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Anomalous radiation from a turbulent plasma
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It is shown that the acceleration of an electron by the electrostatic fields of the ion-wave fluctuations can
lead to enhanced electromagnetic waves in a plasma. The maximum emission arises from those electrons
whose velocity is close to the phase velocity of the ion-wave oscillations, Application of our investigation to
laboratory and astrophysical plasmas is discussed.

I. INTRODUCTION

According to the weak-turbulence theory, ' '
turbulence energy flows from high-frequency
modes towards low-frequency modes. As a result,
energy condensation occurs at the lowest frequency
modes. For example, in space plasma, most of
the turbulence energy is piled up in the long-period
pulsations which are composed of magnetohydro-
dynamic (MHD) modes. On the other hand, in
astrophysical' and laboratory plasmas, ' the elec-
trostatic ion-wave instability is found to play a
vital rale. It is well known' that the presence of
an external current in a plasma causes a rela-
tive drift between the electrons and ions. When
the relative drift speed exceeds the ion-acoustic
velocity, ion-acoustic waves become unstable. 4

Linear theory shows that the wavelength of the
fastest-growing mode is close to M8m/Av, where
XD=v, /& &», is the electron Debye length. Such
processes as nonlinear scattering, ' particle
trapping, ' and resonance broadening' can halt
wave growth. Specifically, owing to the nonlinear
scattering process, ' energy cascading takes place
from short-wavelength to long-wavelength ion-
acoustic fluctuations. Eventually, a stationary
fully developed turbulent state is attained. Since
the energy density of the ion-wave fluctuations is
much smaller than the thermal energy of the
plasma particles (typically

~
E»~'/4mnT, - 10 '),

the usual weak-turbulence theory can be used to
describe the fully developed turbulent state.

Nonlinear interaction of a stationary turbulent
plasma with electromagnetic waves can lead to
such interesting phenomena as anomalous resist-
ivity, ' plasma laser, ' induced scattering of waves, '
etc. In particular, recent investigations"' "have
demonstrated that mode coupling in a weakly tur-
bulent plasma is significantly enhanced. This con-
clusion differs markedly from those derived from
the well-known weak turbulence theory. ' ' This

problem is basically different than that involving
the stability of a Langmuir turbulence with respect
to low-frequency perturbations. " The latter analy-
sis exhibits that growing density perturbations oc-
cur due to modulational instability.

In this paper, we investigate the interaction
between background electrons and long-wavelength
ion-acoustic stationary turbulence. Electrons
whose velocity is close to the phase velocity of the
ion-acoustic waves feel a strong acceleration. "
As a result, the free energy of accelerated elec-
trons gives rise to induced bremsstrahlung radia-
tion. Within the framework of the linear-response
theory, we obtain in Sec. II the effective dielectric
constant of the electromagnetic wave in the pres-
ence of ion-wave turbulence. In Sec. III, the non-
linear dispersion relation is analyzed. It is found
that unstable electromagnetic waves appear in the
presence of an anisotropic ion-wave [~= a kc, ,
where c„. = (T, /M)'~' is the sound speed] turbu-
lence in the Maxwellian plasma. This case is of
physical interest since the current driven ion-
wave instability is usually stabilized by nonlinear
processes leading to a steady turbulent state
which consists of an anisotropic turbulence spec-
trum. On the other hand, our calculation shows
that for an isotropie turbulence spectrum, the
contributions arising from the +co~ modes exactly
cancel each other, yielding zero growth. Finally,
Sec. IV contains a brief summary and application
of our investigation.

II. FORMULATION

We consider a homogeneous plasma in the pres-
ence of an enhanced ion-wave stationary turbu-
lence. The basic equations governing the interac-
tion of the latter with an electromagnetic test wave
are the Vlasov-Maxwe1. l equations:

8 8 e vxB 8—+v =+— E(r, t)+-- = f (r, v, t)=0, (1)Bt ~r apl 0 8v
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1 BBVx E=-——,
c Bt

1 BE 4mVxB= ——+— n e vfCBt C
(3)

where the notation is standard.
Since the ion-wave turbulence is already pres-

ent in our system, the unperturbed electron dis-
tribution function F„of the background plasma
can be represented as

5E = P. 5Eh+ Pe5E»,

5B= P, Bh + P, F58» . (6)

5f =u5f&+u«f» .
Assuming E&» 6E, we linearize the Vlasov equa-
tion arid obtain

The perturbed distribution function of the electron
is likewise written as

oe foe + fle (4)

where f„is the space-, time-averaged part, and

f„is the low-frequency fluctuating part. Here,
c is a small parameter and represents, for ex-
ample, the electric iield strength of the turbulent
fluctuations E&. Then, to order e, the Vlasov
equation becomes

