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The equations previously derived for: the intensity fluctuations of a two-mode ring laser are applied to a
homogeneously broadened laser. It is shown that the mean light intensity of the more lossy mode passes
through a maximum and then tends to zero as the excitation is increased. The probability distribution of the
intensity of each mode may exhibit two peaks, and spontaneous switching between the intensities associated
with the peaks may occur. This is manifest in relative intensity fluctuations of the more lossy mode that can
be much greater than unity. Estimates are given for the characteristic switching time.

I. INTRODUCTION

The ring laser has been the subject of a great
deal of attention in recent years, not only because
of its potential .application as a gyroscope, but al-
so because it exhibits strong laser mode-competi-
tion effects. When the laser cavity, is tuned close
to the line center, the two counterpropagating
traveling-wave modes compete partly for the same
excited atomic population, in such a way that an-
ticorrelations and several new phenomena appear.
The statistical theory of the process has recently
been discussed in several papers,'™ and a theo- -
retical treatment of the inhomogeneously broad-
ened two-mode ring laser has now been given®
that is as complete as that of the usual single-
mode laser. Moreover, it has also been demon-
strated experimentally® that in an inhomogeneous-
ly broadened ring laser one mode may suppress
the growth of the other one, and one mode may be-
come highly coherent, while the other one becomes
incoherent and obeys thermal statistics. Obvious-

‘ly, these characteristics need to be taken into ac-
count in the design of laser gyros. When the ring
laser is homogeneously broadened, it is capable
of exhibiting a still wider variety of unusual fea-
tures, including spontaneous switching between
states, as manifest, for example, in very large
relative intensity fluctuations of one mode. Al-
though the possibility of bistability and switching
in such a ring laser has been noted previously by
several other authors,® these treatments were de-
terministic, and therefore did not deal with the
coherence and fluctuation properties of the emit-
ted light.

II. EQUATIONS OF MOTION

The starting point for our treatment of the two-
mode ring laser is the pair of coupled Langevin
equations of motion for the two dimensionless,
complex mode amplitudes E, and E,,

gtTEll—l= (611 - ’E1I2— £|E2|2)E1+q1(t)

dE
FA= (@ = 1 By = 5L BB, +4,(1).

1)

a,, a, are the so-called pump parameters of the
two laser modes, which are negative below thres-
hold and positive above threshold. ¢,(t), q,(¢) are
complex Langevin noise terms representing spon-
taneous emission fluctuations. They are taken to
be statistically independent, & correlated, and
Gaussian, with

@ (a.0)=0 } @
@, 07)=20(t - )= @)

¢ is the mode coupling constant. It has been
shown®™ that, when the ring laser is inhomogene-
ously broadened, £ depends on the detuning Aw of
the laser cavity from the atomic line center, and
is given by

£=1/[1+ (AwT, )] (3)

where T, is the natural lifetime of the atomic
transition. The maximum coupling constant ¢ is
therefore unity for such a ring laser. However,

it may readily be shown from the analyses of Sar-
gent et al.® and Hambenne and Sargent® that for a
homogeneously broadened ring laser £ can be 2,
and this larger value of the coupling has important
implications for the solutions of the equations of
motion.

To the set of coupled Langevin equations there
corresponds a Fokker-Planck equation for the
joint probability density p(E,, E,, t) of the two-
mode amplitudes E,, E,. If we write E, =x,+ix,,
E,=x,+ix,, this takes the form

3 t 3 8%

7 2, A+ e @
in which the drift coefficients A, A,, A;, A, are
simple polynomials in the x’s.®
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III. STEADY-STATE SOLUTION

Although the general time-dependent solution of
Eq. (4) is complicated,® the steady- state solution
is very simple and easily obtained. Because of the
assumed nature of the Langevin forces, the phas-
es of E(t) and E,(f) are random and uncorrelated.
If we denote the instantaneous intensities of the
two laser modes by I, =|E |? and I,= | E,| *, then
the joint probability density @ (I,, I,) of I, and I, in
the steady state is found to be >3

