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The authors present a microscopic theory for the averages of any dynamical variable and in particular of
fluctuations in nonequilibrium stationary states that are arbitrarily far from equilibrium, as long as the
macroscopic gradients are sufficiently small. It is argued that the dynamics of the fluctuations are governed

by the linearized macroscopic equations of motion (analogous to Onsager's hypotheses for equilibrium

fluctuations). The fluctuation-dissipation theorem is examined and it is found that it does not hold in its
equilibrium form. The authors find that the dissipation does not contain an important part of the
information about the fluctuation, and attempt an interpretation of this fact.

I. INTRODUCTION

In the previous papers in this series' ' (here-
after Refs. 1, 2, and 3 are referred to as I, II,
and III) we have developed a statistical-mechan-
ical theory of nonequilibrium stationary states
(NESS). We developed the formalism using re-
sponse theory, which implies that the results
obtained are -valid only for NESS that are fairly
close to equilibrium (up to second order in the
parameters that characterize the deviation from
equilibrium). In this paper we generalize our
results for NESS that are arbitrarily far from
equilibrium, provided the nonuniformities occur
over macroscopic distances.

Since the response technique is a perturbation
expansion around the equilibrium state, a deriva-
tion of a far-from-equilibrium result would re-
quire working to infinite order. In order to cir-
cumvent this difficulty, we employ here projec-
tion-operator techniques. " After establishing
the generalized results, we examine the average
time evolution of fluctuations in the NESS
and the existence of a fluctuation-dissipation
theorem (of the first kind). Our main results are
that the Onsager regression hypotheses holds,
whereas the fluctuation-dissipation theorem must
be changed considerably.

The main result of I was an expression for the
nonequilibrium average of an arbitrary dynamical
variable, say B(X(t), r), where X is the phase
point

~ —f~rN ~p Ã],

This average is denoted by {B(r,t))„E, and a
shorthand notation is used omitting the phase-
point dependence. The result was

&B(» t)) NE ={B(r))i(t)

d7' B r I ri~ ~ J. &*'tt' 4 rx, t
0

In this expression

B(r, t) = B(r, t) —{B(r)),

(1-2)

x dXGC X
N

1

x exp[pC (r„t)*A(r,)] (1.4)

Here foe (X) is the grand canonical distribution
function. The set of conjugate variables PC (r, t)
are chosen such that

{A(r,t))„E = {A(r))~(t) . (1.5)

The theory dictates that the set A must contain
all the pertinent slowly varying (on the average}
variables in the system. In Eqs. (1.2) and (1,4)
the symbol * denotes an integration over all space
of the dummy position variable that is repeated

angular brackets stand for an equilibrium grand
canonical average, and the notation {)~(t} implies
an average over the local. equilibrium distribution
function

fz (K, t) =foe (2C) exp[P 4 (r „t) *A ( r, )]
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5a(r, f) =M„(r~ r, )*5a(r„t),

where 5a is the deviation of the macroscopic vari-
able from the NESS and M„governs the linearized
relaxation, then

(A(r, t)A(r, ))

=M„(r~ r, )*(A(r„t)A(r,))„ESS (1.7)

Here we justify this relation for NESS that
have small spatial gradients but otherwise are
arbitrarily removed from equilibrium. 'The im-
portance of this result will be stressed later, but
it is sufficient to say now that with this result
the calculation of NESS time correlation functions
reduces to the calculation of NESS static correla-
tion functions, if M„ is known. The justification
of (1.7) is presented in Sec. III.

Section IV is devoted to the examination of the
fluctuation-dissipation theorem of the first kind.
This theorem relates the dissipation due to an
external force applied to a stationary system and
the spontaneous fluctuations in the system. ' We
show that in this context there is an interesting
difference between equil. ibrium states and NESS.
Section V offers conclusions and a discussion.

In all that follows, we assert that we have a
classical system whose evolution is governed by
the Liouville equation. The Liouvillian is denoted
by i L and the microscopic dynamical variables
evolve according to

A(r, t) =iLA(r, t). (1.8)

on the two sides of *, as well as a summation
over the set of variables. Finally, the quantities
I in Eq. (1.2) are the dissipative parts of the
microscopic fluxes and will be redefined below.
The parameters p4(r, i) were shown to measure
the deviation from equilibrium. Result (1.2}was
verified only to second order in P4 and to first
order in VPC.

Using the appropriate stationary values of
P4(r) in Eq. (1.2) yields the NESS average of B
The first objective of this paper is to generalize
Eq. (1.2) to all orders in P4. This is done in
Sec. II.

In III we cal.culated the detailed space-time de-
pendence of correlation functions for NESS that
are close to equilibrium. A. Poste~io~i we have
found that the results obtained could be recaptured
if one assumes Onsager's regression hypothesis
for NESS time correlation functions. This hy-
pothesis implies that if

cases, however, we do rely on previous results
to omit technical manipulations. In such cases the
reader is refer red to an explic it section in one
of the previous papers.

A. Formal solution for distribution function

Consider the set of dynamical variables

C(X(t), r) =

A }x(t},r} I
(2.1)

where as usual. the set & contains all the slow
variables in the system and the symbol A. ' is
defined by

A'(K(t), r)=A(X(t), r) —(A(r))~(t) . (2.2)

The set C spans the space of the slow variables,
including' the constants. Following the methods
derived in Ref. 8. we consider now the projection
operator P(t) defined by

P(i)B(1,I)
= (B(r, t)C(r, ))~(t)*(C(r,)C(r, ))~ (t)*C(r,),

(2 2)

where B(r) is an arbitrary dynamical variable
(when t is not specified we mean that t =0). Here
the inverse is defined by

& C(r )C(r.)) '(i)*(C(r,)C(r, )) (~)

=- 16(r, —r, ). (2.4)

A second projector Q(t) is defined as I -P(t).
Denoting the operator Q„fdX by Tr, we con-

sider the operation

Tr[D(r')P(t)B(r, t)] =(B(r, t)C(r, ))z, (t)

*(C(r,)C(r, )) '(t)

*Tr C( r, )D( r'), (2.5)

II. AVERAGES OF DYNAMICAL VARIABLES IN

FAR-FROM-EQUILIBRIUM NESS

As was mentioned in the Introduction, response
theory is limited to a predetermined order in the
deviation from equilibrium. In order to derive
results that are valid to any order in displace-
ment from equilibrium, we resort here to pro-
jection-operator techniques and generate the gen-
eralization of Eq. (1.2).