)f 5 'I e 5
i
—+v ~ Vi5f+ E, ——5f

II, Bt j m Bu

e vx 58 8
+ —6E+ ' —F =0

m c BV oe

To order ~', Eq. (10) yields

(10)

8 e+v'V f =-—Ei' ~ fBt " m Bv

The Fourier component of f„follows from Eq.
(5), and we have

f„(&,&) = ( Eo), ~) —, f)i (~ —ku,), (6)

where, for simplicity, the ion waves are assumed
to propagate along the s direction. Eq. (6) is valid

orally if the ion waves have sufficiently low ampli-
tude so that electron trapping is not important.

To investigate the problem of induced brem-
sstrahlung radiation from a stationary turbulent
plasma, we perturb the equilibrium by introducing
high-frequency e1..ectromagnetic test fields p. 6Eh
and p,5Bh in the system. Accordingly, it is legi-
timate to assume that p. «e. The interaction of
the test fields p, 5Eh and p58h with the finite-am-
plitude stationary turbulent ion-wave fields EE&
leads to mixed-mode (beat waves) perturbation
fields uo:5E», ue5B», and ue5f, „. We note that
the mixed modes are not necessarily the normal
mode of the plasma. Their dynamics is, neverthe-
less, governed by Eqs. (1)-(3). We may therefore
write the total perturbed electric and magnetic
fields in the following form:

8 e 8 e 8+v V 5f +—E, —5f, +—5E .—fh m 8+ &h m h BV Oe

e 8 e 8
+ —5E, —f + vx5B =flh BV le mc h BV

e 8 e 8
+ —5E =f + vx5B =fm &h BV oe mC h BV le

+ vx 5B,„—fo, =0 . (12)mc '" Bv

We now introduce the Fourier transforms in
space and time for various quantities according to

e oo

A. $, &u) = d'x dt A(x, t) exp[t~t —ik ~ x].
+ mOO

(13)

From Eq. (11) we then obtain

e 8
+ vx5B, =f =0,

mc lh Bv

where ( ) denotes averaging over the low-frequen-
cy fluctuations. On the other hand, to order p, ~,
we find an equation which determines 5f». For
our purposes, we have
|I'8 e 8 e - 8+v V 5f)a+ E& 5f) + 5E ' fIBt " m 8& " m " Bv

t(g Ku)5f (K, g-)

E, (k', of') —5f,„(K-k Q —fee') + 5E„(K,Q). —fo,

+ Q 5E,„(K-k',0-() ~d= f„(k', (o') + v x5B( -KkQ -()d~ = f„(k', (o'), (14)
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where u is the velocity component along the z direction and we assume f„to obey the Maxwell distribu-
tion.

Using Eq. (13), we can express Eq. (12) in the form

(~-k )5f»(k, ~)=g~ —Z, (k-K', ~ -Q') —, , „, 5E, (K', Q') —f„m

+ —6E E' O' — F k K' co 0'

lel - s e ' - 1 -, - 5 Zf(k-K' (6)-Q
+ —. 5E,„(k, (6)) =f„+ — v&& —,K' X5E„(K',Q') —,', f„—.i m '" ' Sv " m K. Q' " ' Sv (k -K')u —((v -Q') Su

(15)

Substituting Eq. (15) into Eq. (14), we get
2

(11 Kx)6f, (K-, 11)=
(

—I E, (k', »)—, ; 6E„(K—6', 11 —»') = f,.)(m, . ' ' su (K-k')u —(Q —(v')

]] I e '~, , s Z, (k', (d') 5
+ —. 5E (K, Q) f +i — ~ 5Ei (K-k' Q -&v') = —' ' —fi m " ' ev " (m Bv ~ + —(d BQ

,
n'

+ —
K vx, [(K —6')x6E, (K —)1', 11 —»')] = ' —f ) (16)

e '~ 1 - -. . . s E, ( k', ('v) s
av k'u —(u' Bu

Since we are concerned with the weak-turbulence limit of the ion-wave fluctuations, in Eq. (16) as well as
in the following, we have neglected terms of relative order (e'/m'Q')[Z, ~'5'/su'. Furthermore, in Eq.
(16) the electric field of the beat mode is yet unknown. Since the beat modes are driven by the test wave,
we need a relation between 5E» and 5E„. For this purpose, we compute the x component of Eq. (3) for the
mixed-mode perturbation in the Fourier space

0' 4
K 5Ei„„(K,Q) = —,5Z&„„(K,Q) —

E gn, ~ e, ~ iQv„5f]„(K,Q)d'v. (17)

In the following, we are mainly interested in investigating the electron response to the ion-wave turbulent
fields. Therefore only the contribution of the electron current in Eq. (17) need be retained.