@, I,)=Q expa,l ++a,l,
-t -YL-5¢E01,), (5)

where @ is a normalizing constant. By integrat-
ing this with respect to 7,, say, we immediately
obtain the probability distribution ®,(,) of the oth-
er light intensity I, ,

01(11) = HQ-I exp[%{(gz - 1)If —’21;‘((12& - al)Il +},—a§]
X[1-erfz ¢l -3a)].  (6)

It is already apparent by inspection of this equa-
tion that @ (/) may display quite different behav-
ior when £<1 and when £>1. If £=2, as for a
homogeneously broadened ring laser, it is possi-
ible for ®,(I,) to exhibit two peaks. For small
I, <1 and for approximately equal a,, a,>0, @,(I,)
tends to become a falling exponential function of
1, given by

@, (1) = WrQ™ exp[-4(a,é - a)l, +5al]. (7

On the other hand, when I, is sufficiently large
that &1, — a,>3, we can use the asymptotic form®
of the error function to show that

®, (1) ~Q expl- T, - a)*+ $al] 5 (4, - a;) , (8)

which may exhibit a peak at I, ~a, when £=2, The
behavior of ®,(I,) given by Eq. (6) is illustrated in
Fig. 1 for a, =15 and for several different values
of Aa=a, —a,. It will be seen that ® (;) has peaks
both at zero and at nonzero light intensities. This
behavior is sometimes associated with an internal
phase transition.”® The double peaks in the proba- -
bility distribution suggest the possibility of spon-
taneous on-off switching, with resulting large rel-
ative intensity fluctuations. For the less lossy
mode, nonzero values of the light intensity are
very much more probable than near zero values,
but the opposite may be true for the more lossy
mode, so much so that the light in this mode turns
on only momentarily.

General expressions derivable from Eq. (5) for
the mean light intensities (I,), (I,), the second
moments ((AI)?), ((AL)?) and the cross correla-
tion (AL AL) in the steady state have already been
given, ®® and we shall not repeat them here. In
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FIG. 1. Examples of the probability distribution ®,(I,)
for ay =15 and for values Aa =a; —ay =—0.25, 0, 0.25.

the following, we wish to focus on the behavior of

the ring laser when it is homogeneously broadened
and the coupling £=2. We may readily show from

the general expressions for large a,, with Aa

=a, —a,>0 held constant, that

d)=~a, -4/, +Aa)+0(1/a)?, ' (9)
{I)—~2/(a,+ Aa)+ O(1/a, ), (10)
(An)?Y/(1)*~2/ai+ 0(1/a,), (11)
((AL)?)/{1)?=1+12/(a; + Aaf’ + O(1/a,)?, (12)

(ALAL)/ (L ){I)~ - 4/a,(a, + Aa) - O(1/a,)*.  (13)

These expressions may be compared with the as-
ymptotic values given by M-Tehrani and Mandel®
for the inhomogeneously broadened ring laser at
line center, for which

q)y~a,-2/5a, (14)
I)=+2/Aa, (15)
((AL)®/(1,)*~ 2/a%+ 4/a¥(Aa)?, (16)
ALY/ (LY~ 1, 17
AQLALY/I)XI)~-2/a,Aa. (18)

One major difference is that in the present case,
when Aa=a, —a,>0, (I,) tends asymptotically to
zero rather than to a nonzero value. The mode
having the slightly greater loss is therefore sup-
pressed altogether in this limit, rather than be-
ing merely prevented from growing with increas-
ing excitation. Although the fluctuations of this
mode tend to the thermal limit ((AL)*)/(I,?~1 in
both cases, they may approach this limit from
above in the case of the homogeneously broadened
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FIG. 2. The variation of the mean light intensity (I
with pump parameter a4, for several different values of
Aa=ay—-ay.

ring laser, and the fluctuations can be much great-
er than thermal.

