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Dynamic behavior of pairs of atoms in simple liquids
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The microscopic dynamic behavior of some simple liquids has been investigated by observing the time
evolution of the separation between members of pairs of atoms. The distribution function for this process
was calculated in molecular-dynamics studies of several states of two model fluids: Lennard-Jones and
simulated rubidium. The overall features of the results are described quite well by a simple model in which
the distribution of pair separations satisfies Smoluchowski's equation with a potential of mean force. The
model uses a nonlinear time scale determined from the single-particle motion.

I. INTRODUCTION

In this article we consider a distribution func-
tion which describes the relative motion of two
atoms in a fluid. This distribution —the probabili-
ty that two atoms are separated by r at time t,
given that they were separated by r, at time zero-
was introduced by Oppenheim and Bloom' in their
analysis of nuclear magnetic relaxation in fluids.
Subsequently the same distribution has been con-
sidered in theories describing several other ef-
fects, including depolarized light scattering' and
collision-induced absorption. ' I have evaluated
this time-dependent pair-distribution function for
the fluid states listed in Table I. I have found that
these results are described fairly well by a simple
model which relates the evolution of the distribu-
tion to the radial distribution function and the
single -particle motion.

In the theories mentioned above, the function to
be considered here determines only one of three
contributions, with the other two involving three-
and four-body correlations. At low densities the
contribution of the two-body correlations domi-
nates. However at liquid densities the three con-
tributions seem to be of comparable magnitude,
with significant cancellations occurring between
them. (See Ref. 4 for a recent discussion of this
situation. ) Hence a complete theory for these ef-
fects must involve more than a treatment of the
pair dynamics.

. On the other hand, I feel that an examination of
the pair dynamics alone is of intrinsic interest.
Molecular dynamics allows one to "measure" the
time-dependent pair-distribution function per se.
The analysis presented in this article is not an ef-
fort to explain, for example, nuclear magnetic re-
laxation; rather, I am using the pair dynamics as
a tool for analyzing the properties of the liquids
which have been simulated.

A fundamental difficulty with the microscopic
physics of liquids is that there is no simple,

natural way to describe a fluid on a microscopic
level. This is apparent in contrast to a solid,
which can be described by specifying its devia-
tion from a perfect lattice. For a fluid there is
no equally obvious manner of description. Cer-
tain averaged quantities are known to be useful
ways to characterize a fluid's behavior; two out-
standing examples are the dynamic structure fac-
tor and the velocity autocorrelation function. '
But these known quantities do not comprise a
complete description of all one might want to
know about a fluid. Many potentially important
characteristics of a liquid are simply not des-
cribed by any of the standard functions.

For example, consider the hypothesis that some
simple liquid is made up of quasimolecules —fairly
long-lived groups of atoms which maintain a local
structure as they move along together. Since
these molecules could support short-ranged co-
herent modes, quasimolecular behavior would
probably have an appreciable effect on, for ex-
ample, the dynamic structure factor. But the
dynamic structure factor alone does not allow one
to determine whether anomalous behavior is the
result of quasimolecular structure or of some
other mechanism. The quasimolecules would not
have an unambiguous signature in any of the quan-
tities which are generally used as statistical des-
criptions of atomic motion in liquids.

A common feature of many of these known quan-
tities (a feature which limits their usefulness in
manywituations) is that they measure absolute
motion of the atoms. The reference frame in
which the motion is measured may be defined
microscopically, but is generally not moving along
with the fluid in any microscopically defined way.
The time-dependent pair-distribution function in-
troduced by Oppenheim and Bloom measures the
relative motion of the atoms. One might hope that
some effects which cannot easily be seen in the
conventional correlation functions and distribu-
tions would be readily apparent from this distri-
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bution.
Quantitative definitions and a simple theoretical

model for the behavior of the distribution function
are presented in Sec. II. There we also present
our molecular dynamic results for two fluids:
I ennard-Jones and simulated rubidium. The
model does quite a good job of characterizing the
overall features of the distribution function. It
also provides a convenient starting place for ex-
aming some less obvious aspects of this property
of a liquid.

II. QUANTITATIVE RESULTS

The basic function we are interested in is de-
fined by

g,(ro; r, t) = (6(ro—r»)6(r- r,',))/(6(ro- r„)),
where r,', is the relative coordinate r', —r,' of
atoms 1 and 2 at time t. The average is over a
stationary initial ensemble, ideally a canonical
ensemble but in practice the ensemble character-
izing molecular-dynamics experiments. The in-
tegral of g, over a volume in r gives the probabili-
ty that the relative coordinate r» is in that vol-
ume at time t, given that r»= r, . The distribution
is normalized to 6(r- r, ) at t = 0, and its integral
over all r is unity for all times. Its dependence is
on the magnitudes of r and ro and on the angle be-
tween them.