If we substitute Eq. (15) into Eq. (17), we obtain

2

I»

~ ('-) . .'.~
(v,.l ' " iQ [e[
Q ) . Q-Ku m

)
Ei (K -K', Q —Q' ) —f„5Z„,(K', Q' )cih

where

E(K,E)=1-('—„)'-( -"-)'
'

(19)

and ~~, = (4ifne'/m)'~' is the electron plasma fre-
quency. Equation (18) shows that the electric
field of the mixed-mode perturbation can be
represented as the product of the turbulent field
and the test-wave field.

To obtain the effective dielectric function of the-
electromagnetic waves in the presence of the ion-
wave turbulence, we take the x component of Eq.
(3) for high-frequency component, viz. ,

K'5Z„„(K,Q)

0' 4m= —,5E„„(K,Q) ——,n[e~ iQv„5f, (K, Q)d'v .

(20)

Inserting Eq. (18) into Eq. (16) and using the ran-
dom-phase approximation, we find an expression
for 5f„(K,Q) in terms of (E, (k', u&')~'. Substituting
this value of 5f„ into Eq. (20), and performing
considerable algebra, we can put the nonlinear
dispersion relation of the electromagnetic waves
[L]~(K,Q)] into the form
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(Jfp'i —f ('~) (u..)
' p f „. (u )

*(u'.
)

* ' d'u" g u
I &iS', u' il*

S S

Lm) (p ) p-Zu Z uu p, -Z, u ( *uu) tu'-k'u uu

&e ' ~',. Q „,D.'(K -k', Q -~')iE, (k', ~')('[(R, +R,'+R,")(R,+R, +R,)]=0, (21)

1 8 f„K
Q-Ku Bu K, u-g, Q' ' (22)

1 8 1 K-k'
J Q, -K,u Bu Ku -Q " Q'

(23)

where for &u' «Q, u «Q/k, the constants, to the
lowest order, are defined as

III. ENHANCED RADIATION

Here we analyze Eq. (21) to find a complex root
of Q. It emerges from our simple calculation that
an unstable electromagnetic wave can appear from
a turbulent medium. In the Appendix, we see that
the most dominant imaginary contribution of Eq.
(21) comes from the last term, which can be writ-
ten as

] 1R = ck2 Q g u ~l Ql u r)u z Ps
S S

ImDr(K, Q)

4

D '(K —k' Q —pp')

r ' ' " I&'iu ) '

u +'U

3 Q
'

Q -E u Nl —ulu Bu "fpe

E (u' m
], +i v~m lk'Iv, )

e

K(K —k' ) 1
+ Q, kl I+zM

1 1 88'= du0 Q gu Ql u ~ gu ps

1 1 m 1+iv~m
Q k' Z; ~ (k'(v,

K, 1 8 1 8u+v„—,
k f

S

(K —k') &u' m (
Q k" Z, ~(

+' 2" /O'Iv, )
K(K —k') 1

Q' k' +
z [k'[v, ) '

(24)

(25)

(26)

(2V)

x
I E, (k', &p')I'(ReR,'ImR, + ImR,'ReR, ), (28)

where Re and Im stand for the real and the imag-
inary part of the relevant terms.

For &u' «Q, we can expand D,(K —k', Q —ar' )
and find

c'(K —k' )'
DP(K k PQ K )-1

(Q l)2 (Q l)2

I . 2

Q Q2+ —(2Kk' —k") (29)

where the linear dispersion relation of the test
wave is used. By using Eqs. (24) and (26), we
readily get

1 1 m 1 1 m oo'ReR' = ———— ImR' = ————L'w
Q k' r, ' ' Q k' r.

1 1 m 1 m
Qk' T. ' ' Qk'T,

(30)

where
~
cu'/k'v,

~
«1 is used.

Subetituting Eqs. (29) and (30) into Eq. (26), we
obtain the growth rate y of the electromagnetic
radiation. The result is

and Q, =Q —&u', K, =K-k'. Here f„ is assumed
to be the Maxwellian distribution.

Equation (21) is the main result of this paper.
Terms involving

~ E,(k', &p' )~' arise owing to a
nonlinear coupling of .the stationary turbulence
with background plasma particles.