The main ideas developed in this paper can be
followed without. reference to I, II, and III. In some

where D is again an arbitrary dynamical variable.
The right-hand side (RHS} of Eq. (2.5) can also be
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expressed as Tr([P'(t)D(r')]B(r, t )), which is in

fact a definition of the projector P'(t),

P'(t)D(r') =f (X, t )C(r, )*(C(r,)C(r, )& '(t)

*TrC(r, )D(r') . (2.6)

It is easy to verify that P'(t) is indeed a projec-
tion operator. Let Q'(t) be the projector 1 P'-(t)

These two newly defined operators are now
used to derive an expression for f (X, t ) in terms
of fz, (X, t). Identically,

TrC(r, )f(X, t) =TrC(r, )f,(X, t)

=(C(r,)w'(r, )),(t).pc (r„t) .
(2.13}

Substituting this back into Eq. (2.12}and using
Eq. (2.4), we find

P'(t) ' = fl(x, t)A'(r)*P4(r, t)

f (X, t) = [Q'(t)+P'(t)]f (X, t) .
By definition [cf. Eq. (2.6)],

P'(t) f(X, t) =f1,(xp t)C(rL)

*( C( r„)C(r, ))~'(t) *(C( r,))„E(t),

where

(2.7)

(2.8)

= Btfl.(x,t).

On the other hand,

)
f(X, t) [,( }] f(X, t} &}t(x,t}

Bt ~t ~t

(2.14)

(2.15}

(C(r, ))„E(t)=- Tr(f (X, t)C(X, r, )).
For the special. set C, however,

(C(t))NE =(~(t) =0,

unless C =1 [cf. Eqs. (2.2) and (1.5}]. Thus

P'(t) f(X, t) =f,(X, t).
The other term in Eq. (2.7) is denoted by

X(X, t) =0'(t)f (X, t) .

(2.9)

(2.10)

(2.11)

which is an equation of motion for X (X, t). Noting
that the left-hand side (I HS) of Eq. (2.15) is
-Q'i L[fz(X, t) g+(x, t)], we see that Eq. (2.15) may
be solved formally for y(x, t):

pt
X(X, t) = T. exp (- ) 0'(r)(Ldr) L(X, 0)

t t
ds Texp — t,t'(r)sL dr)

0 S

The next stage is to derive equations of motion
for f~(x, t) and }t(X,t). To do this, consider the
quantity

P'(t) ' =f1,(x, t)C(r)

*(C(r)C(r,}) (t}*TrC(r,)f{X,t).
(2.12)

Using Eqs. (1.5) and (1.4), we find

xQ'(s)iLf~(x, s), (2.16)

where T, is the time-ordering operator. As
f (X, t) =fz, (x, t)+ X(X, t), we have now an exact
solution of f(X, t) in terms of f~(X, t) and the
initial value g(X, O). This solution contains the
full N-particle dynamics and is by itself quite
useless. It may be used, however, to find the
nonequilibrium average of any dynamic variable
B(r, t):

t

(B(r, t))NE
——(B(r))z(t)+Tr B(r)T, exp — Q'(7)i Ld7'

~
g(x, 0)

0 )

—Tr B(r) f ds Texp —f ip'( )tLd,r
)

i)t'( )iLf (X ss)
0 0 j

(2.17)

To make this result useful, it is necessary tointroduce approximations. To this aim it is convenient
to reintroduce the projectors P(t) and Q(t) instead of the adjoints P'(t) and Q'(t). Noting that

iLf~(X, r) =fz, (x, 7)A.(r')*PC (r', 7),

we readily see that Eq. (2.17) can be rewritten as
t

( (r,Bt)) x( (r)B) (t) s(Qr( ) 0exTp( iLQ(r)dr )B(r) (t=p)
NE

- j ds g(s)T exp . Jl i'(7)dr ~B(r) A(r, ) (s)*ptlp(r„s),( c'. l ~

~ s
(2.18)
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where the second term on the RHS is averaged
with the true distribution at time zero, and is an
"initial value" term. It is rigorously zero if
g(X, t = 0) = 0. Since

t

Q(0)T exp dLQ(r)dr) B(r)
0

is orthogonal to the slow variables C, and
especial. ly to unity in the sense that

(B(r, ~)& NE (B(r))J,(f)

dvBr vA~r, ~t* 4r»t,
0

(2.22)

where A~(r) =Q(t)A(r).
This result is valid to all orders in pC and to

first order in the smal. lness parameter character-
izing the average time variation of A(r, f}.

Q(0)T exp) iLQ(T)dT B(r) (t =0) =0,
E 0 I.

(2.19)

iLQ(T) =iL —i'(T) =iL+O(A). (2.20)

0

Thus, to first order in the smallness of A, the
third term is

t

ds([Q(s)e' i' @B(r)]A(r,))1(s) *PC (r„s)
0

t

ds([Q(s)B(r, t —s)]A(r, ))~(s)*p4(r„s)
0

dT t-TB r, ~ A r, , t-T
0

*pe(r„ i —~), (2.21}

we assume that its average varies quickly in
time compared with the evolution of the slow
set and should decay to zero on molecular time
scales. Thus for the calculation of (B(r, t))„E
for times that are longer than microscopic decay
times, we drop this term.