A crude approximation for g, is found by as-
suming that the two atoms are diffusing with no
correlation between their motions. In that case it
is easy to show that

(2)

where V' operates on the r dependence and

Here D is the diffusion constant for single-parti-
cle motion; the factor of 2 arises because the co-
ordinate r is the relative coordinate. Qur model
is obtained by improving on this in two ways.

First note that the static solution to Eq. (2) is
found by making g, constant in r. But the true
static solution should be proportional to the equil-
ibrium probability for finding a pair separated by
r, that is, the radial distribution function g(r).
This suggests that the uncorrelated diffusion
shouM be replaced by diffusion in an effective in-
teratomic potential U(r) which has g(r) = e as its-
equilibrium distribution. U is the familiar poten-
tial of mean force, which was already introduced
into this context by Qppenheim and Bloom. ' We
take the motion in the potential U to be diffusive,
replacing Eq. (2) with Smoluchowski's equation

, —g,=V'g, +V tg, V&U(r)],

where P =1/RENT and the potential is

U= -P 'lng(r).

(4)

(5)

The remaining difficulty with the model is that
it necessarily gives incorrect results at small
time. For example, consider the behavior at
large relative coordinate. In that case the atoms
axe moving with no correlation and g, is deter-
mined by the distribution function for single-par-
ticle motion. But the model as represented by
Eqs. (3)-(5) would give a correct result at large
distance only if the single-particle motion were it-
self exactly diffusive. The model would therefore
misrepresent the initial kinetic spread of g, . We
correct this shortcoming by introducing a nonli-
near t to w relationship which is reminiscent of the
Gaussian approximation for single-particle mo-
tion. ' This comprises our second improvement on
the primitive diffusion picture: Eq. (3) is replaced
by

r 3(~ r'- r—' ~') (6)

where (
~

r', —r,'~') is the mean-squared distance
moved by a single atom in time t.

The model is now represented by Eqs. (4)-(6).
For large t the model incorporates diffusive re-
laxation to the expected static solution. For large
interatomic separations it gives the same results
as wouM be obtained by using the Gaussian model
for the uncorrelated single-atom motions. Final-
ly, it is not difficult to show that it properly rep-
resents the exactly calculable small time kinetic
relaxation, which depends nontrivially on r, . The
model therefore includes all of the "obvious" fea-
tures of g, .

The model can also be obtained more formally
by making some explicit (but uncontrolled) approx-
imations to an exact equation for the distribution
function. However, since the model is presented
here as a heuristic device intended to relate the
single-particle motion to the evolution of the pair-
distribution function, we feel that the simple phys-
ical argument presented above is more relevant.

As input to Eqs. (5) and (6) we need the radial
distribution function g(r) and the single-particle
mean-squared displacement. These were evalua-
ted from the molecular-dynamics coordinates,
which will be discussed below. Because g(r) is
available only in tabular form, any solution to the
equations of the model must be done numerically.

For economy of presentation, and to facilitate
numerical solution of the equations of the model,
it is convenient to reduce the number of variables
occurring in g, . One way to do this is to introduce
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spherical harmonic moments, integrating over the
solid angles x and x, with a Legendre polynomial
P, (r r",) T. his defines

y, (r, ;r, t) =(4w), dr, drP, (x x,)g,(r,;r, t). (7)

Spherical harmonics with m4 0 vanish because g,
is cylindrically symmetric around r, . Yet another
reduction of the description can be made by de-
fining moments

R„,(r;t)=
40

dr r'(r v, )"y-, (x,;r, t) . (8)

TABLE I. Molecular-dynamics states.

Potential &/P~ (K) & (A) T*=kT/& n*=no

Lennard-Jones
Lennard-Jones
Rubidium
Rubidium
Rubidium

393
393
407

4.480
4.480
4.482

0.98
1.32
0.88
1.12
1.49

0.950
0.950
0.951
0.951
0.855

It is trivial to derive a model equation for y,
from Eg. (4). This can be solved numerically for
a given g(r).

