
well as the absorption and reflection of the inci-
dent TEM wave. I also investigate the dependence
of each of the above quantities on angle of incidence
in the range —60 to +60 deg. My conclusions are
given in the final section.
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FIG. 1. p-polarized electromagnetic fields incident on
and reflected from an inhomogeneous plasma.
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BASIC FORMULATION

In the high-power pulsed electromagnetic-wave—
plasma interaction problem, two time scales are
evident, namely, the time 7 associated with the
pulse duration and a shorter time w™ correspond-
ing to the radiation period. To obtain a fluid de-
scription valid on the longer time scale, it is use-
ful to average the effects due to a high-frequency

phenomena by taking a time average ()=T"* _TT/,§ dt,

where w' < T<«< 7. Various quantities in the
plasma can then be treated in terms of a dc and
high-frequency part, e.g., f=(f @ +(f))+{©,
etc. The superscript zero refers to an equ111br1-
um quantity while the superscript one refers to a
first-order quantity for which we assume a time
dependence exp(—iwt).

My model is based on the full set of Maxwell’s
equations and the moments of the Boltzmann equa-
tion. Maxwell’s equations are

= oH
VxE=-u, 7, (1a)
~ E
Vxf=T+e 2, (1b)
at
6V E=p, (1c)
pv-H=0, (1a)
1
j*u)
TWE,

=a(B -iQE x2) +

where j"z noq; and p=mn,.q are the current and
charge densities, respectively. Equations (1)
imply the continuity law

(aa)nom +V * (rgm¥)=0, @)

while conservation of momentum dictates

mno—aa?v f, (3)

where the thermokinetic and first-order Lorentz-
force density components of f are

fr=-v'P, (4a)
-f"”:—ene(ﬁu’ﬁ-\*/‘”xﬁ“”), (4b)

with thermokinetic tensor P. The time-averaged
(ponderomotive) force component of f is given by*°

<f ) =V ‘I_)R ’ (5)
where the radiation pressure is
ER: _60[<6E<1)E’(1)> +<“B’(1)§(1)>]
+136[( BV +(BY)],
where =1 — w} /w?.

The time rate of power absorption is calculated
through the use of the energy conservation theorem

2 lnm(v >xt_<] E)t

I (2
2 , (znelcT)

coll+cond
(6)

for an electron temperature $xT,= (3mv?),.
Equation (6) is valid if the kinetic energy gained by
the electrons is less than mc?; relativistic correc-
tions must be included when this is not the case.

LINEAR CURRENT DENSITY

The linear first-order current density is given
by6’7

{5v (V-E-202-VxE)]+62x V[a@ VX E +2iQV - E)] =262 x va * V(E x 7 + 2iQE)

+2Z xv(az- vxE)}, (7

where

a=wj(x)/w?(1-9%), 06=-3(v2)/c,
A=2(v2)a/3F, Q=w,/w.

The zero-order magnetic field is B =%B,, and
the local electron-plasma frequency is w p(x)
=[n,(x)e* /me,]'/?. Equation (7) has been derived
under the assumption that the electron density is
large enough so that the Debye length yp <. Ad-
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ditionally, in Pearson’s derivation,® we require
B© to be strong enough so that the electric field
and density variation are small over a Larmor
radius. On the other hand, Baldwin’ has shown
that the expansion parameter in the derivation of
Eq. (7) can be either 7, /1 or (v2)}/2/wl, ‘where 7,
is the Larmor radius and {v2), is the mean-square
x-directed thermal velocity. Thus Eq. (7) is
equally valid in the limit w,= -eB®/m—0. As
discussed in Ref. 7, the inclusion of Landau damp-
ing in Eq. (7) requires a more generalized treat-
ment.

With reference to Fig. 1, we assume an electro-
magnetic field to be obliquely incident on the plas-
ma at X=£kx=0. We assume the plasma to be in-
homogeneous along the x direction and take the
perturbation quantities to depend spatially only on
x. The y dependence is taken to be exp(ik,y)
=exp(in Y), where n=~k, /ky=sinb;, 6, is the angle
of incidence, and Y=£%,y. Table I gives the nota-
tion used in this paper as well as values for the
scaling parameters.