The most important approximation, however,
concerns the third term on the RHS of Eq. (2.18).
This approximation makes explicit use of the
smallness of A. The term appearing in the ex-
ponent, iLQ(7), is of course

B. Specialization to simple fluids

It has been argued in this series and else-
where' that in simple fluids the densities of the
conserved variables span the slow set A(r, t).
A discussion of this choice can be found in I-III
or Ref. 9. In other words, the energy, number,
and momentum densities are taken, along with the
constants (spanned by unity), to comprise the set
C. With this choice we can develop Eq. (2.22) a
step further. Since the equation

A (r, t) = -V .J(r, f)

is fulfil. led for conserved variables, where the
J(r, f) are the microscopic fluxes, we can write
Eq. (2.22) as

(B( r f )) NE (B( r ))I (f )

dr 8 r Tt r, t*V 4 r»t,
0

(2.23 )

where we have used Green's theorem in the last
term.

This is the generalization of the expression
found in I [cf. Eq. (3.7)] to all orders in PC. The
main point of difference is that the dissipative
fluxes here are different from the ones defined
in I. There we had

where 7 =t -s.
Since the quantity Q(t —T)B(r, T) is orthogonal

to the slow variables in the sense that

([Q(f —~)B(r, ~)] C( r, )),(t —T) = 0,

I (r, t) -=J (r, f)

=J( r, t) —(J( r, t)A(r, ))

*(A(r,)A(r, )) '*A(r, ), (2.24)
we assume that the correlation function in Eq.
(2.21) decays to zero for Q. &7„. It is now con-
sistent with the approximations previously made
to rewrite Eq. (2.21) as

dT tB r, v A r, I t + 4 r»t ~

0

whereas here

J~(r, f) = Z(r, t) —(J(r, t)C(r, ))~(t)

+ ( C(r, )C( r, ))~'(t)*C( r, ) .

(2.25)
Thus our final expression for an average of an

arbitrary dynamical variabl. e in any system that
has a set of variables that spans the slow evolu-
tion is I

Of course

(~J(r, t)C(r, })~(t)=0. (2.26)
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C. Hydrodynamic stationary states

The manner in which a NESS arises in the con-
text of a Liouvillian theory was discussed ex-
tensively in I and will. not be repeated here. All
the arguments given there pertain to the present
stage of development.

The specialization of Eq. (2.23) to NESS is
easily obtained by changing the 4(r, t) which
appear explicitly and implicitly in the local aver-
ages to 4(r), the stationary values of these
quantities. The final form for the NESS average
is thus

(B(r))„Ess = (B(r))E „

Defining

~ }=(A(rlt})NE —(A( })NESS ~

we find the macroscopic equation of motion

(3.1)

These equations are highly nonlinear in prin-
ciple. In the vicinity of a NESS, however, we
may linearize them around the stationary state.
We do so by expanding in 5P4 (r, t),

a(r, t}=(A(r))E(t)

dr(A~(r, v)AD(r, ))E(t)*PC (r„t).
0

(3.2}

d7 B r 7 Ja r~ s, ssgV
0

(2.2 I)
6pC (r, t) = pe(r, t) -pC „(—r), (3.3)

III. REGRESSION OF FLUCTUATIONS TO NESS

We now show that the regression idea as
embodied in Eqs. (1.6) and (1.7) is valid. As a
first step we have to derive Eq. (1.6) and find
the matrix M„(r~r, ).

A. Macroscopic equations of motion, linearized around NESS

The general equation (2.22) can be used in
particular for the dynamical variables A(r, t).

keeping linear terms only. We are guided by the
fact that for any variable B(r, t) that is not, ex-
plicity dependent on P4, the functional derivative

5(B(r)),(t) =(B(r, t)A(r, ))~ „,
ss

where

A(r, t) =A(r, t) -(A(r))E „,
and, if t is not specified, t =0. Remembering
also that a „=0, we find

6a(r, t)

A r& x, &„- gy A~~. ~r, yA~ r, ~„+ A~ r, TA r, A~ r», „+ C'„r, *~ C
0

(3.4)

In arriving at Eq. (3.4) we have used the fact that

5(A (r, r)A (r, ))E(t}

6pe(r„t)
5A~(r, v) . , 6AQ(r, )

A~(r, ) + A~(r, q) +(A~(r, v)A(r, )AD(r, ))E „. (3.5)

(3.6}

The second term on the RHS of Eq. (3.5) is
zero by construction. The first term is of third
order in A. and therefore may be neglected.

Noting that [cf. Eq. (1.5)]

6a(r, t) =(A(r)A(r„))E „~5PC (r„t),

we can rewrite Eq. (3.4) in the form

6i(r, t) =M„(r~r')*6a(r', t),

which are the equations of motion linearized
around NESS, with

(3 't)

M„(r[r') =
( (A(r)A(r, ))E „-Jl «[(A~(r, r)A~(r, ))E „+(A~(r, r)A(r, )A~(r, ))E „*PC„(r,)] I

0

*(A(r,}A(r'))E'„. (3 6)
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B. Correlation functions in NESS

The general expression (2.27) can be used to
express time correlation functions in the NESS;
for any pair of dynamical variables B(X,r) and
D(X, r, ),

(B(r, o')D( ri)}NEss

=(B(r, o)D(r, )),„,
- Jl dT(B(r, o)D(r, )JD(r„- r)&~ „

0

*Vpe„(r,). (3.10)

The objective of this section is to prove that

(B(r, ~)D(r, )&„„,
= [iaaf ..( 1.)].,*(A(.„)D(.,)&„„, (3.11)

Note that these equations are nonlocal in space.
It has been shown previously how to transform
these equations to the local partial differential
equations of hydrodynamics by using the condition
of small macroscopic gradients. In this work we
use the nonlocal form to prove the regression
theorem.

