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Quantum-mechanical parametric amplification
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Parametric amplification may be.obtained in a harmonic oscillator if its spring constant is replaced by a
time-dependent function. It is shown that the quantum transition probabilities may be expressed in a simple
closed analytic form which involves only the classical amplification factor of the oscillator. The authors also
compute the time evolution of the density matrix which initially describes a thermodynamic ensemble at
temperature T and show that this matrix can similarly be expressed in such a closed form,

I. INTRODUCTION AND SUMMARY

The quantum-mechanical description of the pa-
rametric amplification provided by a harmonic os-
cillator with a time-varying "spring constant" may
well be relevant to certain experimental devices.
In particular, such amplification may be useful' in
the University of Washington experiment' which
traps a single, essentially free electron and mea-
sures its anomalous magnetic moment with un-
precedented precision. Here we shall work out the
quantum theory of this parametric amplification.

Let us review the basic idea of parametric amp-
lification with an elementary and perhaps familiar
example' in order to place the later development in
a simple context. %e consider an oscillating I.C
circuit as shown in Fig. 1. The separation of the
capacitor plates d may be varied, causing the
capacitance of the circuit to vary. Suppose that the
plates are pulled apart when they are charged and
put back to their original separation when they are
discharged. Since the oppositely charged plates
attract one another, this action transfers energy to
the LC circuit and increases its oscillation ampli-
tude. Moreover, since the magnitude of the oscil-
lating charge on the plates is increased, the force
between the oppositely charged plates is increased
in each cycle. Hence, subsequent cycles transfer
ever increasing amounts of energy to the I.C cir-
cuit, and the amplitude of its oscillation increases
exponentially. Since the capacitor plates are
charged twice in a single cycle, this amplification
occurs when the capacitance (the parameter) var-
ies at twice the natural frequency of the oscilla-
tion. The parametric variation must have the pro-
per phase to produce an exponential increase in the
oscillator amplitude. It is easy to see from the I.C
circuit example that a change in this phase by 90'
produces an exponential decrease in the oscilla-.
tor amplitude and yields parametric deamplifica-
tlOn.

Section II develops the general theory of param-
etric amplification in the classical harmonic oscil-

lator. In the general case, the natural frequency
co of the oscillator is replaced by an arbitrary
function of the time, v(t), so that the equation of
motion for the oscillator coordinate q(t) reads

+(o(t)'q(t) =0.

f & T: &u(t-) =(o

t&+T: ar(t) =(o, .
(1.2a)

(1.2b)

Thus, initially the oscillator is a simple harmonic
oscillator with a natural frequency &, while fin-
ally it is also a simple harmonic oscillator but
with a frequency td, that may differ from the in-
itial frequency & . The general form of the pa-
rameter v(t)' is sketched in Fig. 2.

Our method of analysis of the motion of the clas-
sical oscillator is motivated by the fact that Eq.
(1.1) is formally identical to a one-dimensional
Schrodinger equation if we make the following re-
placements: time t - spatial coordinate x, oscil-
lator coordinate q(t)-wave function g(x), param-
etric function a&(t)'-2m[E —V(x)], where E and
V(x) are the total energy and potential energy of a
particle of mass m. The classical oscillator mo-

FIG. l. Oscillating LC
circuit with variable capaci-
tance (variable plate separ-
ation g) illustrates parame-
tric amplification.

We shall assume that the parameter Id(t) becomes
constant for times in the remote past and for times
in the far future,
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FIG. 2. The functional form of ~(t) is arbitrary ex-
cept that it is required to approach constant values for

With an optimal initial phase, an initial oscillator
energy E is maximally amplified to a final oscil-
lator energy Ef given by

=e~x((g /(g )E& (1.4a)

On the other hand, an anti-optimal initial phase
gives a maximal deamplification to a final energy
Ef. given by

Et =e '"((u, /ru )E'. (1.4b)

tion is, therefore, related to a one-dimensional,
quantum-mechanical-barrier-penetration problem
with a potential essentially of the form displayed
in Fig. 2.

The asymptotic behavior of the two scattering
wave functions in the barrier-penetration problem
is described by a 2&&2 scattering matrix S. Its
elements give the transition amplitudes for a, par-
ticle incident from the right to be reflected to the
right (S„)or transmitted to the left (S,) and the
transition amplitudes for a particle incident from
the left to the reflected to the left (S ) or trans-
mitted to the right (S, ). As is well known, the
particle flux j =it((dP*/dx)g —g*(dg/dx)] is a con-
stant in the barrier penetration problem. This is
a special case of the constancy of the Wronskian
of any two solutions to Eq. (1.1). By computing
the Wronskian of various pairs of solutions, one
can prove easily that the scattering matrix S is un-
itary and symmetrical.