In a Cartesian coordinate frame, Eq. (7) can be
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written as

s 1)
ﬂj:)%” =adE! + a'3E}+ (a —n?ad + 2Qna’5)E,
0

- 2iQadE,) -2iQa’dSE,) —i(Qa —na'd)E,
(8a)
and
JEEM =adEy +a’0Ey + (a —nad +2Qna’d)E,
twe,
+2iQadE) -2iQa’8E, +i(Qa +na'd)E,,
(8b)
where the primes denote differentiation with re-
spect to the parameter X,
NONLINEAR CURRENT DENSITY

The nonlinear current density, the source for
many effects observed in plasma irradiated by
strong electromagnetic waves, can be derived

TABLE I. Notation and numerical parameters used in text and figures.

Parameter Symbol and formula Value or comment
Normalized spatial parameter X=Rkox
Source wavelength A=1.06 1

Debye length at critical density

Source wave number

Source frequency

Normalized density factor

Local density gradient

Normalized temperature parameter

Normalized scale length

Upper hybrid resonance
(critical density)

Sine of angle of incidence

Time average (slow time scale
of a quantity u)

Spatial average (over
electrostatic-field
oscillation frequency) of a
quantity »

Irradiance

Incident-field strength

Mean-square x-directed
thermal velocity

Small-magnetic-field
expansion parameter

Quivering velocity

Thermal velocity

Field-strength parameter

Apg ~0.02 p
ko= 5.93%x10%m™!
w=1,77%10'°rad/sec
a=w}/(w?-w)
a'= r-wd)"ldwl/ix
8=—3wi/c?
L=kol=k0(Vne/ne)"1=a/a’
Xo: (a= 1)

n=sinf;
<u>,

<u>,

Iy=€ciE} 101 W/cm?, 2x10% W/cm?
E, 8.7%10'%/m, 4x10"v/m

w2 ~3 x10'm/sec
v/wl ~6 x1073

o= |eEy/mew |
=0.250vT, msec™!,
Ao (), Iy (W/cm?)
vp=(k Te/m)V/?
=1.3%x10"V T,y msec™!
77='UE/'UT
=1.9%10-8\¢(Io/ Tiee) /2

(vg/c~0.13)
(1)7'/0 ~0,1)

" ~0,3—1.3
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from the ponderomotive-force description. We
rewrite Eq. (5) as

(F)=(ey/uo ¥ i xR,y - (eaE * VEY, ©)

where 3C, = (1o/€,)t/ 2H, = —~iE} —nE, follows from
Faraday’s law [Eq. (1a)]. (Some controversy re-
mains in the fluid and kinetic descriptions as to
which terms the gradient operator operates on. !*+1?
Hora'? finds, in our notation

(£) = (eoto)/%(§ X 3¢,)
—(€,aE * VE +¢€)(1 —a)EV * E —¢,EE * Va) .
(10)

I have investigated numerical results using both
representations [Eq. (9) and (10] and find only
slight waveform modification for the density gra-
dients in this paper. The calculations presented
here are those using Eq. (9), which yields cur-
rents [Eq. (12)] identical to those in a region of
validity of the Poisson approximation [Eq. (13)].)

Equation (9) may be reduced to x- and y -compo-
nent form:

(f) = ko€oa{~E,E] —inEyE,) + 0(n) + 0(5),
(fy) = ko€oa{—E,Ey —inEZ) + 0(n) + 0(5), (11)
leading to the induced currents

<_7x) _eko 1
ACLTAp—— ] +
Twe, > ao{E,E}+inE_ E,)+0(3), (12a)

<jy> _ —eky r 2

E—ma<E"E’+mE’>+ 0(5). (12b)
Similar expressions for the nonlinear current den-
sity may be obtained by substituting Poisson’s law
into the current density, yielding

(;)=p<3)=((eov'ﬁ)3)=if)%%((v'}-f)}—f) (13a)

or

(Jx) _ —eky

e = o (E E.+inE E,), (13b)

(Jy) _—ek,

L= 0 (EIE + inE?

