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The effect of cooperative atomic interactions on the photon statistics in a single-mode laser is studied on

the basis of an equation of motion for the reduced-density operator of the field that was recently derived by

Huang and Mandel. The corresponding antinormal ordering distribution function is shown to satisfy a
Fokker-Planck equation. The steady-state solution of this equation is used to determine the photon-number

distribution, the average intensity, and the intensity Auctuation.

I. INTRODUCTION

The study of the cooperative effects in a laser
has been the subject of several recent investi-
gations. "Huang and Mandel' studied the effects
of cooperative atomic interactions on photon
statistics in a single-mode laser on the basis of
a model similar to the laser model of Scully and
Lamb. ' Unlike Scully and Lamb, ' who made use of
the Weisskopf-Wigner method, Huang and Mandel'
employed a perturbation expansion to derive an
equation of motion for the reduced-density op-
erator p~ of the field. They evaluated the expec-
tation values of the light intensity (I(r)) and the
intensity fluctuation ((&I)')/(I)2 in the steady state
by first solving the equation for the diagonal ele-
ment P(n) =(n p~~n) of the field-density operator.
Because of the presence of the terms representing
the cooperative effects, the equation for p(n) in
the steady state does not satisfy the condition for
detailed balance, and it is difficult to obtain exact
solution of this equation. Huang and Mandel' made
some approximations to simplify the equation for
p(n) and reduced it to the form of the Scully-Lamb
equation of motion.

In this paper we evaluate the quantities P(n), (I(r)),
and ((&I) )/(I)' by the use of the equation of motion
for the reduced-density operator p~ [Eq. (23), Ref.
I] without any approximations. In Sec. II we derive
an equation for the antinormal ordering distri-
bution function. " The advantage of using the dis-
tribution function associated with the antinormal
ordering rather than the more commonly used
I' representation' is that the resulting equation
has in the present case the form of a Fokker-
Planck equation. We solve this equation under

steady-state conditions. In Sec. III the proba-
bility p(n) for n photons in the field is determined
and the expectation values of the light intensity
and the intensity fluctuation are evaluated by taking
the appropriate moments with respect to the anti-
normal ordering distribution function. In Sec. IV
the photon statistics are studied on the basis of the
equation of motion for p(n).

II. ANTINORMAL ORDERING DISTRIBUTION FUNCTION

The laser model employed in Ref. 1 consists of
a coupled system of a field and identical two-level
atoms. It is assumed that N, atoms pumped to
upper level at a time t are removed from the sys-
tem at time k+7'. , after interacting with the field
during an effective atomic lifetime &,'„during this
lifetime they give their total contribution to the
field. As in the Scully-Lamb theory, the cavity
losses are simulated in a corresponding manner
by assuming that groups of N, atoms are injected
at random times in the lower level so as to
absorb energy from the laser fieM making a tran-
sition to upper level during another atomic life-
time T,. A course-grained rate of change of the
reduced-density operator p~ is found by multiplying
the change due to N, (N, ) atoms introduced in the
upper (lower) level by the rate R, (R,) at which the
atoms are introduced in the upper (lower) level
and by adding the terms associated with gains and
losses. 'The gain term is calculated to the fourth
order in the coupling constant, so as to retain the
essential nonlinearity required for a steady state,
at least for one not too far above the laser thresh-
old. The loss term is calculated to the second
order in the coupling constant, so as to simulate
losses proportional to the light intensity. The
resulting master equation [Eq. (23), Ref. I] is

~ = ——,
' A[aa~p~(t) y pz(t)aa -2a~p~(t)a] —

~ C [asap~(t)+ p~(t)a a —2apz(t)a ]

+ s B[aa~aa~pz(t)+ pz(t)aa aa +Gaa pz(t)aa~ —4a pz(t)aa a —4a aP pz(t)a]
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+ —,
' D[aataa~ p~ (t) + pJ, (t)aataa'+ Gaa p~(t)ac~ —4atp~(t)aa a - 4a'aa'p~(t)a - 2a a 'p~(t) +2p~(t)a'a~

+12a~ p~(t)a' —Sa p~(t)a'a —8aa pz(t)a],

where a and a are the destruction and creation
operators for the field and
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In Eqs. (2a)-(2d), U(r, ) is the mode function of the
field at the position of the ith. atom and

The expectation value of any antinormally ordered
function Ii „(a,a~) of a and a may be determined
from C (v, v*) via the relation"

lv'„(v, ()')) = Jv'(vv')v, (v,,v')u'v.

f = —j, .Z((d/2k&, )'~',

where p. is the transition dipole moment of the
atom, & is the unit polarization vector of the field
mode, ~ is the frequency of the fundamental cavity
mode, and &o is the electric permittivity.

The coefficients A, B, and C play the roles of
gain, saturation, and loss parameters, respec-
tively. C is related to the cavity loss parameter
2, which represents the fractional loss per cavity
transit by the equation

In particular

(aa') = jl l
v

l

'c (v, v *)d'v,

The function 4 (v, v*) thus makes it possible to
evaluate quantum-mechanical expectation values
of the antinormally ordered functions using the
methods of classical statistical mechanics. Further-
more it can be shown by using Eqs. (5) 'and (6) that
the probability

C =cS/2~I . (4)

Here / is the cavity length and c is the speed of
light in vacuo. The parameter D is associated
with the cooperative atomic interactions.