Any solution of the classical oscillator can be
written as a linear combination of the two scatter-
ing solutions. Thus, the'amplitude and phase of the
final simple harmonic motion are related to the
amplitude and phase of the initial harmonic motion
by elements of the matrix S. As the initial phase
of the oscillator is varied, the amplitude of the
final oscillation varies. The initial phase can be
chosen to make a maximum or a minimum. final
amplitude (cf. the IC circuit description above).
The unitarity and symmetry of the S matrix relate
these two extreme values of the final amplitude.
We find that the S matrix is related to the classi-
cal amplification factor exp(2y] by

The appearance of the factor &u, /&u in Eqs. (1,4)
is easily understood by considering a case where
ar(t) corresponds to a reflectionless scattering,
for example, when the frequency &u(t) changes adi-
abatically from co to ++. In such a case e'~ =1
and the energy scales linearly with the frequency
(in the quantum-mechanical theory the quantum
number of the oscillator is not changed). It should
be emphasized that the reciprocitydisplayed in Eqs.
(1.4) is a consequence of the unitarity of the S ma-
trix and holds for an arbitrary parametric function
&o(t).

Section III applies the scattering matrix formal-
ism to the motion of a quantum oscillator. The
Wronskian of the quantum-oscillator coordinate
q(t) with the two scattering solutions give two con-
stant quantum operators. Evaluating these two
operator Wronskians at asymptotic times, we find
that the final creation and annihilation operators
of the oscillator, at(t, ) and a(t, ), are linearly re-
lated by elements of the $ matrix to the initial cre-
ation and annihilation operators, at(t, ) and a(t, ).
It is a simple matter to use th'ese linear relations
to obtain a formula for the quantum-amplification
factor. We find that if the oscillator is initially in
the nth energy eigenstate with an initial energy

E'„= tt&o (n+ -,'),
then the expectation value of the final energy (the
average of the final oscillator energies) is given by

&Jf&'=(I+Is„l')/(I -is„l')(~, i~ )E„*. (1.6)

The definition (1.3) of the classical amplification
factor may be used to write this as4

(Jf)~= -', (e'~+e '")((o, /(o )E'.
We see that the amplification of the quantum energy
eigenstate, which has a random phase, is the av-
erage of the classical maximal amplification and
deamplification.

The linear relationships between the creation
and annihilation operators in the far future and
remote past are employed in Sec. III to compute
the transformation function for "coherent states, "
which are eigenstates of the annihilation operator. '
The ground-state-transformation function (the
"vacuum-vacuum amplitude" ) appears as an inte-
gration constant in this computation. In Sec. IV
this amplitude is expressed as a Fredholm de-
terminant which is evaluated using methods' de-
veloped for scattering theory. The coherent-state-
transformation function is a generating function
for energy eigenstate-transition amplitudes. These
are calculated in Sec. V. The probability of ob-
serving a final-energy eigenstate when the system
is initially in a thermodynamic, canonical en-
semble at temperature T is also calculated in Sec.
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n'~

, IP(1/2)(n+n ))(IS.-I&l, (1.8)

where P) (z) is the associated Legendre polynomi-
al. ' It follows from the definition (1.3) and the
unitarity of the S matrix that the modulus of the
element 8, is given by

V.
Our major results are the following. Suppose

that initially, before (()(t) has started to vary, the
oscillator is in the nth energy eigenstate with en-
ergy hv (n+ —,') while finally, after co(t) has ceased
to vary, the oscillator is in the n'th energy eigen-
state with energy h&o„(n'+ —', ). There is no transi-
tion unless n' and n differ by an even integer. The
probability for the latter is given by

I(n' +In )I'

integer,

I(2m+I o -&I'= 4"(m! )' cosh)(

In the limit of large amplfication, X»1, transi-
tions to individual energy eigenstates are vanish-
ingly small; only sums over large numbers of
final states are significant. Hence in this limit we
may use Stirling's approximation for the factorials
and approximate (1+e '")'" by exp(+2me '") to ob-
tain

l(2m +l0-)I'=[2/(zm)'/'je "exp(-4me '")

i S, I

= (cosh)! ) '. (1.9)
and

We see that the quantum-transition probabilities
are determined by the classical amplification fac-
tor e'X. Thus, the classical solution of the param-
etric amplification completely specifies the quan-
tum solution. Since the Legendre polynomials obey

P, (z) =[(l -m)! /(l+m)!]P,"(z), (1.10)

I(2m +1+I I-)I'=16(m/z')' 'e '" exp(-4me '") .
(1.16)

Suppose now that we have initially a thermal
ensemble of oscillators at temperature T. The
ensemble is described by the density operator

the probability of making a transition from n' to n
is the same as the probability of making a transi-
tion from n to n',

l(n+ln'-)I'=l(n'+ln -&I'

p (P) =2sinh2PA&u exp(-PH ),
where

P = I/AT,

(1.17)

(1.18)

This symmetry holds even though the parametric
function (()(t) is, in general, not an even function
of the time t and the oscillation is not time-reflec-
tion invariant.