Twe, = oPm (ELE,+inE2) . (13¢)
In each of the above derivations, the nonlinear cur-
rent density is determined by the iterative pro-
cedure of initially solving for the first-order field
quantities.

WAVE EQUATIONS

Since E is taken to be composed of both slow and
fast (harmonic) time scales associated with inci-
dent -wave pulse length and frequency, a high-fre-
quency wave equation for the electric field follows
from Eq. (1),
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vxvxii:’-—c“’? o2l

Substitution of Eq. (8) into (14) yields

2 3 (E,\ (E)

o 5% (E,)—é E,)’ (15)
where the elements of the operator L aregiven
approximately by

L, =abV2+a’'sV,+a—1+n®+2Qna's,
L, =L%=1420abV2+i(2Qa’s +n)v, +i(Qa+na's),
Ly,=-VZ+a'8V,+a~1+2Qna’s.

Equation (15) is similar to that used in a hybrid
numerical -simulation study.'® In the steady
state, the high-frequency fields E, y may be ob-
tained in the following way: We combine Eq. (15)
into a single fourth-order differential equation for
E,. Expressions for the fields E, and JC, can then
be obtained by matching external tangential fields
to the solutions of this differential equation at the
boundaries. The electric field E, can then be re-
covered with the use of Faraday’s law Vv X E
=iwp,H. Setting the left-hand side of Eq. (15) to
zero, we find"*

AEY + BE)" + CE! + DE,+ FE,=0, (16)
where
A=1+ <pn2(a -1 +n2),

a" a+2
B:_; a-2

al
+ on? p (a-2+2n%)),
C=p?A +hybrid resonance terms,
D= —(a’/a)(a -2)+ ¢n*(a’/ab),
F:P2q2+ (pn2<p2(q2 _nz)(a - 1 +n2)

-n ______(wcé(éu)a' (1 —n2)> s

o=[ad(a -2)%w?/w?]*,

and the hybrid resonance terms are approximately
equal to

n2 wZ) n4 wz)
23— 5 )+a” (1+=25).
a (3 5 a (1 5

c
The quantities p and ¢ are given by

2_a=1_c%w - w®+wd)(“wi-w’)

pi= ) (17)
ad 3(v2), wiw?
2 (aw /w) —(a 1)
7= a-1
_ [f - wlw+ wc)][wi - wlw-w,)] (18)

(W} — w? + w?)
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and represent the refractive indices of the plasma
and electromagnetic waves, respectively.

Away from the critical density, Eq. (16) can be ,
decoupled into two second-order homogeneous e + IL 3¢+ (g% -n?)3C,=0. (20)
(nonforced) equations. Ignoring terms of 0(5) with —a
respect to unity, while making use of Faraday’s

a' ,
E{+o EL+p°E.=0, (19)

Equation (19) describes longitudinal plasma waves,

law, we recover'®

Refractive indices (kc/w)

= = — Imaginary _|
Real
| |

KA\pe

10 LI Y

Refractive indices (kc/w)

while Eq. (20) describes the electromagnetic cold-
plasma field, as can be verified by setting (22)
equal to zero in the previous formulation. Equa-
tion (20) has been previously used to study resonant
absorption of obliquely incident laser light.'® This
was accomplished numerically by introducing a
phenomenological collision frequency, which re-
moves the cold-plasma singularity associated with
the 3¢, coefficient by displacing it off of the real
axis in the complex-x plane. However, at the
singularity a=1, Eq. (20) is invalid and Eq. (16)
must be used in its entirety.

The nature of the wave solutions at hand is il-
lustrated in Fig, 2. The real and imaginary roots
of Eq. (16) can be identified as the refractive in-
dices p and q. Here k=26, T,=5.1 keV, and.
6,=11 deg. The damping increment is £, a con-
sequence of the kinetic theory.'” Thus for the col-
lisionless case, right- and left-propagating ¢
waves connect to damped ¢ fields at the turning
point a=1-#»?, To the right of the singularity
a=1, only damped p and g waves exist. The root
modification and increased damping due to colli-
sions is shown in Fig. 2(c).