We note the interesting fact that Eq. (3.8) can
be rewritten in a more compact form which is a
natural generalization of the equilibrium result.
In Appendix A me show that, to the appropriate
order in A. ,

I„(r1r')

=(A(r, t)A(r, )&~ „*(A(r„t)A(r')&~'„. (3.9)

=-(B(r,o')C(r, )&z(t) -(B(r,u)C(r, )A(r )) (t)

*p4(r, t); (3.14)

when 4 (r) =0, we recapture Eq. (3.12).
The proof of Eq. (3.11) is divided into two parts.

First we analyze the regression of the local
equilibrium correlation function and then turn to
the full correlation function.

C. Decay of local equilibrium correlation function

We derive now the microscopic equations of
motion for A. Using the projectors P„and Q„,
where

P„B(r,t)
=(B(r, t)C(r, )}z, „*(C(r,)C(r2)&~ „*C(r,),
„=1-I„,

we write

A(r, t) =e'~'iLA(r) =e' '(P„+Q„)iLA(r) .
(3.15)

Again we separate the RHS into tmo parts,

A(r, t) =(A(r)&~ „+(A(r)A(r, )&~ „
g(A(r, )A(r, )}P„*A(r„t)

+ e'~'Q „iLA( r) . (3.16)

The last term on the RHS is rewritten by invoking
the mell-known operator, identity

([iLB(r,v)]C(r, )}z(t)

=-(B(r,v)iLC(r, )&z(t)- Tr[B(r, u)C(r, )iLfz(X, t)]

for any B,D EA. , where M„ is the linearized
matrix found in Eq. (3.8). Equation (3.11) is the
generalization of Onsager's regression idea to
the NESS.

There is one difference between NESS correla-
tion functions and equilibrium ones that enters
into the proof below. This is in the property of
"dot smitching. " In equilibrium,

t
QssiLt iLt ig( t- r )~ L ~ ssiL~ dTss

0

Thus

e' 'Q„iLA =E (r, t)

+ d7iLF r tC r,
0

(3.17)

(B(r, o)C(r, )& =-(B(r,&r)C(r, )& . (3.12) g(C(r, )C(r,))P„*C(r„t-v.),
This property is modified here. Consider the
local equilibrium correlation function where

E (r, t) = eo»' 'Q„iLA(r).

(3.18)

(3.19)(B(r,v)C(r, )) (t) =(iIB(r, u)C(r, )}z,(t) .

Using the hermiticity of the Liouvillian, we
obtain

(3.13)
Using Eq. (3.14) for the dot switching property and
Eqs. (2.1) and (3.18) in Eq. (3.16), we get the
final result for the microscopic equation of
motion:
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A(r, t}

=F (r, t)+(A(r))z, „+(A(r)A(r, ))z, „~(A(r,)A(r, ))z,'»*A(ra, t)- dr(F (r, T)A(r, ))z, „qPC»(r, )
0

t
dT{[(F (r, r)A(r, ))z, „+(F (r, 7)A(r, )A(r2))z, „+PC„(r2)]*(A(r~)A(r3))P„*A(r»t-T)] .

0

(3.20)

Note that owing to the fact that our correlation functions are computed in the local equilibrium ensemble,
this equation is more lengthy than the analogous one which is usually obtained for equilibrium ensembles. '
With the help of Eq. (3.2) and the fact that a is zero in the NESS, we see that the second and fourth terms
on the RHS of Eq. (3.20) disappear. Furthermore, in the stationary state, A(r)~ pC „(r)=A~(r)*pC „(r)
+O(A'}. This fact allows us to replace A by An in all integrals that are O(X') already.

%e can now find the rate of change of the local equilibrium correlation function simply by multiplying
Eq. (3.20) by A(r) and averaging over f~ „(X). We find

(A(r, t)A(r'))~ „=(A(r)2(r,})l „g(2(r,)A (r,))P „~(A(r„t)A(r'))~ „
—Jl' ([(Ft(r, 7)A~(r, ))~ „+(F~(r,r)A(r, )A~(r, ))~ *PC „(r,)]

0

*(A(r,)A(r, ))~', „*(A(r2,t T)A(—r'))z, »] dr. (3.21)

In obtaining this equation we have made use of
the fact that

(3.22}(FZ(r, t}A(r,))z ~
„-—0,

which stems from the fact that F (r, t)
=Q„F (r, t). This last equality is obtained by
noting that eo"' 'Q„=Q„e@"'~'Q„,which follows
from the series expansion of the exponentials and
from the fact that Q'„=Q„.

In fact, Eq. (3.22) can be used now to simplify
Eq. (3.21) further. The meaning of Eq. (3.22} is

(A.(r, t)A(r')), „
=M„(r~r, )*(A(r„t)A(r'))~ „, (3.23)

where

I

that I" ~ has no component on the slow set, and
thus the correlation function (F (r, t)A(r, ))~ „
is short lived. As is usually done, we extend the
limit of integration in Eq. (3.21) to infinity and
drop the 7 dependence in the last correlation func-
tion. We can then rewrite Eq. (3.21} in the form

M „(r)r,}=(A(r)A(r, })z„+(A(rg)A(rm}&i.

([(F&(r,t)A (r, )) „+(F (r, z)A(r, )A~(r, ))z„„*pc„(r,)]*(A(r,}A(r,))g', «}

(3.24)

Equation (3.24) can be brought to a form that
makes the identity to the previously found [Eq.
(3.9)] M„obvious. As was mentioned, Eq. (3.9)
is valid to second order in A. To that order,
one can replace Ft by e' 'Q„ iLA for the reason
described by Eq. (2.16). Thus, whenever F
appears in a product with A, we may replace it
by A~(r, t) =A(r, t) -P„A(r, t). With this change
it is obvious that Eq. (3.24) is ident:ical to Eq.
(3.8).