The transition probabilities from the lowest two
initial levels illustrate the character of our gen-
eral result. They can be written in an explicit
form by using

Trp (P) = P (nip (P)ln) =1.
n=o

(1.19)

The probability of finding an oscillator in the n'th
final energy eigenstate is defined by

and II is the initial Hamiltonian operator corre-
sponding to the natural frequency & . The density
operator is normalized,

P '(z) =z 'P ' (z) =(z'-1)"'(1/2'l ) (1.12)

in conjunction with E(I. (1.8). We get, for m an

P(n'; p) =(n'+lp (p) ln'+) .
The computation of Sec. V gives

(1.2o)

P(n', P) =2sinh —', Pk~ (cosh2)(sinhPK(d +coshP!i&@ ) " '/'(1-sinh'2)(sinh'Phar )" /'

)(P„i((1—sinh'2)( sinh'pIt&g ) '/'), (1.21)

where P„(z) is the Legendre polynomial. Since
x" /'P„(1/Wx) is a finite polynomial in x, there
is no difficulty when the argument of the square
root in E(l. (1.21) becomes negative. We should
note that the initial thermal ensemble evolves into
a final ensemble which does not have a thermal
character. In particular, the density operator is
not diagonal in the final-energy eigenstate basis.
The general matrix element (n'+I p (T) ln" +) is

I

also computed in Sec. V.
The generating function for Legendre polynomi-

als

g t" P„.(z) = (1 —2zt+ t') ~' (1.22)
n'= 0

is a tool for checking the validity of our result. A
little calculation using this generating function and
the result (1.21) shows that
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(1.23)

= K(1)„cosh2y [-,
' +1/(e'""- —1)] . (1.24)

The probabilities P(n; P) are, therefore, correctly
normalized. If we apply the derivative operator
t+'(d/dt)t'~' to the generating function (1.22) we

get a sum involving (n'+1/2)P„(z). This sum can
be used to compute the average final energy,

Since the average energy of the initial thermal
ensemble E~B is given by

E~()= K(o [—', +1/(e'""- —1)] .
we have

E,= ,'(e—'"+e')()((d, /u) )E', .

(1.25)

(1.26)

This agrees with the previous result for the quan-
tum-mechanical energy amplification, Eq. (1.7).

In the limit of large amplification where y»1
only high-lying final-energy levels are significant-
ly populated, n»1. In this limit we find in Sec. V
that

1 "' e'" --1')"' e'" --1)"""'
P(n', )= e" ~ 1 —2e'"

wn' e»"-+1 j' e»"-+1 (1.2"I)

With n large, we are essentially in the classical limit in the final states. Experiments will include a
range of n' values, and only an average value of P(n', P) will be measured; hence only an average prob-
ability is needed,

P(n'; P) =-'[P(n'+1; P)+P(n'; P)]=, e x „exp -2(n'+ ,') e ')'- (1.28)

Here a power has been written as an exponential,
(1 —e '" const)" ' '~'= exp [-(n' + —', ) e ')( const], since
e '" is small. In the classical limit it is more
realistic to examine the probability(P(E', P)dE' for
observing the oscillator to have a final energy in
an interval E'-E' + dE' rather than the probability
to be in a definite final quantum state. Since E'
= K&@,(n' + —,'), the energy probability density is re
lated to the number probability by

(1.29)

The energy probability density is put in simple,
physical terms by using Eqs. (1.25) and (1.26) in
conjunction with Eqs. (1.28) and (1.29}:

t(E', (8)= [1/(2))E'E~ )"']exp (-E'/2E~ ) . (1.3O)

Thus in the limit of large parametric amplification
of an initial thermodynamic ensemble, the prob-
ability of finding an energy E' in the final ensemble
has a simple exponential character. To check the
approximation, we observe that Eq. (1.30) implies
the correct normalization,

II. CLASSICAL PARAMETRIC AMPLIFICATION AND
QUANTUM SCATTERING

As we remarked before, the equation of motion
for the parametrically amplified oscillator, Eq.
(1.1}, is akin to the one-dimensional Schrodinger
equation, and the oscillator solutions can be ob-
tained from the analogous scattering solutions.
For this purpose we introduce the comparison
function

(t)(t) =[2(o(t)] ~'exp i Jt
dt' o)(t') ~.

0 )
(2.1)

with

u(t) = (o(t)'+ -', [~(t)/(o(t)] ——;[~(t)'/(d(t)'],

(2 3)

Recalling that (1)(t) corresponds to [2m(E —V)j '~'

in the scattering analogy, we see that Q(t) and its
complex conjugate Q*(t) are the familiar WKB ap-
proximate solutions to Eq. (1.1). They are exact
solutions to a comparison "Schrodinger equation, "

(2.2)

f dE'6 (E' P}=1,
0

and the correct average final energy,

(1.31)
where a dot denotes a time derivative. The "po-
tential" u(t) has the same asymptotic limits as
does +(t)',

gE) E1(P(E1~ P) =E&
0

(1.32)

We now present the derivation of the results which
we just have described.

t&-T: u(t) =(o(t)'=(o',

t &+2: u(t ) = (o(t)' = (o', .
(2.4a)

(2.4b)

Thus Eq. (2.2) gives smoothly interpolating, re-
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flectionless solutions Q, ))))* which have the asymp-
totic behavior of the solutions g„(t) to the original
scattering problem,

W[)1)*, ))),]: S* S,=-s+ S+„
W[g~, t/) ]: S S*+=-S+ S,*~ .