NUMERICAL SOLUTION

In this section we describe QUELLE, a code that
solves for the electric and magnetic fields, current
densities, energy flux, reflection, transmission,
and absorption of an electromagnetic field of ar-
bitrary wavelength obliquely incident on a planar
inhomogeneous plasma. 4 The code numerically
integrates (oy the implicit Adams method with
functional iteration) the complete set of coupled-

‘wave equations with suitable initial and boundary

conditions.

For simplicity, we start our calculation at x=D,
where the solutions of E, and E, consist of a linear
combination of four damped waves, two of which
can be identified, initially, as longitudinal p waves
and the other two as electromagnetic g waves. We
decompose the right-hand side of Eq. (15) into 32
first-order differential equations (16 real and 16
imaginary) and initiate independent solutions by
use of the Kronecker initial conditions.

To numerically calculate the general solutions
E_ and E, within the plasma, it is necessary to

FIG. 2. Refractive indices vs kyx for an inhomogeneous
plasma having a ramp profile with 2yl =26, T,=5.1 keV,
w/w,=100, and ;=11 deg: (a) and (b), v =v,=0; (c) ¥,
=0, v,=0.6w.

determine four arbitrary constants associated with
four independent solutions. These four constants
plus an additional two representing the reflection
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coefficient at X=0 and the transmission coefficient
at X=D must be found by using six boundary con-
ditions to match the incident, reflected, and trans-
mitted fields to a linear combination of independent
solutions.

Continuity of E, and 3C, < dE/dx across the plasma
boundary provides two of the boundary conditions at
X=0. For the third boundary condition we use a
method based upon the continuity of the displace-
ment suggested by Bernstein and Weenink,® We
assume the conditions that the scale length in the
equilibrium sheath, which provides for the con-
tainment of the particles at the edge of the plas-
ma, is small compared to the length of the per-
turbation quantities but large compared to a radius

7 described below. Thus we require the condition

Ry < AX << [p™t] 1)

in the sheath region, where 7 is either 7, (strong-
magnetic-field limit) or v,,/w (weak-magnetic-
field limit) and AX=X, - X, ~a/a’ is the width of
the density discontinuity (sheath thickness). These
conditions insure that Eq. (7) is valid throughout
AX, The assumption given by the left-hand side
of the above inequality is clearly violated for a
uniform plasma or a plasma with sharp boundaries.
In deriving Eq. (21), we have used the fact that the
fastest variation of the perturbation electric field
is roughly that of the longitudinal waves with as-
sociated refractive index p. If Eq. (21) holds for
the longitudinal field, it is necessarily satisfied

by the electromagnetic field.

Following Baldwin,” we can now integrate either
the pair of Maxwell’s equations or, equivalently,
the coupled-wave equations (15) over a thin disk
lying in the boundary surface. Within this thin
plasma layer, the physical quantities are assumed
to change continuously. This integration is car-
ried out in the Appendix. We find the third boun-
dary condition to be continuity of the parameter

I'= (ad[ E] —iE} +n(E, —4E,)])2=0
*1

across X=0. Note that when n=sin6; =0, this
boundary condition reduces to that used by Bern-
stein and Weenink® for the case of normal wave
incidence. The remaining three boundary condi-
tions at X= D, which connect the region of large
density gradient with a quasiuniform plasma re-
gion, are simply taken to be the continuity of the
tangential fields E, and ¥, with E, set equal to 0.
In the remainder of this paper, the density gra-
dient is initially taken to be linear, with the criti-
cal density located at either X;=11 or X,=26.
The incident wavelength is taken to be 1,=1.06 u,
and the plasma electron temperature is either 4
or 5.1 keV., These values have been chosen so

that selected snapshots of the fields can be directly
compared to known simulation code predictions.