D. Regression of fIuctuations in NESS

Here we prove Eq. (3.11). According to the
general formalism [cf. Eq. (2.22)],

,Vpe „(r,).
The first term on the HHS was examined in

Sec. III C. %e treat the second by expressing
A(r, t) as

A(r, t) =- Q'„A(r, t)+(A(r, t)), „
+(A(r, t)A(r, ))z „

g (A(r„ t)A(r, ))~'„gA(r„ t),

(3.25)

(A(r, t)A(r, })„E=(A(r, t)A(r, ))z, „
00

-J dT(A(r, t)A(r, )~J(r» —7'))~ „
0



2540 ITAMAR PROCACCIA, DAVID RONIS, AND IRWIN OPPENHEIM 20

where Q'„ is defined by Eq. (3.26).,

Substituting this expression in the second term on the RHS of (3.25}, we find two terms [cf. Eq. , (2.26}]:

dv' A r, t A r~ & r2~ r I. 33 *Up@„r,
p

-(r'((r, r)r)(r')) &&(r', t)I(r )) "'r*f d(r~(r", )ar(r)Z (, r, —r))~ „Vpe(r, ).
p

(3.2'1)

First we dispose of the first term. It contains
two dissipative variables that decay very quickly
The correlation function peaks when all the time
arguments are the same. For any t that is non-
zero its largest value is obtained when v =0. If t
is larger than some 7~, it has never any signif-
icant magnitude and thus can be dropped.

Using Eq. (3.9), the second term becomes

-M„(r)r") f dr(A(r t)A(r, )J",(r„—r))r
p

(3.28)

Collecting Eqs. (3.23), (3.25), and (3.28), we
find our final. result:

I

Here Hp is the Hamiltonian of the unperturbed
system; E(r, t) are weak external forces which
couple to the set of variables A, E(r, -~) =0,
and Q is the after-effect function. The quantity

(A)„ is the duzerence between the average val-
ues of A in a system subject to the Hamiltonian
H& and in a system subject to the Hamiltonian Hp.

It is advantageous to define the Fourier trans-
form of Q in space and time,

ik'hr -fust -6 4gxe e

(4.3)

(A(r, t}A(r,)„E~

=M„(r[r )+{A(r,t)A(r )NFss (3.29)

We remind the reader that ()NES, is the average
in the true nonequilibrium ensemble. We have
thus proved the regression hypotheses for NESS.
The only property of the set A that we have used
is that it spans the slow variables. Thus the proof
hoMs for any NESS—hydrodynamic or not. Q(k, «)) =-V~&d}(„"„(k,«)) ( Ff~l (4.4)

where &x=r —r' and &t =t —t'. If the system is
not translationally invariant, this function will
have a parametric dependence on r.

It has been shown that, if the dissipation is
defined as the work averaged over one cycle of a
monochromatic force, then this dissipation Q(k, &u}

is proportional to the imaginary part of ll(k, co):

IV. FLUCTUATION-DISSIPATION THEOREM

Hr(t) Ho-A. ( r) *E(r,t), (4.1)

The usual fluctuation-dissipation theorem of the
first kind states that there is a simple relation
between the spontaneous fluctuations which occur
in an equilibrium system and the dissipation which
occurs when that system is linearly displaced
from equilibrium. 7

Using linear-response theory, the response
of a system initial. ly at equilibrium with respect
to IIp at time t =-~, subject to the Hamiltonian

A. After-effect function

Consider again the Hamiltonian in Eq. (4.1).
The corresponding Liouvillian is

Lr Lo+L, (t), ——

Lo=i[HO, ];L,(t) =-i[A*E,], (4.5)

The proof of the fluctuation-dissipation theorem
in equilibrium reduces then to showing that X»
is the Fourier transform of the autocorrelation
function (Ar(t)A )",}."

We examine now the analog of this theorem in
the NESS and we shall clarify the differences
that occur between a NESS and equilibrium states.

is where the symbols [, ] denote Poisson brackets.
The Liouvill. e equation is

(4.2}

=-iL (t)f(X, t).

The formal solution of this equation is

(4.6)
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f(X, t) =7, exp ~
-i d't, Lr(t, )

~
f (X, - ),

a CO

(4.V)
I

where - is the time when the forces have been
switched on. We take here f0(X, -~) to be a
stationary-state distribution function.

Equation (4.7) can be written

t ) t T

f(X, t) = exp — I dr
~

— dT exp[-iL (t —T)]zL, (r)T, exp -i d&Lz(&)
~ f (X, -~}

Co j e 00 a OO j i

t
=f'(X, t)- d7 exp[-iL(t —r)]iL, (v)f(X, 7').

w OO

(4.8)

Here f'(X, t) is the true distribution at time t, if
the forces were never switched on. One must
remember here that our stationary state is not
an equilibrium state, and

e ' 0'f (X, -~) 0f (X, -~). (4.9)

t
=f (X t)+ d7 e ' o ' '

~ OO

x [f'(r), A(r, )]*E(r„r),

Equation (4.8) can be iterated, and, if we retain
terms up to linear order in the forces, we find

t
f(X, t) =f0(X, t) — e '

&&~
' '~iL, (y)f0(X, r)dr

mOO

(A( r, t)A( r,}),
8

(4.14)

which, upon Fourier transforming and taking the
imaginary part, yields

XAA +(AksoA-F) &

which, in conjunction with Eq. (4.4), yields the
fluctuation-dissipation theorem. The situation
here is different. The quantity f'(K, t}is not a
function of II0 only, and therefore transformation
(4.13) is not possible. We may transform Q„„.,
however, to a more familiar form by integrating
by parts the phase-space integral, finding