(2.9c)

(2.9d)

d„-,—+ ra(t )') g, (t) = .0

The solutions to this second-order differential
equation are specified by two integration constants.
We define one solution, g (t), by the conditions
that it contain a unit component of Q*(t) when
t --~ and no component of P(t) when t +~.
Hence

(2.6a)

The other solution, g, (t), is defined by the con-
ditions that it contain no component of Q*(t) when

—~ and a, unit component of Q(t) when t -+~.
Hence,

These equations simply state that $ is a unitary
matrix,

$ $=1. (2.10)

A final Wronskian condition remains,

W[)i), g,]: S „=S„ (2.11)

Hence $ is a symmetrical, unitary matrix. The
symmetry (2.11) together with the unitarity con-
ditions (2.9a) and (2.9b) imply that IS I =IS++I,
but in general the phases. of S and $++ differ. If,
however, &o(t)' is an even function of the time,
g (-t) solves the differential equation (2.5) with
the boundary conditions of g,(t). Hence in this
case )t) (-t) =)I),(t) and S =S„. Note that with
our conventions the absence of scattering corre-
sponds to the limits, y(t), t-

, (t) =
y(t) +s„y+(t), t -+ (2.6b) (o ))

(2.12)

S++ S.-)s= s, s i
(2.7)

are determined by the differential equation (2.5).
Not all of these elements are independent, how-
ever, because the Wronskian of any pair of solu-
tions ((, , g, ) to Eq. (2.5) is a constant,

Cf d p d

The four complex elements of the scattering ma-
trix For a first application of these results, we con-

sider a classical oscillator with the initial motion

H = -.'- [p(t)'+&a(t)'q(t)'] . (2.14)

With this convention the initial energy is given by

t --~: q(t) =ARe/exp[i(ur t+8)]] . (2.13)

We shall absorb factors of the square root of the
oscillator mass into the definition of the oscillator
coordinate q(t) and momentum p(t) so that the
Hamiltonian appears in the form

E' = z [q(t )'+ (u'q(t )'] = -', A'(u' . (2.15)
(2.8)

Computing the following Wronskians at t -- and
t + and equating the two asymptotic values leads
to the condition shown below,

Except for constant factors, the scattering solu-
tion g„(t) obeys the initial conditions of Eq. (2.13).
Hence for general times Eqs. (2.1), (2.6b) and
(2.13) give

w[@*,q]: 1-Is I'=Is, I',
W[e.*, e.]: Is .I'= 1 -ls, .l',

(-'9a)
(2.9b)

I

q(t) =A Re( [(2ar )"'/S, ]e'eg, (t)],
and in particular for t -+~

(2.16)

1/2 ll 2 &/2 I
q(t) =ARe — e'e@(t)+ -e'es„p* = ARe e'e+ '„e 'e

.e px[i(v, t+ )6]S, $ $+ (2.17)

where 5 is the asymptotic constant phase accumu-
lated in the definition (2.1) of P(t). Accordingly,
the final and initial energies are related by

minimum values

z'.„=[(1+Is,,l)2/Is, l'](~, /~ )z', (2.19a.) .

2$„8 (2.16)
and

As the initial phase 8 varies, the magnitude of the
final energy E~ varies between the maximum and

In view of the unitarity condition (2.9b), we may
write these maximum and minimum final energy
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values as

E/, „=e'x((o, /(d )z',
and

—e 2)((~ /~ )E&

(2.20a)

(2.20b)

identify [cf. Eq. (2.6b)]

C(t) =S ', q, (t)

and yield

S,=1+i(Q*,v4) .

(2.31)

(2.32)

where the classical amplification factor is defined
by

By writing the integral equation (2.28) in an oper-
ator notation, we secure the formal solution

'" = (I+Is"I )/(1- I s"I ) (2.21) e =[I/(I -G„v)]y (2.33)

Thus, we have established the results quoted in
Sec. I. Note incidently that the definition (2.21)
and the unitarity conditions (2.9) give

which gives the desired formula:

S ', =I+i I@*,v (2.34)

I =Is,.l =t»hx (2.22a)

III. COHERENT-STATE AMPLITUDES

Is. I=(c»hx) '. (2.22b)

It was remarked before that the wave function

Q(t) solves a comparison "potential scattering"
problem. We conclude this section by amplifying
this remark and deriving a formal expression for
the scattering matrix element $, =$, which will
prove useful for our later work. Recalling the def-
inition (2.3) of u(t), we see that