ELECTRIC AND MAGNETIC FIELDS

Figure 3 illustrates the complex fields E,, E,,
and 3¢, for vz /v, <1 and v /vy >1 (I,= 10" W/cm?).
The turn-on fields depicted in Fig. 3(a) show E,/E,
>>1 and are the linear fields initially present at
the start of some applied pulse or cw wave when I,
is small. The largely cold-plasma E, and C,
fields of Fig. 3(b), uncoupled from the hot-plasma
longitudinal fields as a result of efficient absorp-
tion, are seen to display the same characteristics
found by Friedberg et al.'®

Particle collisions have been included in the pre-
ceeding formulation in the following way. Asso-
ciated with the cold-plasma permittivity e=1-a

ZUﬁ -
L (@ - t (o)

EL/Eg

El/Eg

€1 /€y

EL/E,

x/E,

/Eq

i
z/

)
o

x>
.
1
T
L

FIG. 3. Complex fields E,/E,, E,/E,, and 3C,/E, vs
kox for kgl =26, T,=5.1 keV, w/w,=100, and 6;=11 deg:
(a) collisionless case, (b) Vp=0.6w, V,=v,. The noise
in E, for small kyx results from underdamped plasma
waves.



20 MAGNETOPLASMA ABSORPTION OF INTENSE... 2561

is a fast-wave collision frequency v, (w— w +1iv,)
so that a —~a, +ia;. We take the average electron-
ion collision frequency to be

ve _/va\ _[(2a)Y%?InA

S, =) @)
where A=127n,25,. To discuss energy absorption
resulting from the slow waves, we must consider
the effect of turbulence, which will produce an in-
creased effective electron collision frequency v,
=v,. This second collision frequency is entered
into the formulation w —~ w +iv, through the electron
temperature term 6—0,+0;. Appropriate to the
problem considered here are intensity-dependent
collision models.®?° We take®

b
w v, 2nkT,

v w, €EZ2
e!f__%allz Wa 0% (23)

where w, and v, are the ion-acoustic rotational and
collisional frequencies, respectively. For the
case of critically damped acoustic waves, Eq. (23)
yields v, /w=0.66 at the upper hybrid resonance
for [,=2.2 % 10'® W/cm?, In comparison, another
model gives®

2 1/2
Vett _g1/2 <q> f"E—"> ! @kl (krp, )2 . (24)
W nkT,

Here we replace the Denisov parameter® & (de-
rived for &yl > 1) with (7A)'/2, where the absorp-
tion A is that obtained from the following sec-
tions. At maximum field absorption (4 is known®
to depend only weakly on T,), Eq. (24) yields
Vor/w=0.2 at a=1. A best fit between QUELLE
and simulations is found to occur when v,/w =0. 6,
that is, when the irradiance lies in the range 1-2
x 10 W/cm?. Of course, in any experimental
situation, it would be good to have a specification
of the effective charge number Z as a function of
spatial coordinate in the collisional representation.

4

CURRENT FLOW

The two-dimensional current flow associated
with Fig. 3(b) is illustrated in Fig. 4. The elec-
tron flow, opposite the current flow, is most rapid
through the upper hybrid resonance where it is
seen to be canted somewhat to the x direction.
This current density indicates that the plasma
electrons are accelerated in the direction of de-
creasing density owing to the force density when
the wave frequency of the incident TEM field is
much greater than the cyclotron frequency.

 INDUCED MAGNETIC FIELDS

‘An important phenomenon observed in simula-
tion studies is the generation of a MG dc magnetic
field, a topic that has received considerable in-

iv;
o
T

FIG. 4. Complex current flow in inhomogeneous plas-
mas. (Electron motion is opposite to arrows.) Para-
meter values are the same as in Fig. 3(b).

terest.®?° (The numerical work of W. Woo e? al.
has also shown this phenomenon.?*3!) The source
of this field can be traced to the time-averaged y -
directed nonlinear current density. From Am-
pere’s law it follows that

%in(B:) -5 2= (By=42 (7). 25)

Thus (B,) can be determined once I is specified.
Substituting Eq. (12b) into the ¥ component of Eq.
(25) while ignoring terms of order o, w,,5), we
find '

(B.) = (eugto/mw)aliE, E,) . (26)

[Analytic solution of Eq. (16) shows that, in the
vicinity of the upper hybrid resonance, Eq. (26)
can be broken down into a simple form

(B,)=-(epto/2mw)aES ] 27

where Ef:‘ is the imaginary cold-plasma y-directed
electromagnetic field and EZ is the real x-directed
longitudinal field, which is finite for 6, =0 only if
B©® =0, The separation of the longitudinal and
electromagnetic field components is not possible

in simulations or the numerical treatment.]