(4.10) 4~~ =Tr(f'(X, &)[A(r, ~- ~),A(r, )]). (4.15)

*E(r„v). (4.11)

where we have used Eq. (4.5}.
It is possible now to find the after-effect func-

tion. The response of A. due to the forces is

»(A(~)[f (X, &) -f'(X, &)])
t

dTTr(A(r)ILe ' oi' '~[f (X, T),A(r, )]))
~ 00

S. Dissipation

We consider here the extra dissipation (beyond
the spontaneous, constant dissipation that exists
in the NESS) that is due to the forces. From Eq.
(4.11) and (4.15) we see that the response in any
variableA, 5a (r, t}, can be written as

Thus the NESS after-effect function is

Q„~ =-Tr(A(r)fe ' o ' '~[f (X, r),A(r, )]]).

t
5a (r, t) = dTQ „(re,;t-r)*F„(r„r),

a OQ

(4.16)

(4.12)

%e can clarify now the differences between the
situations in equilibrium and here. In the equi-
librium case (take a canonical ensemble, for ex-
ample) f (7) is a function ot' the Hamiltonian Ho
only. Poisson brackets appearing there can be
transformed as follows".

where repeated Greek indices are to be summed
upon and stationarity has been used. The dissipa-
tion rate is Q(t) =dHr/dt =-A*&E(r, t)/&t. The
macroscopic dissipation is

Q(t) = -[(A(r)) „Kqq +5a(r, t)]+ st' . (4.17}&Jr, t)

[f~(H,),A(r, )]= ' [H„A.(r,)]
0

f A(r, ).
8

(4.13)

Choosing a monochromatic force, i.e.,

E(r, t) =Re[E(r)e '"'], (4.18)

The after-effect function becomes then
we find the average of the dissipation over one
cycle:
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2r /m

Q„=— Q(t)dt2' 0

2if /au t
dt dr(t) „(r[r„t—T)

0 a OO

CRe[F„(r,)e '"']Re[i(d)F (r)e '" ].
(4.19)

dv A. N r, s,A. ~ r,
0

X ir(-T))s' (r) ~ VPC (r),
(4.26)

S,„(rlr„w)=f dse ' 'd, „(rlr„s),
0

we find

(4.21)

Q„=~(dlm[E (r)*g „(re,; &u)*E„*(r,)]. (4.22)

As is commonly done in equilibrium theories, '
the space dependence of the force is chosen to
be a plane wave:

E (r) =e 'E (4.23)

Thus

r)-, = —-', wrm f d rdrsr e"' 'd, „(rir —dr; w)E, E„'

Equation (4.19) is simplified by writing

Re[E„(r,)e '"'] as —,'[E„(r,)e '"'+c.c.),
Re[iE (r)e '"'] as (-1/2i)[E (r, )e '"' —c.c.].
Multiplying these two factors together, changing
the variable of integration to s =t —v, and then
performing the integration over t, we obtain the
result

=-—'wrm f des ' 'd„(rlr, ; )"E„"(sr,)E (r),
0

(4.20)

where the Superscript * denotes complex con-
jugation. Defining in the usual fashion

where I r = JD(r)d r.
The superscript "horn" is a prese. ription for

evaluating the correlation function in a uniform
system whose P4 = PC(r). In other words, it is
computed with the distribution function

f"
(X) =f exp[P@(r} Ar]

-1

g J dXf exp[PC)(r) Ar], (4.2t)
N

where the subscript T stands for the variabl. e
"integrated over all space" (see I for more
details).

Denoting the first term on the RHS of Eq. (4.26)
by p~, one may readily verify that

(r, r„;s)
=-P(r)(A (r, s)[A(r, ),H, —

P. r v(r)].)"l.
' (r).

(4.28)

Fourier transforming in space and time accord-
ing to

dre'" ' dte '"'A r, t, 4.29
0

we find

)t„(k, (der)

=-(P(r)/V)(A )", „[A )-„Ho-Pr v(r)])~' (r).
(4.30)

=-&+Im dr g ~ k, (o r E E„*. (4.24)

s

It is natural to define the local dissipation as

Q)", „(r)=-—,'(dim)( „(k, &u[r)E E„*. (4.25)

Clearly, if the system is translationally invari-
ant, Eq. (4.25) reduces to the usual equilibrium
result, and Qp (r) =(1/V)Q;„.

C. Relation between dissipation and fluctuations

The after-effect function for systems in NESS
was found in Sec. IVA to be ([A(r, s),A(r, )])„
The theory of Sec. II (and papers I-III) can be used
to evaluate this quantity for NESS whose spatial
gradients are not too large. Using the methods of
Sec. IVA3 of I, we can modify Eq. (2.23) to read
in this case

In Appendix B we prove that the imaginary part
of g is

[y (k, (u~r)]"

=(I/V)[(u-k v(r)]P(r)Re(A p ~ )-, )~' (r).
(4.31)

The term proportional to k ~ v(r) is of course the
Doppler shift seen in light scattering from con-
vecting systems. In order to make our point more
simply, we consider now a NESS without con-
vection, that is, driven by a single force (E }.