We turn now to the quantum oscillator. We work
in the Heisenberg picture and define creation and
annihilation operators by

(0(t) ) &/2 I &/2

a~(t) =
I q(t) —i p(t), (3.1a)

(o(t)' = u (t ) + v(t ),
where

(2.23)

They obey the commutation relation

( ) = --' [-( )/ ( )]+ -'[ ( )'/ ( )'] (2.2 ) [a(t), a~(t)] =1 (3.2)

We need to solve the Schrodinger equation

d'
v«(t) vv(t))@(t)=t). (2.25)

This differential equation can be cast into an inte-
gral equation by means of the retarded Green's
function

G„(t, t') =8(t —t') i[(I)(t) (I)*(t') —(t)*(t) Q(t')] (2.26)

which obeys

in the natural units with 5 =1 which we henceforth
employ. We shall use the operators for times
t,&-T, where &u(t) =(d, or for times t,&+T,
where &t)(t) = (d, . At these. remote times at(t) and
a(t) are the usual creation and annihilation oper-
ators for simple-harmonic oscillators. The op-
erators at t, and t, are related linearly to one
another since the Wronskian of two solutions to the
equation of motion is a constant. Let us define

Thus

—«t. «(t))t:(tt')=t(t--t'). , , (2.27)
(3.3)

so that the comparison function (2.1) can be written
as

«(t)= t(t)+f«tt't(t, t )v(t')«,(t)''(2.28)

(t" tt) f« ( t)tt(t=). (2.29)

The boundary conditions implied by the integral
equation (2.28)t--: e(t)-y(t), (2.30a)

obeys the differential equation (2.25). It is con-
venient to introduce the scalar product notation

1
4 ( ) [2 {t)]1/2 (3.4)

We use the asymptotic limits for g (t ) given by Eq.
(2.6a) to evaluate the constant Wronskian

iw[q, q ] = q(t) i d, q (t)

at times t,&-T and t,&+T and thereby establish
that

(2.30b)
C(t)-e(t) [I+i(y*,~)]—y*(t) i(y, vq),

exp [-iQ(t, )]a~(t, ) —S exp [i 0(t,)]a(t, )

=S, exp[-ia(t, )]a~{t,). (3.6a)
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(3.5b)

yield

Similarly, the asymptotic limits for p, (t) given by
Eq. (2.6b) and the constant Wronskian

iw[q, q,] =q(t) i q, (t)
cf

The major purpose of this section is the con-
struction of the coherent-state transformation
function (zss't, ~z, t,&. As will be shown later, it
is a generating function for the energy eigenstate-
transition amplitudes. The initial and final ground
or "vacuum" states satisfy

S,exp [in(t, )]a(t, )

= exp[in(t, )]a(t, ) —S„exp [-in(t, )]a~(t, ) .
(3.6b}

and

a(t, ) ~Ot, & =0,

(Ot, ~a~(t ) =0.

(3.13a)

(3.13b)

(3.7)

The Hamiltonian of the oscillator may be ex-
pressed in terms of the creation and annihilation
operators,

H(t) = 2~(t) [a'(t) a(t)+a(t) a'(t) J

~
z t,) = exp [zat(t, )] ~

Ot, ), (3.14a)

Coherent states are built from these vacuum
states according to

The linear relation (3.6a.) implies that

t S, ~'[a'(t, ) a(t, )+a(t,) a'(t, )]

=(1 IS I') [a'(t, )a(t,) -(t,) "(t,)j
—2S* exp [-2in(t, )]at(t, )'

—2S exp [2in(t, )]a(t,)'. (3.8)

(z *t, (
= (Ot, ~

exp [z*a(t,)] . (3.14b)

a(t, ) ~zt, & =~zt, &z, (3.15a)

By virtue of the commutation relation (3.2) of at, a
and the properties (3.13) of the vacuum, the co-
herent states are eigenstates of the annihilation
and creation operators,

Suppose that the oscillator is initially in an energy
eigenstate

~
nt, &,

H(t, ) ~nt, & =~nt, &E'„=~nt,& (s) (n+ —,') . (3.9)

and'

& z*t,
~
a'(t, ) =z*(z*t,

~
. (3.15b)

Then in view of Eqs. (3.V) and (3.8), the final aver-
age energy observed will be given by

On the other hand, it follows directly from the
definitions (3.14) that

&H&f =(mt, iH(t, ) int, &
= i i "' Z*'

(3.10) and

a'(t, ) tzt, &
= (zt, &, (3.16a)

since a (t,) and a(t, ) raise and lower the initial
levels and thus have no diagonal matrix element,

(z*t, ~a(t, ) = (3.16b)

(H&f —i (e2x +e 2x)((d /~ )gs'

the form quoted in Sec. I.'
(3.12)

(nt, )at(t, )'tnt, & =0=(nt, )a(t,)'(nt, & . (3.11)