Figure 5 illustrates (B,) vs B® as a function of

O, for I,=10'"® W/cm? Figure 6 compares
(E,E,)/E% and (B,) derived from this theory to
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FIG. 5. Time-averaged magnetic field (B,) vs B © ang 0; for IO=1016 W/cm?. Parameter values are the same as in

Fig. 3(b).
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FIG. 6. Variation of (E,E,)/E} and (B,) The simula-
tion results are for wyt=162, and the results of this the-
ory are for k¢l =26, T,=5.1 keV, w/w,=100, and I,=2.2
X108 W/cm?.

calculations from the relativistic 23 -dimensional
particle simulation code ZOHAR.? I have found
these fields to be excited even after the electro-
magnetic wave has tunneled through an overdense
plasma of thickness X=20 and again reached a
critical layer (as could occur when a mirror image
is connected to the geometry under consideration).
Thus we expect that in an experimental situation
“spontaneous” generation of magnetic fields should
occur even when only a very weak wave of length
A, is present.

ABSORPTION AND REFLECTION OF THE INCIDENT FIELD

Associated with the fields derived in the previous
sections is the reflectivity p, transmissivity 7,
and power absorptivity A=1- [p|? - |7[%. Figure
7 illustrates the evolution of A with 6; and field
strength B, The effect of a finite B is to con-
vert the incident electromagnetic field into an ex-
traordinary field within the plasma. This provides
for an excitation field E, when 6; =0 and E, is the
source for absorption of normally incident fields.
The case of zero absorption now occurs at some
negative angle of incidence. Figure 8(a) shows
zero absorption at —10 deg for a 5-MG, L=26
plasma. The large absorption occurring at +8
deg is contrasted by a maximum absorption of
only 10% for negative angles of incidence. The
lack of absorption symmetry with 6; is a conse-
quence of asymmetrical terms (z=sin#,) in the
current density equation (7).** In Fig 8(b) the dots
represent simulation calculations at late time.
Thus, for the parameters used here, we can esti-
mate that about 3 to 5% of the absorbed light at
0; =0 results from resonant absorption in a mag-
netized plasma. The remainder can be attributed
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FIG. 7. Evolution of the absorption A and reflectivity
| p| vs positive angles of incidence. Parameter values
are the same as in Fig. 3(b).

to the generation of ion-acoustic waves, leading

to Brillouin backscatter. The calculated magnitude
and phase of the wave reflectivity, necessary for
the design of any focusing-diagnostics system for
laser light, is given in Fig. 9.

KINETIC ENERGY OF RESONANT ELECTRONS

The conversion of the extraordinary field into a
slow electrostatic wave is the mechanism whereby
electrons resonant with this wave acquire momen-
tum and energy. The energy gained by the elec-
trons, which in steady state attain a temperature
higher than the field-free equilibrium value, is
equal to that lost in collisions with ions and in
thermal conduction. To correctly calculate the
increase in temperature 7, requires the simul-

10

- 1
0 - 1 1 1 1 , 1 1 1 1
-50 0 50

6.

FIG. 8. Absorption vs positive and negative angles of
incidence: (a) kol =26, T,=5.1 keV, B®=5 MG; (b)
kol=11, T,=4 keV, B®=4 MG. Dots represent late-
time simulation results. )

taneous solution of Egs. (3) and (6), which requires
knowledge of the thermal conductivity®® or diffus-
ivity.* I do not solve this complete problem, but
we can determine the kinetic energy gained by
resonant electrons by using the first term on the
right-hand side of Eq. (6), which in steady state
yields

Tyg= To+e2]§|2/mewz,

where T, is the equilibrium temperature of the
plasma (a relativistic derivation is appropriate
when the kinetic energy is of the order of or great-
ter than the rest energy®). Figure 10 depicts this
coherent electron energy. These oscillations can
be viewed as a source for plasma heating. Ina
one-dimensional, two-temperature hydrodynamics
code, the deposition of local energy corresponding
to that calculated here yields increased, spatially
varying electron and ion temperatures in the un-
derdense region. 3
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FIG. 9. Magnitude and phase of reflectivity p vs posi-
tive and negative angles of incidence. Parameter values
are the same as in Fig. 3(b).