1 Ml '~' c' (k' —2K)
2 m/ v, Q

(31)
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where

E (k' u&')O'=0' —= c'K'+ e' W(k') =r Pe& 4mn7.' e

and the relation

y = —ImDr(A, K) —. ReD r(Q, K)
8

negligible as compared to the electric field terms.
Second, our mechanism works for the anisotropic
ion-wave turbulence and an isotropic electron dis-
tribution function.

In the presence of an external current, the un-
perturbed electron distribution function can be
written as

y + r3 y mX'~' ~y „i,k
Q 0 ] ko Mj c (33)

where 8" and &,' are, respectively, the total
energy density and the characteristic wave number
of the anisotropic ion-wave turbulence. Since in
the steady state (fully developed turbulence) the
ion-wave turbulence will have the Quetuation wave-
length k, ' which is of the order of the size" of the
dimension L, , it follows that the growth rate given
by Eq. (33) will dominate over the previous ones."
The amplification of the electromagnetic wave is
possible only when its growth rate is larger than
the collisional damping rate v, . Thus in order for
the present mechanism to be operative, the ion-
wave energy density should satisfy the inequality

W'& —
i (34)

m/ v, k, nXD'

We will now comment on the physical mechanism
of the amplification. Since the new contribution
originates from the imaginary contribution of the
velocity space integrals in Eq. (21), emission
arises due to the accelerating motion of the elec-
trons. Hence the radiation mechanism may be
considered to be the induced bremsstrahlung inter-
action between ion-wave fields and the electrons.
Consequently, the electromagnetic waves are di-
rectly emitted from accelerated electrons. Two
points are worth noting. First, the contribution
of the magnetic terms [Eqs. (25) and (27)] is

is used. Furthermore, in deriving Eq. (31) we
have neglected the frequency shift due to turbulence.

The reader should note the fact that linear dis-
persion of ion wave c,(k, &u) = 0 contains two branch-
es, namely e = +~„=+ k(T, /M)' ' . The electron
current drives the + ~~ mode to become unstable.
Hence, in what follows, we assume that the mode
+ (d, is maintained in the steady turbulent state.
Subsequently, we ignore the —~, mode. Physic-
ally, this corresponds to the anisotropie ion-wave
turbulence spectrum. Equation (31) is an odd func-
tion of ~~. It then follows that the growth rate
vanishes (y= 0) for the isotropic ion-wave turbu-
lence, owing to the exact cancellation between ~,
and -co~ modes.

The order of magnitude of Eq. (31) can easily be
estimated; we have

where v, is the drift velocity of the electrons. The
growth rate y for this case is found to be

(I &'
I )

m)
I

(36)

where U, &u&'/k' is assumed. Equation (36) exhib-
its that the presence of the external current en-
hances the growth rate. The reason is that drifting
electrons carry some extra free energy from the
beginning.

To obtain an appreciable growth of the electro-
magnetic waves, we estimate the minimum scale
length of the plasma. Taking typical plasma
parameters, namely n = 10'4 cm ', T, = 1 keV,
k, /k,'=10, W' =(I/M)' '= » we find y=10' sec '
Then the minimum scale length of the plasma with-
in which the interaction can take place is I.=- cy '
=3m. This estimate suggests that our mechanism
for generating an electromagnetic wave in a turbu-
lent plasma is quite reasonable.

IV. DISCUSSION

Stability of a stationary high-frequency turbulent
plasma against low-frequency ion-acoustic pertur-
bations is of considerable interest with regard to
the understanding of the modulational instability"
and wave-trapping phenomena. Within the frame-
work of a weak-turbulence approximation, one
describes the evolution of randomly phased Lang-
muir wave packets by means of the wave kinetic
equation (Liouville's equation). The form of the
latter is similar to that of the Vlasov equation ex-
cept that the force term here originates in the non-
linear interaction of the turbulent perturbations.
When the phase velocity of the latter is equal to
the group velocity of the plasmons, a strong reso-
nance interaction sets in. This leads to the grow-
ing density perturbations (modulational instability)
and was first discovered by Vedenov and Rudakov. "

On the other hand, generation of electromagnetic
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waves from a plasma is of much interest. For a
plasma near thermal equilibrium, the bremsstrah-
lung radiation due to interparticle collisions was
studied by Dupree and by Tidman and Dupree. "
This process originates if one considers the per-
turbation to be of the, second order in the discrete-
ness par'ameter (nX~) '. Consequently this process
does not fall within the Vlasov description. In tur-
bulent and collisionless plasmas, numerous types
of mode couplings take place. We briefly summar-
ize a few of them in the following.