Equations (2.22) can be used to express this re-
sult as

We now have all the tools in hand for a rapid
construction of the coherent-state-transformation
function. We take (z,*t,~. . . ~z, t,) matrix elements
of the linear relations (3.6) amongst the creation
and annihilation operators and use Eqs. (3.15) and
(3.16) to derive differential equations for the trans-
formation function:

exp[-in(t, )] -S exp[in(t, )]z, -S, exp[-in(t, )]z,*~&z,*t,~z, t, &
=0,

i
(3.1Va)

(3.17b)

The two differential equations are compatible be-
cause of the symmetry 8+ =9 +, and they have the
solution

(exp [-in(t, )]z,*)
Z=i

g exp[in(t, )jz, p

(3.19)

(z,*t,[z, t,& =(Ot, ~Ot, & exp(—,ZrSZ),

where Z is the column vector

(3.18) Here the integration constant has been identified
with the vacuum amplitude (Ot, (Ot, ) since
(z,*t,~z, t,) has this limit when z,*=0=z,.
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IV. VACUUM AMPLITUDE

The vacuum-vacuum transformation function can
be expressed in terms of a functional integral

(Ot, (pt, ) = f [dq)e'e (4.1}

with action

1 d
W = — dtq(t) —,—(0(t)' q(t).

2

The functional integral of a quadratic form pro-
duces a Fredholm determinant and so

(4.2)

2

(Ot, IOt, ) =det "' —,—uP .
j

dt' (4.3)

(4 4)

This Green's function has positive-frequency
boundary conditions in accordance with the ie
prescription implicit in the functional integral
(4.1). Hence, remembering Eqs. (2.1), (2.2), and
(3.3), we see that

G(t, t') = 2i[(g(-t) (d(t')] ~'

&&exp[-iIA(t) -A(t') I] . (4.5)

Since the determinant of a product of operators is
a product of determinants, we may now write

To evaluate the determinant, we recall Eq. (2.23)
with u(t) giving rise to a simply solvable compari-
son, Green's function,

where the overall constant is determined by the
requirement that Eq. (4.10) reduce to the familiar
simple oscillator amplitude in the limit where &o(t)
becomes a constant.

The remaining determinant in Eq. (4.6) is easily
calculated if we note that the Green's function (4.5)
with positive frequency boundary conditions differs
from the retarded Green's function (2.26) by the
addition of a separable form,

G =G„-if/*. (4.11)

Again making use of the fact that the determinant
of an operator product is the product of the de-
terminants of the operators we obtain

det [1 -G„v] = 1. (4.13)

The second determinantal factor on the right-hand
side of Eq. (4.12) involves a separable kernel and
thus can be written in terms of a single matrix
element,

1
det 1+i

1 Q(I)*v1-Q„v

det[1-Gvl=det[1-G„v]det 1+i yy*v .1
1-Q„v

(4.12)

Since the Green's function G„(t, t') is retarded and
vanishes for equal times, the first determinantal
factor on the right-hand side of Eq. (4.12) involves
a triangular matrix with unit diagonal entries. Ac-
cordingly, we have

2 2

1st —,—(t)' =det —,-u det[1-Gv] . (4.6)
d 2 d. dt' dt'

~ 1=1+i *,v
1

=8+, (4.14)

The variational formula

51ndetX = TrX '6X

can be employed to compute

(4.7)

with the second equality following from Eq. (2.34).
Putting the pieces together yields the amplitude

for the ground state to remain the ground state
after parametric amplification:

d'
6lndet —,-u = — . dt G(t, t)6u(t),dt'

and with Eqs. (2.3) and (4.5) we get

d51ndet —,-udt

(4.6) (Pt, (pt, ) ——(d, )e'exp(—f dte(t)).

V. ENERGY-TRANSITION PROBABILITIES

(4.15)

=i6 dtco t
t~

i '2 d 6~(t)4, dt ((d(t)'
(o(t) 6&v(t)"

(o(t)' (4 9)

Recalling Eqs. (3.18) and (3.19), the full co-
herent-state-transformation function is now seen
to be expressed as

(&2*t2I&i ti)

The second integral gives no contribution since
v(t) vanishes at the integration limits. Hence,

y2, l i t2
det 'I' — -u =exp —— dt(o(t), (4.10)

= (d, )'t' exp (— d t e(t)) exp(—',Z "dd),
t~

in which
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2Z SZ = 2S„exp [-2iQ(t, )]z,*'

+ —,'S exp [2iQ(t, )]z',

+S,exp (-i [Q (t,) -Q (t,)]]'z,*z
~ . (5.2)

Let us consider first the limit in which the param-
etric function (d(t) becomes the constant natural
frequency co of a simple harmonic oscillator. In
this limit, S,= 1, S,„=O=S, and Q(t) =(dt, giv-
ing

(z ts,
~
z, t,) = exp[--,'i(d(t, —t,)]

&& exp (z,*exp[—i(d(t, —t,)]z, ].