CONCLUSIONS

The theory presented here is based on a kinetic
current-density treatment, the full set of Max-
well’s equations, and moments of the Boltzmann
equation and accounts for the behavior of plasma
irradiated by intense, or weak, obliquely incident
electromagnetic waves. An investigation of the
plasma-wave excitation and subsequent absorption

10° | T T T T T E
N - i
[+
|
w 10%
¥ iy
— o

3 Il | 1 | 1 |
10 0 10 20 30

FIG. 10. Kinetic energy gained by resonant electrons.
Initial plasma values are: kyl=26, T,=5 keV, B ®_q
MG, v =vp= (Vg;).

has been carried out here by examining the rela-
tion between field-strength-dependent collision
frequencies. The dc magnetic field generation
quantitatively shows close agreement to simula-
tions (Fig. 6). The dc magnetic field, whose
characteristic profile with position x is deter-
mined by a beating along the density gradient, be-
tween the hot-plasma longitudinal field and cold-
plasma transverse field, results from the non-
linear current density j,. The acceleration of -
electrons to less-dense regions (Fig. 4) and the
decrease in the energy carried by the hot-plasma
resonant electrons as the density gradient be -
comes larger with time verifies simulation predic-
tions.

The presence of a MG level dc magnetic field in
plasma for which T, is a few keV and &,/ = 1-30
introduces an asymmetry, with respect to angle of
incidence, in the absorption of incident wave
power. An increase in absorption occurs for posi-
tive angles while a decrease is observed for nega-
tive angles. The case of zero absorption is shifted
from 0 deg to some negative angle when a z -di-
rected dc magnetic field is present (Fig. 8). The
magnitude and phase of the reflected laser light
(Fig. 9) should reveal useful information about the
absorption process and internal plasma parame-
ters.

An example of the utility of the analytical-nu-
merical theory in investigating, in detail, wave-
plasma interaction problems as well as unfolding
the physical mechanisms responsible for observed
phenomena is given by the data depicted in Fig. 6.
Here the simulation required a time expenditure of
180 min on a CDC 7600 computer,® while the nu-
merical treatment required 5 sec. Additionally,
the direct comparison of a nonsimulation predic-
tion to a simulation result verifies the validity of
several assumptions made in both approaches.

I believe the model could be improved by includ-
ing ion motion, arbitrarily directed magnetic
fields, and harmonic generation. Closely related
to the problem of longitudinal-wave excitation and
absorption at the critical density is the nonlinear
mixing of waves in inhomogeneous plasma. Cur-
rent-density expressions for this mixing have been
derived,®® and such effects have been seen in simu-
lations.?” Absorption in nonplanar geometries
would be another valuable addition to the model.
Here I have considered a planar geometry, but the
formulation is applicable to problems having cylin-
drical or spherical geometries. The model would
also benefit from including nonuniform plane-wave
analysis. In experimental situations where a beam
is focused on a target, a superposition of plane
waves is a better representation of the incident ra-
diation. Although such an analysis would require
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more computer time, it would still be considerably
shorter than that presently used in plane-wave
simulations.
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APPENDIX: BOUNDARY CONDITIONS
Under the condition of Eq. (21)
koyr < AX << [p7Y], (A1)
we integrate the right-hand side of Eq. (15) to find

aGE;+f (@a-1+n*)E dX+2 %nf a'dE, dX

-z—faE aX ~in [ a'oE, ax -i2 2= aoE;

+ iﬂEy = C1 ) (Az)
and

E;_aoE,'_f (@ -1)E,dX -2 %nfa’éE,dX

—z—faE dX—mf a'SE, dX ~ 21 S adE!