The first one is the nonlinear scattering' of
waves on the electrons leading to the damping of the
electromagnetic radiation in the Maxwellian plas-
ma. Physically, this occurs because high-frequen-
cy electromagnetic waves interact with long-wave-
length ion fluctuations —resulting in nonlinearly
excited electron plasma waves. The latter reso-
nate with the collective motion of the electrons to
produce enhanced oscillations which are in turn
Landau damped on particles.

The second process is the three-wave decay in-
teraction. Here, a finite-amplitude electromag-
netic wave decays into a daughter wave and a Lang-
muir-ion-acoustic wave. For a magnetized plas-
ma, Hutchinson et al."considered the decay inter-
action of an ordinary electromagnetic wave into a
long-wavelength electron plasma wave and an ion
wave in order to explain enhanced radiation in tok-
amak plasmas.

The third process, i.e., the induced bremsstrah-
lung, arises owing to the interaction of ion waves
with electrons. In the presence of ion-wave tur-
bulence, the resonant electrons can emit and ab-
sorb electromagnetic waves through induced brem-
sstrahlung interaction. The difference of the
emission and the absorption processes causes the
growth of electromagnetic radiation. The free en-
ergy of the electrons accelerated by the electric
field of the ion waves is responsible for the occur-
rence of the unstable wave. The increment cru-
cially depends on the slope of the electron distri-
bution computed at the resonant velocity between
electrons and the ion waves.

Moreover, since the growth rate [Eq. (33)] also
depends on the real part of the dielectric constant
(8/BQ)ReDr, the test wave with a particular'propa-
gation direction is amplified. The other wave with
different propagation direction is damped. There-
fore the induced bremsstrahlung interaction be-
tween electrons and turbulent fields gives the
enhanced electromagnetic radiation for any type
of electron distribution function except the plateau
one.

In this paper we have emphasized the importance
of the third process which, to the authors' begt
knowledge, was not considered earlier. For this

purpose we have obtained the effective dielectric
constant of the electromagnetic waves [Eq. (21)]
within the framework of the linear response theory.
The linear analysis shows the occurrence of the
enhanced bremsstrahlung radiation from a turbu-
lent plasma. As our process originates from the
wave-particle interaction, the dominant contribu-
tion comes from the region k'«k, in Eq. (32).
This limit is just the opposite to that of the con-
ventional bremsstrahlung radiation" due to inter-
particle collisions, in which the main contribu-
tions arise from k' & k, .

Furthermore, our investigation assumes that
the steady turbulent state has a characteristic
time scale which is much larger than the e-folding
time (y '= 10 ' sec) of the instability. Hence the
enhanced radiation occurs on such a short time
scale that the assumption of a stationary turbulent
state is always justified.

In laboratory plasmas, enhanced radiation near
0 -

m~, is often observed. " We propose that our
mechanism is a possible candidate for this phen-
omena. According to the observations of solar
radioemission, one frequently observes' anomalous
radiation near 0 - ~~, . Since electron bursts
could be responsible for the ion-wave turbulence
in the solar atmosphere, our mechanism should
be a viable candidate for generating anomalous
radiation from the sun.

In summary, we have pointed out the possibility
of a negro mechanism which can be responsible for
the enhanced radiation from a turbulent plasma.
Subsequently, the present radiation mechanism
may offer an additional diagnostic technique for
plasma turbulence. Moreover, consideration and
understanding of enhanced radiation from a turbu-
lent medium can be regarded as central prob-
lems in attempting to interpret numerous astro-
physical radio phenomena, including pulsars.
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APPENDIX

We estimate the various terms which appear in

Eq. (21). In calculating various terms, we bear
in mind that the electromagnetic wave resonances
are not important because 0/K»u. Using form-
ula (22)-(27), it is rather easy to show that the
most dominant imaginary part of the last term of
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Eq. (21) comes from ReR,'ImR, + lmR,'ReR, . The
other terms are smaller by a factor e' /Q.

The other two nonlinear terms of Eq. (21) are

smaller as compared to Eq. (28). For example,
consider the term

(
e '

(u~,
' Q s iE (k', (u')(' 1

m Q . Q -Ku ~ Bu Q —(K —k')u &u' —k'u su

(Al)

Then the ratio T [T is the imaginary part of Eq. (Al) divided by the imaginary part of Eq. (28)j can be
shown to be a small quantity, i.e., T = ~'Kk'v', /Qu&~, «1. The other term which arises from the wave
magnetic field is

@pe Q Q Qgg Qg' Q Q gg
X Qgg ~I QI gg g~ 08

E k (d —1+1 ~77 (A2)

The ratio Q [Q is the imaginary part of Eq. (A2)
divided by the imaginary part of Eq. (28)] be-
comes

~' Rk'v' E'v'
(A8)
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