(5.8)

On the other hand, introducing a complete set of
intermediate energy eigenstates gives

(z,"t, lz, t,&

= g (z,*(n) exp[ —iz„(t, —t,)](n)z,), (5.4)
n= 0

which, by comparison with the expansion of the
second exponential in Eq. (5.3), yields the familiar
energy eigenvalue formula E„={()(n+ —,') and in ad-
dition defines (up to a conventional phase choice)
the wave functions'

nth initial energy level to the n'th final energy
level can be identified from the expansion

(n' +~ n -) = (n'! n!S,))J'
kl m

X A—n, 2k + m ~n
~ 2l + yg

ms

(5.7)

This transition amplitude vanishes unless n -e is
an even integer,

(z,*t,
( z, t,) = g (z,* )n'.) exp [-i(n' + —,') Q(t, )]

n' n

x (n' + ) n -) exp [i(n + —', ) Q (t,)](n ~ z, )
(5.6)

by using the wave functions of Eqs. (5.5). The
factors involving Q(t, ) and Q(t, ) have been intro-
duced in Eq. (5.6) so as to make the transition
amplitude (n' +

~
n -) independent of the times t,

and t2
Inserting Eqs. (5.1) and (5.2) into Eq. (5.6), ex-

panding the resulting product of three exponentials,
and identifying the coefficient of the wave func-
tions (5.5) we secure

(z,* ~ n) =z,*"/(n!)",
and

(n ~ z, ) =z",/(n!)~'

(5.5a)

(5.5b)

n' -n =2t, t=0, +1, +2, ~ ~ ~

Using the unitarity condition

S S,* = -S ~S,*,

(5.8)

(5 9)

With nontrivial parametric amplification, the
amplitude (n' +~n -) for the transition from the

and eliminating the sums over k and m by the
Kronecker deltas in Eq. (5.7), we obtain

(n'+In -) =(s,l"'Is, l
"I-',s„l '(,') (- ")

sl I x(2 ~ 1 1 1 1 IS++I
l! (l+t)! (n -2Z)! 4 /S

(5.10)

r(2z) = 2"- ' v-tj'r (z) r(z + —,') (5.11)

and the functional relation

The finite sum which appears here may be ex-
pressed in terms of the hypergeometric function
j'(a, b; c; z). This function is encountered if the
Legendre duplication formula

r (z)r (1 -z) =m/sinm

are used to write

(5.12)

where n is temporarily assigned a nonintegral
value so as to avoid divergences. Therefore

1 ' n! I'(l ——,'n)I'(l —,'n + —,')
( 18)—

4 (n —2l )! I ( —,
' „)I'( —,'n + -', )

(n +ln-).=(s,)n'Is', i"I-',s„l'(,') (-s")

~

~n'! "' 1 ~ I'(Z - —,'n)r (2 - ,'n+ -,')I"(t+ 1) 1 )S++]'—
n! t! ~g I'(--', n)I" (-—,'n+ 3)I'(Z+t+1) Z! /S

=(s,)"'Is,I"lls„l'(,') (- ") ( &') —&s(-—', n, ——',n+ —,';t+ ; ——{",) {s.(4)
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The hypergeometric function in Eq. (5.14) is re-
lated to an associated Legendre polynomial be-
cause"

P"(z) =2"(z' —1) " 'z"'"I 1/I (1 —p. )]
1 1 1 I 1xj'(- —,v ——,V. , ~ ——,v —, t&—; 1 —i&; 1 —1/z ) .

It is easy to prove that

e 8 "&t &' a~(t, )e "&' = e 8 ~- at(t, )

(s.a4)

(s.as)

I&"I'+Is .I'=1 (5.15)

(5.15)

Accordingly, with the help of the unitarity condition

by differentiating with respect to P and evaluating
the resulting commutator. Hence Icf. Eq. (3.14a)]

e 8""&'Izt,) =expIze '""&' a(tt, )e ""~']

xe ~"&'~'Iot,)
we arrive at our final form:

(n'+In -)
and therefore

—
I
e 8 hl- z t }e 8 td- /2 (s.ae)

&/2

x ",'
I

I"„,"„')//,'(Is, I).
n~ &

(5.1V)

8"80(tg) d& d~ e'"-zt e'-"
1

7r

xe-I~P(z*t
I (s.av)

Since IS,+I =IS I, this gives the result (1.8) quoted
in Sec. I. In view of the symmetry (1.10) of the
Legendre polynomial, the transition amplitude
(5.1V) is symmetrical in n' and n except for a
phase,

This expression puts the final coherent-state
matrix element of the initial density operator
(5.19) into the form

(z,*t,
I p (P) I z, t,) = 2 sinh-, P ro e 8 ~- /'

(n+In'-) =(S„/S )'" "' '(n'+In-). (5.19)

As shown in Sec. II, if v(t) is an even function of
the time, the parametrically amplified oscillator
is time-reversal invariant with S„=S . In this'
case the transition amplitude is perfectly symme-
trical in n' and n.