_inExZCZ) (A3)

where C, and C, are constants of integration. If
we evaluate Eq. (A2) at X, and X, and subtract, we
obtain

X
(aéE;)ﬁ'a; + f *la-1 +#n?)E, dX

X1

We Xy X3
+2—nf a’8E,dX —i 2 f aEy dX
w b’ X

1

X,
—inf a'dE, dX—Zz (aéE’) 2 +m(E )X2
X

(a4)

Assuming that the quantities a, E,, and E, are
finite and smoothly varying across AX (whereas
a’ is a sharply peaked function), we can then ap-
proximate Eq. (A4) by

(@E;)ﬁj +(a-1+m?) E,AX

We Xe
+2 —w—nf a’6Ede—z———(aEy>xAX
Xy

X
—in ./,; z a'SE, ax —i2 &¢ (aGE’) +in(E,)§2;: 0,
1
(A5)
where the variables in angular brackets represent
average quantities. Because aSE[=E, p"'>E AX
and adEy =E,p' > E,AX, the second and fourth
terms in (A5) are negligible when compared to the
first and sixth terms, respectively. Thus; Eq.
(A5) reduces to

X
[aé (E; _9; e E;)] * inE,
w
x, X,

X2
+2 ﬁnf a'a(E,_i—“’—
w b'e 2w

1 c

Xz

E,) dx=0. (Aé)

Now if we integrate Eq. (A2) between X, and X,
while assuming that E, and [a'6[E, —i(w/2w)E,]dX
are finite between X, and X,, we find

X
f 2a5(E;_2i9—°
X w

1

E;> dx=0. (A7)

Similarly, we evaluate Eq. (A3) at X, and X,
and subtract to obtain the expression

Xy
nf a'SE, dX
X

_z—f aE,dX - f adE, dX

X
nx. 2 We
&2 ..fx (a-1E,dx -2 =

X
. LW . x
—in Ll a'8E,dX - 2i -w—° (aéE;)xj —inkE, lxiz 0

(A8)

Because a, Ey, and E, have been assumed finite
and smoothly varying across AX, Eq. (A8) re-
duces to

(B!-inE)%2 - [aﬁ (E,' +2i 22 B} )] *2
1 w Xy
Xg We
—in f a's(E, —i2 ——E,,) dx=0. (A9)
X, W
By integrating Eq. (A3) between X, and X, while

assuming that E, and [a’5[E —z(2wc/w)E ]dX
are finite, we obtain

X _ -&f"z S0 ) _
(E,)X1 Zzw X aé(E, zzch, dxX=0.

(A10)
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Thus we have four equations, (A6), (A7), (A9),

and (A10) that represent boundary conditions at a
density discontinuity satisfying (A1). These condi-
tions can be cast into more convenient forms in
the following way. To obtain a first boundary con-
dition, we multiply Eq. (A7) by 2i{w,/w and add to
(A10), in which case we find, after integrating by
parts,

fa [ (s )]y

wz Xy
_4(—;_ ) f a'sE,dX=0. (A11)
w X,

To estimate the integral in Eq. (A11), we assume
that at most E,, which is finite, has a maximum
value Ey ... Then

Xy
f a’dE,dX
X3

XZ
< | Ey maxl f a'sdx
Xl

= £,y may| (@0) - (A12)

Using this argument in Eq. (A11) and neglecting
terms of order k27, we find that (A11) gives the
boundary condition

X
E»Iszos (A13)

i.e., E, is continuous across the boundary.

Similarly, we can obtain a secondary condition
by multiplying Eq. (A6) by 2iw,/w and adding to
Eq. (A9) while making use of (A13) to find

(By —inE,)}*=0, (A14)

i.e., 3C, is continuous across the boundary. Thus
we have recovered the electromagnetic boundary
conditions that are, of course, also valid for a
plasma density with sharp boundaries.

A third condition at the boundary X =0 follows
by making use of the electromagnetic boundary
conditions in the previous analysis. Substituting
Eq. (A13) back into (A6) or substituting (A14) back
into (A9), integrating by parts, and neglecting
terms of order k2?2 yields

I'={ad[B, - iE} +n(E, ~iE,)]} *=0. (A15)

Therefore, under the restriction given in Eq.
(A1), we have three boundary conditions on the
plasma slab, given by Eq. (A13)-(A15), i.e., con-
tinuity of E,, ¥,, and I" across X=0,
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