%e now derive an equation of motion for the
antinormal ordering distribution function, which
may be defined by the formula"

c (v, v*) = (1/v)(v l pz l v) .

that there are n photons in the field can be deter-
mined from a knowledge of 4 (v, v*) by the relation

82fl

p(n)= „„[C(v,v+)e'"l ]nt Q

We now take the expectation values of Eq. (1)
with respect to coherent states. It follows that,
in view of Eqs. (5), (7), and (8), 4(v, v*) obeys
the equation

Here lv) is a coherent state. ' We recall some
properties of the coherent states which we will
need later:

lv) =e( ~/2)lvl e"'~ l0)

av=vv, v a=v+v

(6)
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For any operator 0 Next we express v in terms of its real and imaginary
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parts, i.e.,
V =X~+'EX2& V =X~ —ZX2 ~

We then have

Q j. 8 8 8 1—Z +~
~V 2 ~Xg ~X2 ~V 2 8Xg X2

(16)

where

2B
2B+3D '

2A -2C
2B+3D

2C
2B+3D

(23a)

(23b)

(23c)

We will denote by F(x„x,) the function C (v, v*)
when expressed in terms of the real variables. x,
and x2. It then follows from Eq. (14) that F (x„x2)
satisfies the following Fokker-Planck equation:

It is convenient to introduce a new variable q
defined by

q =
i
v

i
= (x,'+x',)"'. (24)

where

(17) We will denote by P(q) the distribution function
F(x„x,) when expressed as a function of q rather
than of x, and x„ i.e. , P(q) -=F(x„x,). Solution
(22) then becomes

(isa)A» = -2' [-A + C +B + 2D +B(x', + x',)j,
B„=+[(B+3D)(x,'- x', ) + 3+ +D)(x,'+x. '2) +4C j,

P(q) = (I/2~ti)(y+ q')2""-' e-",
where

(26)

B =B,= ,'(B + 3D)—x,x2, (18c)

B„=+[(B+ 3D)(x2, x,') + 3(B+D)(x,'+x', )+ 4C j .

N= (y+q')2' " 'e ' qdq
0

(26)

(18d)

In the steady state, &F/&t =0 and it follows from
Eq. (17) that under these circumstances

9
A,. x, + QB,, F =0, i =1,2.

(v)»= »f »,

' 'e '»»,

has the following properties'.

(27)

is the normalization constant. The truncated I'
function, which appears in Eq. (26), viz. ,

This pair of partial differential-equations is equiv-
alent to the pair of equations

»(b, z) =-Z e
BZ

(2Sa)

~E AB22X, -A B X

1' B1P21 22 11

8E A2B~, X2 -A, B2,X

8X2 B2~B~2 -B~,B22

(20a,)

(20b)

I'(b+1, z) =bi'(b, z)+z'e ',
I'(b, z) =z'e 'q(1, 1+b, z),

where

(2sb)

(28c)

On substituting for A, and B,1from Eqs. . (18a)-
(lsd), we find that

BF A —C B —2D —B(x12+x )

&x, 2C+ (2B+3D)(x,'+x', )

(!)(1,1+b, z) = e "(1+t)' 'dt
d0

is the degenerate hypergeometric function.

III. PHOTON STATISTICS

(28)

The solution of Eq. (21) is given by

2 2F(x„x,) =const(y+x,'+x2)2' " 'e

(21)

(22)

The probability p(n) for n laser photons in the
cavity can now be determined from Eq. (13). It
follows that, on substituting from Eqs. (24), (25),
(26), and (28c) into Eq. (13),

1 820 I

p(n) =- [(y+ VV I»)()+ny-1 e (1-I»)vv»

n!y'""(1)(1,P+ o.y+ 1, o.y) Bv"Bv*" '
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An equivalent expression for P (n) can be obtained
directly from the equation of motion for P(n).
This will be shown in Sec. IV. It is clear from
Eq. (30) that P(n) becomes negative for large
values of n, namely, for n&p+ny T.his is a con-
sequence of using the perturbation expansion in
the equation of motion for the reduced-density
operator p~. This difficulty can be avoided by
letting P+ ny have an integer value.