We turn now to consider the parametric amplifi-
cation of an oscillator system which is initially in
a thermal, canonical ensemble at temperature
T = (kP) ' described by the initial density operator

xe- l~ I' (z ~t
I z t &)

* (5 28)

The coherent-state-transformation functions which

appear in the integrand involve the simple Gaus-
sian function displayed in Eqs. (5.1) and (5.2).
Hence the integral in Eq. (5.28) can be computed

by the usual technique of completing the square
and after a little calculation we find the result

p (P) =2sinh —,'P&d expI -PH(t, )] .
Here the normalization is chosen to give

(5.19)
(z,*t,

I p (P) I z, t,) = 2 sinh~ Pro c '/2

x exp(cz fz, + & Sz', + & S*zg'),

(5.20)»p (P) =i.
1

%e shall obtain the matrix element (n' + I p (P) In" +)
by computing its generating function

(z,*t,
I p (P) I z, t,). To do this, we first need to de-

rive a convenient resolution of the identity oper-
ator. Since the equal-time, coherent-state-trans-
formation function

8 (d
)2 1-e "~-IS (5.30)

(s.a9)

where the unitarity of the S matrix can be used to
put the coefficients c and 5 in relatively simple
forms,

(z,*Iz,) =exp(z~+z, )

obeys

(5.21) 28 (d
e2j Q(t2)S++e

1 -28 &u
(s.si)

(zfIz)e ' (z+Iz, ) =(zgIz, )J dX dg . (g~2

where

z =%+pl
~

we conclude that

(5.22)

(s.as)

In terms of its dependence on the variables z,*,z, ,
the result (5.29) has the general structure of the
original coherent-state-transformation function
given in Eq. (5.1). Hence its expansion into final
energy eigenstates is essentially identical to our
previous work, and with simple substitutions we
derive
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$ (n'-n )/4

&
n' +

I p (P) I
n" +& = 2 s inh —,P+

(n'+ n" + l)/2 1 p (n - n )/2 (5.32)

Here n' and n" must differ by an even integer;
if n' -n" is odd, the matrix element vanishes.

The symmetry (1.10) of the Legendre polynomi-
al shows that, except for the phase factor
(S„/S,*,)'" " '~4, the right-hand side of Eq. (5.32)
is not altered if n' and n" are interchanged. This
symmetry implies that Eq. (5.32) defines the ma-
trix element of a Hermitian operator,

&
'+lp (p)l "+& =& "+Ip (p)l '+&*, (5.ss)

as of course it must. The result (5.32}, in con-
junction with the previous formula (5.1V) for the
energy-transition amplitude, implies an addition
formula for the associated Legendre polynomials.
This addition formula follows from substituting
Eqs. (5.32) and (5.1V) into the completeness relation

&n' +Ip (p)ln" +& =2 sinh '
p&u

—g&n' +In -&
n

xexpl -p&u (n+ 2)]&n —In" +& .
(5.34)

I

c =(cosh2y sinhPcg +coshP&o ) ', (5.35)

I 5 I /c = sinh2y sinhP&o (5.36)

Accordingly, the diagonal matrix element of Eq.
(5.32) gives

I

Since an infinite sum appears here, one might ex-
pect that this addition formula is related to an in-
finite-dimensional representation of the group
multiplication law for some noncompact group.
This is indeed true. The addition formula implied
by Eq. (5.34) is a, special case of the addition form-
ula" for certain hypergeometric functions which
follows from their role as the representation func-
tions for the open group SL(2C).

The coefficients c and
I 5 I defined by Eqs. (5.30)

and (5.31) may be expressed in terms of the clas-
sical amplification factor e'" through Eqs. (2.22):

&n'+Ip (p) In'+& =2sinh —'p+ (coshsx sinhp&u +coshp&u ) "

x(1 —sinh22y sinh'par )" ~'p„.l(1 —sinh'2y sinh'pv )
' '], (5.sv)

which is the result {1.21}quoted in Sec. l. To obtain a form which is useful for large amplification where
only the final levels with n'»1 are significantly occupied, we use a standard formula" to express the
Legendre function in terms of a pair of hypergeometric functions and obtain

f'(n'; p) =
2

.
h2

. h, &. . . (cosh2ysinhp&o +coshpco )"2sinh(-,'p(o ) I'(n'+1)
2n'sinh2y sinhPa& '~' I' n'+,'-

1 1 3 1 1 1x (sinh2y sinhP & & + 1)""+' p —,—;—+ n'; —+—' 2 2 sinh2y sinhPa&

1 1. 3 .. 1 1+(-1)"'(sinhsy sinhP+ —1)""+'E —,—;—+ n'; ——2' 2' 2 ' 2 2sinh2ysinhP+

In the limit n' ~, E(,', ~, -2+n', z) 1 and Eq. (5.38) produces the result {1.2V) quoted in Sec. I.

(5.38)
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