Further, we decompose Q(r) itself into two
contributions, Q (r) and Q (r), where Q~(r)
corresponds to the contribution of g~(k, ~fr) and
Q (r) stands for the rest. Comparing Eq. (4.31)
with Eq. (4.25), we may conclude that the space-
dependent local equilibrium part of the dissipation
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measures the local equilibrium part of the time
correlation function, in much the same way as in
equilibr ium:

Q f„(r)/g„(r) - [k ~ V tnP(r)]/k-' S 10 ',
(4.3L)

Q&„(r)=-~uP Re[(A~ p „A, p)i,
' (r)/V]

xp(r)iF (k, &u)['. (4.32)

From the discussion given in Sec. III we see
that for small. k and ~ the LHS of Eq. (4.32) may
be computed by using the regression hypothesis.
This approach is standard"' and gives

P.--(r) = (-~'/2&»(r) l&.(k, ~) ~'

x Re([1/(i@1-Mp}]~ (ApA p))"' (r}.
(4.33)

The remaining term in the expression for the
dissipation is related by Eq. (4.25) to the second
term on the RHS of Eq. (4.26). We define

Xg.(k, ~lr)

ds e
V

x 4g A~ ps+7 ~Ay p7' ~z g 1
0

~ VP4(r), (4.34)

Qai (r) =-5~I&~(k, ~)l'[X'. (k, ~lr)]". (4.35)

In Appendix C we show that for the hydrodynamic
variables

X' (k, ~lr)

horn

V P@,(r) (r),

y =E,P, X~„(k, &u~r} =0, y =N, (4.36)

to leading order in A. Recognizing the time inte-
gral appearing in the expression above as the
Green-Kubo form for the Onsager coefficients, "
it is a simpl. e matter, to show that for systems
under thermal constraint, for k in the l.ight
scattering regime, and for small macroscopic
gradients,

where the second equality follows from the in-
variance of the Poisson bracket to canonical trans-
formations. " Hence for the case at hand,

which follows by using Eqs. (4.36), (4.35), and
(4.33). A similar estimate holds for the ease in
which convection is present and hence the con-
tribution of the dissipative part of the after-
effect function to the average dissipation is neg-
ligible, and so

Qp„( r) = P„„(r) . (4.38)

In other words, a measurement of the dissipa-
tion resulting from perturbing a NESS yields onLy

the local "kom" part of a time correlation function.
Hence none of the new effects predicted in II and
III would be seen in this fashion, since the full.
NESS time correlation function is not involved in
the dissipation. In this sense the fluctuation-dis-
sipation theorem is less useful in NESS than in
equilibrium states, since it gives only partial
information about the fluctuations.

In fact, from Appendix B [cf. Eq. (B5)j we see
that the information contained in the NESS dissipa-
tion is rather simply connected to equilibrium
quantities which are themselves directly mea-
surable in an equilibrium-dissipation measure-
ment.

A couple of remarks concerning Eq. (4.38}are
in order. In the first place, the light scattering
predictions made in Befs. 1-4 are consistent with
the fluctuation-dissipation theorem as given above.
This is true since the dissipative contribution to .
the NESS time correlation function gives zero when
integrated over frequencies and angles. Thus it
does not contribute to the total scattering intensity
(i.e., all angles and frequencies). This means that
the total scattering intensity (which is simply re-
lated to the dissipation) involves only the local part
of the NESS time correlation function as shown
above. It will be seen in our future publications
that the same remark pertains to light scattering
from NESS with a velocity field. Although the
spectrum is changed considerably compared with
local equilibrium, the integrated effect (over all
k and e) contains only the local equilibrium con-

tributionss.

The second remark is that Eq. (4.38) is not real-
ly a surprising- result. We have all along been re-
stricted to wave vectors k larger than the macro-
scopic gradients. In this regime the terms in the
hydrodynamic equations proportiona1. to the
V/4 „are completely negligible. Hence the
dissipation could be computed by solving the hy-
drodynamic equations in a system subjected to
some monochromatic disturbance, all. the while
neglecting the explicit VP4 „ terms. For small
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perturbations the dissipation computed in this
fashion will equal Q)-, „as the hydrodynamics is
the same as in equilibrium.

V. DISCUSSION

We discuss first the significance of the gen-
eralization to all orders in PC with the restric-
tion that the final result, Eq. (2.22), is valid to
first order in VP4. This generalization is im-
portant, since macroscopic systems tend to be
fairly large (think about the ocean, for ex-
ample, . . . ) and even with very small gradients
one can achieve large deviations from equilibrium
if the system is large enough. The level at
which the theory pertains now is similar to the
l.evel of the first-order "& expansion" in the
Chapman-Enskog method. Namely, the reference
state is a local equilibrium state and not an
equilibrium one, and the smallness parameter
is the spatia1. variation of the l.ocal properties
and not the deviation from equilibrium.

We have proven the regression hypotheses for
the NESS correlation functions. This result is
fairly important, since Eq. (3.29} ean be cast
into the form

(A(r, t)A(r, ))NKss

=8""l' ' '*(A(r, )A(r, ))„ (5 1)

which means that once the linearized (macroscop-
ic) equations of motion are known, the computa-
tion of NESS time correlation functions reduces
to the calculation of the static-correlation func-
tions. As was shown in III, the static correla-
tions themselves can be evaluated once M „is
known. We stress here that one must be extreme-
ly careful not to employ the local equilibrium
value of the static correlation functions, since
this leads to important omissions. . A complete
calculation of the type suggested in III (or II) is
needed. Another word of caution: Eq. (5.1) is
valid only for positive time, and time-reversal
symmetry is broken in the NESS. The method
used to extend Eq. (5.1) to negative time should
be based on the stationarity property of the cor-
relation functions (cf. III).

The examination of the fluctuation-dissipation
theorem gave the following results: The dissipa-
tion is related to the local equilibrium part of
the fluctuation and not to the t'rue fluctuation.
Thus, when the difference between the local part
and the complete form of the fluctuation is large,
(as it is for small k's), the fluctuation-dissipa-
tion theorem does not ho1.d. In other words, the
dissipation does not contain al.l the information
about the fluctuations. Our explicit calculations
of NESS correlation functions agree with these
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APPENDIX A: PROOF OF EQ. (3.S)

Consider the quantity

(A(r, t)A(r, ))J „w(A(r» t)A(r'))I'„. (Al)

Any function f(t) can be. written as f(0)+f f(r)dr.
The above quantity is written as

(A(r)A(r, )) „+(A(P,)A(r'})
t

+ [(A(r, r)A(r, ))v, „*(2(r„r)A(r'))~'„
0

+(A(r, r)A(r, ))z „*—(A(r„r)A(r'))~' ]dr.