These distribution functions were calculated
from molecular-dynamics data for three states
of simulated liquid rubidium and two states of the
Lennard-Jones fluid. 'The rubidium simulation was
based on the potential of Price and co-workers. '
The states we used are listed in Table I. The T*
= 0.98 Lennard-Jones state is rather strongly
supercooled. ' The molecular -dynamics procedure,
simulating the motion of 250 atoms with cubical
periodic boundary conditions, is described else-
where. ' We used an integration algorithm intro-
duced by Tsai. '

The various fluids which we examined showed no
remarkable differences in the overall behavior of
g, . The time scale varies but is always related to
that of the single-particle motion (as determined
by the model). There is some slight dependence on
the state and the interatomic potential beyond that
expected from the model (such as a tendency of
the relative coordinate to oscillate), but these dif-
ferences are on a level beyond that which we wish
to discuss in this paper. Certainly the differences
are not as apparent as one might have thought they
could be. Because of this essential similarity
among the five fluids, we have chosen to present
results for only one representative case, the T*
= 1.32 Lennard-Jones fluid. The discussion in this
article holds equally for the four other fluids.

Results of the molecular dynamics and of the
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model are presented in Figs. 1—5. It is evident
that the overall features of the results are repre-
sented surprisingly well by such a simple model.

Generally the evolution of g, is characterized by
a relaxation toward certain favored separations
[the peaks of g(x)]. Atoms initially separated by a
distance corresponding to a peak of g(r) tend to
retain that separation for a relatively long time,
whereas those initially not in a favored position
soon lose their initial separation. This behavior
is described quite well by the model. In addition
we saw no tendencies in the angular behavior be-
yond the diffusive evolution expected from the
model.

FIG. 1. Distribution function describing the distance
between the members of a pair of atoms in the T*=1.32,
n =0.95 Lennard-Jones fluid. The initial separation ro
corresponds to the first maximum of the radial distribu-
tion' function g(r). The histogram represents the molec-
ular-dynamics results and the dotted line represents the
model. The time scale is set by assuming the argon
atomic mass for the atoms. Each curve represents yo
at a given time. Starting at the top, the times, in units
of 1.45 &&10 s, are 1, 2, 5, and 9.9. The time unit is
approximately a collision time: the first zero of the
velocity autocorrelation function is at 1.4 &&1.45 &&10 3 s.
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FIG. 2. Same as Fig. 1, except that the initial separa-
tion corresponds to the first minimum of g(x).
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FIG. 4. Mean-squared changes in the separation of a
pair of atoms for the three cases shown in Figs. 1-3;
See Eq. (8) in the text. Curves (a), (b), and (c) corre-
spond to rp/0'=1. 5, 2.0, and 1.04, respectively (Figs. 2,
3, and 1, respectively). Error bars show some typical
statistical errors.
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FIG. 3. Same as Fig.. 1, except that the intial separa-
tion corresponds to the second maximum of g(r).

FIG. 5. l =5 spherical harmonic moment Bps for the
case shown in Fig. l. See Eqs. (7) and (8) in the text.
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prising that the model works as well as it does,
this agreement between the model and the mole-
cular-dynamics results means that g, shows no re-
markable behavior at the level of precision which
we are considering here. This information is use-
ful in two ways.

First, there was a possibility that the behavior
would not be what one would expect (that is, the
model would not fit the molecular-dynamics re-
sults at all). For example, the fact that the model
does work for the fluids we considered allows us
to answer unambiguously the question of whether
there are quasimolecules in any of these fluids.
If a liquid had this structure, the motion of a single
atom would be largely a result of the motion of the
quasimolecule which contains the atom. The rela-
tive motion of a pair would result from dissolution
of a quasimolecule (at least for long times, after
those pairs which were not "bound" into the same
quasimolecule had separated). Thus the time ev-
olution of g, would occur on a diffe'rent time scale
from that of the single-particle motion. We found
that in the liquids we examined the long-time decay

of g, is determined by the single-particle self-dif-
fusion constant. It is therefore clear that there
are no quasimolecules of the sort we imagined
above. We can similarly conclude that, because of
the quality of the results we obtained with this
simple model, there are no other outstanding
anomalies which would be hidden from analyses
using fixed reference frames.

Second, the less trivial aspects of the behavior
of pairs of atoms in a fluid can now be more sen-
sibly discussed in the context of the model. Pro-
cesses with more coherent, systematic dynamics
will appear as differences between the actual be-
havior and the essentially diffusive evolution pre-
dicted by the model. We are investigating some
suggestions of such differences.
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