In the special case when D =o we have, from
Eqs. (23a}—(23c), n=l, P =(A —C)/B, and y=C/
B. According to Eq. (30), P(n) is then given by

1 (A/B -~)
(C/B)g(I, 1 A/B, C!B)„"; C,~B

(31)

which is in agreement with the result obtained by
Scully and Lamb. '

We now evaluate the expectation values of the
optical intensity and the intensity fluctuation. With
the help of Eq. (25) it can be shown that

(aa ) =27( q'I'(q)q dq
0

(y+q )" "'e ' q'dq
N

1

nt(I, P+ nr+ 1, ny) '

(aaatat) =2m ( q P(q)qdq

(32)

p
CO

(y+q')' " 'e ' q'dqE „0

rr ( (lr), l)ryrrlr, yr)r)

(33)

In deriving Eqs. (32} and (33) use has been made
of Eqs. (26), (28), and (29). For the single-mode
laser field we therefore obtain

(I(r)) = (+(d/2e, ) t II(r) ~

'(a'a) = (+~/2&, )
~
~(r)

~

'(&aa') —1)= (II~/2n~, )
~
~(r) ~' (p —n+ [0(I,P+ ny+1, ny)] '],

(34)

((&I(r))) ((W) ) (a aa a)
},((aaa a ) —(aa )' —(aa ))

=
~
p —n+[p(I, p+ny+1, ny) '] '[p+ny —nP —(n+P —1)

x [$(1,p+ ny+1, ny)] ' [g(I, p+ny+1, ny)] ].

Now from Eq. (30) it follows that

0(I,p+ ny+1, ny) =1/yP(o), (36)

When the laser is operating sufficiently high
above threshold, P (0)- 0. Furthermore P» n.
We then obtain

(I( )) = tU( ) ~'[P — yP(0)],

&[&I(r)]')
&y(~) a =[P n+yP(0)]

(37)

x [P ~ ny nP y(n—+p —1-)P(o) —y'P(o)].

(38)

and hence we can write Eqs. (34) and (35) in the
following alternative form: (I(.)) =, , /

~(r) f'P

Ifrr
) ( )

(

(2r) —2C —
D)

((nI( r))') P + ny —nP
&~(.))'

3D 4BC
2A —2C D(2A —2C —D—)2

(39)

(4o)
These expressions for (I(r)) and ([&I(r)])/
(I(r))' are direct consequences of Eq. (1}.

It follows from Eqs. (30), (37), and (38) that the
quantities P(n), (I(r)), and ([&I(r)]')/(I(r))
depend on&, &, C, and D through the parameters
n, P, and y. It is thus apparent from Eqs. (23a)—
(23c) that the effect of the cooperative atomic in-
teractions associated with the parameter D on
photon statistics in a singl-mode laser can be
neglected within the accuracy of Eq. (1) if D «B.

A»D. (41)

Under this condition, Eqs. (39) and (40) further
simplify and we obtain

()'( ))= „ l~( )I'(, ), (42)

It is evident from Ref. 1.that for a small inhomo-
geneously broadened He: Ne laser the following
inequality holds:



2468 M. S. ZUBAIRY 20

([D I(r)12) 3D BC
&~( ))' 2(4 -C) (&-C)' '

It is clear from these equations that there is. no
, significant effect of cooperative atomic inter-
actions on the form of the average intensity of the
laser operating sufficiently high above threshold.
However, when D ~BC/(/I —C), the intensity flu-
ctuations depend upon the cooperative effect pa-
rameter D.

IV. PHOTON STATISTICS FROM EQUATION OF MOTION
FOR p(n)

In this section we derive the expression for P(n)
on the basis of the equation of motion for P(n). If
we calculate the matrix element between rock
states Q ~

and ~n) of each term in Eq. (1) and

make use of the fact that p(n)=(n~p~ ~n&, we obt»n
the equation

sp( ) = c„„p(n+ 1)+a,p (e)+5„,p(u —1)

+d„,p(e -2), (44)

ao C1

a1

do b,

p(1)

=0. (45)

where
a„= A(n+-1)+B(n+I) —Cn

+—'D[2(n+I) + (n+1)(n+2)], (45a)

b„=A(n +I) —B(n+1)'
—D[(n+ 1)'+ (n+ 1)(n + 2)j, (45b)

c„=Cn, (45c)

d„=3D(n 1+)(n 2+) . (45d)

In matrix notation the steady-state equation (with
Sp„/St = 0) may be written in the form

o p(o)

It can be easily proved by the method of induction
that the solution of this equation is

g) ( 1)p(o) M( )x ~ ~ ~ xc1 n

(47)

where

ao C1

bo

M(n) =det

n-1

dn 3 b„2 a„1

(48)
p(0) is determined by the normalization condition.
By using the properties of the determinant, this
solution can be reduced to the same form as Eq.
(3o).

It is worthwhile to mention that in Eq. (44) p (n)
is related toP(n —1) and P(n —2), which represent
one-photon and two-photon emission processes.
If an exact equation for P(n) is derived, using the
Wigner- Weisskopf procedure, then we would expect
p(n) to be related to p(n —1),p(n —2), . . . ,p(n -N2).
The equation of motion for p(n) would then be of the
form

=c„„p(n,+1)+g d("i p(e —m), (49)
m=0

with d~ =d ~ = =d =0 m ~ 1. The formal-m ~+1 -1
steady-state solution of this equation is

p(„) (-1)"p(o) M, („)c x xc1 n

where

(5o)

d(0)
0

d(1)
0

C1

M'(n) =det (51)

d (N2)
0

d (Ng)
n-lV 2-1

d(1)
2
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The usefulness of this solution may be limited in many practical situations in which one is interested in
the evaluation of p(n) for large values of n. Some approximations to expression (50) may then be needed
to simplify it.
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