Since

(A(r, t)A(r, ))v.'„*(A(r„t)A(r'))~ „
=15(r —r'),

(A(r„r)A(r')) v,
'„

=-(A(r„r)A(r, ))P„*(A(r„r)A(r,))v, „
*(A(r„v)A(r')) v,'„.

Substituting Eq. (AS) in Eq. (A2), we find, after
some trivial algebra,

(A(r, t)A(r, ))v, „+(A(r„,t)A(r'))z, '„
=(A(r)A(r, ))z „*(A(r„)A(r'))I,'„

+ Jl (
—A~(r, r)A(r, ))

+(A( r„r)A( r'))~'„dr. (A4)

Using the rule for dot switching [Eq. (3.14)] and
noticing that (A(r, t)A(r, ))v, „ is slowly varying
in time, we conclude that the last expression is
nothing but M„(r~r').

results. In the two cases of a NESS with a
temperature gradient' and with a velocity field"
we found that the spectra of light scattered from a
NESS differed considerably from equilibrium
spectra. However the total scattered light ob-
tained by integrating the differential intensity
over all angles and frequencies was completely
determined by the local equilibrium part of the
fluctuations alone.
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APPENDIX 8: PROOF OF EQ. (4.31)

The form of &I (k, (d}~r) is

X.'.(k, ~lr)

( ..-. . [A .-~ .-p v(r)])"'"(r).

and thus

[X«(k, &o~r)]" =[&a-k v(r)] V 'p(r)
& Re[(A }-, „A )-, )~ (r)].

(84)

It can be rewritten as

(k, (sir)

=-P(r)V((r(. ,d..((..-r&e' (r)

8 horn
A p„Q A„p (r)

(sl}
Further, for the important case in which u =N,

introducing the Gallilean transformation p&- p&

+m(v}„E allows Eq. (84) to be rewritten as

[X~~(k, ~lr}]"

=([(u -k v(r)]/Vj

p(r)(N), „)"..-~p &N )-) I r=r-&;&,
e~w(r )+ j./2mv2(r )

(85)

(82)

where the sum extends over all the particles in the
system and r& is the position of the jth particle.

In the "horn" average we can dot switch (cf.
Sec. IIIB) and rewrite Eq. (82) as

r„(r, te(r)= ((e(d, ; d, ;}re' (r)

- (A gA~ )",)~h' (r}+v(r}
' (r)).

(s3)

It is easy to verify that

9
A }-, = ikA -)-, ,

APPENDIX, C: PROOF OF EQ. (4.36)

For equilibrium correlations it is useful to
write

A.„-(t)

e"" d;(0)e f=d=r, ed ""'I;(r)~ (k:, ,
0

(C1)

which is valid for t& v~ and where Mp is given by
Eq. (3.24) evaluated at equilibrium. The set Ap
is taken to be the set of hydrodynamic variables.

where we have used the fact that (NF „N F) is
real. In the same manner it can be shown that a
relationship like that given in Eq. (85) holds
whenever A j", does not explicitly depend on the
particle's momentum. Should this not be the case,
(A p „A )",)"'mwill contain terms explicitly
proportional to v(r).

Let

VP „(k,s(r) = —
&I dr([A -(s)r+),A, ;( )]TIr)z,

' (r) &PC (r);
0

then using (Cl) we have

)'d.', ()r, *ir)=-JI dr((e="""')..(e="d');. ((d" d. rl e&r()ee(.r)
0

(C2)

&+S

dt (eM~i'" '}&),(e=P7')„*„,([jk I, p(t, ),A„. p)I r) ~ VpC (r)
0

dr, (ed ~ e) (e"d" ')"„'((d . e(r &;;.e(,r,}]e ), ',erPe(r}) ~

0
(C3)

where the term containing two explicit factors of ik has been neglected and where the superscript "horn"
has been dropped. To leading order in k, the k dependence of the variables appearing in the last two terms
on the RHS of Eq (C3) can be. neglected. Further noting that

I(d', r(t, )}A}~, r] =I(d; r(t},)5}~,s (C4)
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allows E(l. (CS) to be rewritten as

kk', „(k,s[e)=- f de((ek"'"')...(e="I'),', .([Askrd„'. 1}1,)
0

T+g

+ «, (e"-j""")a~(e="~'),E&&k Ia
~
r(ti)I r)

0

'r

e ds, (e="' ')s"(eek," '2) (Ik „„I.„.„(1,)I )) ~ 'i7()k(e) . .

0
(C6)

Performing the above integrations over t, by parts and neglecting terms containing more than one explicit
factor of k (remember Mjf- k), we find that

)ed, „(k s[s)= —f d (( eRe~" )„e.( e')„"„.[([ AsAk, , ejie) —il„, (sk ~ I,. el ) —1 (Ik ~ I, . „I„)}
0

+(e")")„s(fk I, r(T+s)I r)+(e")7['"})s(ik I„r(7)Ir)) ~ (d'p4 (r) . (C6)

Using the explicit forms of the hydrodynamic
variables, ' it is straightforward to show that the
terms in braces in Eq. (C6) cancel to O(k').
Since the time correlation function (I(t)I) is
assumed to decay to zero when t&v~, this
implies that the next-to-last term on the RHS of
(C6) may be dropped for s & 7'D. Finally, putting
v to zero in e~ '"~, which appears in the last
term, resul. ts in

(e=j ) s Jf d7'ik'(I~, r(7)Ir) ~ VPC (r),
0

(C7)

which, on taking the half-sided Fourier trans-
form and using the forms of the I„&, gives
Eq. (4.36).
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