The main features of the behavior of the homo-
geneously broadened ring laser are illustrated
graphically in Figs. 2—6 in terms of the moments
of the two light intensities calculated with the help
of the steady-state probability distribution given
by Eq. (5). Each curve corresponds to a fixed dif-
ference Aa=a, —a, between the two pump para-
meters. In practice, the diffraction losses of the
two counterpropagating ring-laser modes tend to
be slightly different, and the difference between,
the pump parameters remains approximately con-
stant as the excitation is varied. It will be seen
that the less lossy mode grows with increasing ex-
citation, whereas the more lossy mode reaches a
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FIG. 3. The variation of the mean light intensity (I,)
with pump parameter ay, for several different values of
Aa = ay —ay.
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FIG. 4. The variationof the relative mean-squared in-
tensity fluctuation {(AIy)?)/(I;)? with pump parameter ay,
for several different values of Aa =ay—a,.

maximum intensity and is then gradually suppres-
sed, no matter how small the difference Aa may
be. This asymmetry in the behavior of the two
modes is even more pronounced than for the inho-
mogeneously broadened ring laser. The relative
intensity fluctuations exhibit another strong asym-
metry. Whereas those of the less lossy mode die
away to zero with increasing excitation, and the
light becomes increasingly coherent, the relative
fluctuations of the more lossy mode may pass
through a maximum and exceed the value unity
that is characteristic of thermal light. Moderate-
ly large excitations can produce very large rela-
tive intensity fluctuations, although the asymptot-
ic value of ((AI)*)/(I,)* is unity. These large
fluctuations reflect the switching® that occurs be-
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FIG. 5. The variation of the relative mean-squared in-
tensity fluctuation {(AI,)%*)/{I,)? with pump parameter ay,
for several different values of Aa =ay—ay.
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tween the peaks in the probability distribution of
the light intensity at zero and nonzero values.
Much of the time, the light intensity of this mode
is near zero, but it switches on occasionally. As
a result, the light in the more lossy mode fluctu-
ates far more than a thermal light beam. We al-
so observe that the normalized cross correlation
of the light intensities is always negative and also
passes through a peak, after which it tends to
zero with increasing excitation. The numerical
peak value can be close to unity, compared with a
maximum of 4 for the inhomogeneously broadened
ring laser. Negative cross correlations, of course,
reflect the competition of the two modes for the
same population of excited laser atoms.

Some of the curves corresponding to exactly
equal pump parameters, or Aa=0, are singular,
and are probably unrealizable in practice. In the
case of exact symmetry the intensities of both
modes grow with increasing excitation, but the
fluctuations of both modes revert to the thermal
state sufficiently far above threshold, with correla-
tion coefficient — 1. More precisely, we find the
following asymptotic expressions for the first and
second moments of the light intensities when
a,=a,=a,

(Iy=-5a-1/a-0(1/a)}, s=1,2 19
((AIS)Z)/(IS)Z-— 1-4/a*+0(1/a)*, s=1,2 (20)
ALALY/IXI,)~-1+8/a*>+0(1/a)*, (21)

which may be compared with the corresponding
limiting values $a, +, — % for the inhomogeneous-

ly broadened, symmetric ring laser on resonance.?

IV. THE TIME SCALE OF THE FLUCTUATIONS

Without solving the general time-dependent Fok-
ker-Planck equation, we can make an estimate of
the characteristic switching time of the light in-
tensity from its most probable nonzero value to
zero. For this purpose we shall make use of the
formalism for solving first passage time problems
in one dimension.'® It can be shown that if 7 is a
general random process obeying a Fokker-Planck
equation with diffusion rate D(I), and if the steady-
state probability distribution ®(I) can be written
in the form

®(I)=Kexp[-U({)]/D() , (22)
in which the so-called “potential” U(I) of the ran-
dom process has minimum values at 7=0 and
I=1I,,, with a maximum in between at I=1_, , then
we can express the average first passage time
T(I) for a transition from any value I near I to
the region associated with the other minimum as
a combination of simple integrals. This takes
the general form'°
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FIG. 6. The variation of the normalized cross corre-
lation (AI4 ALY /{I}) {I;) with pump parameter a;, for
several different values of Aa =ay —a;,.

I’

T 1
=2 it G

+C, f ‘a1 exp[U)]+C,, (23)

d[ﬂ@(lu)

in which C;, C, are constants to be determined by
the boundary conditions. If we suppose that the
value /=1, represents the crossover point separa-
ting the two regions, so that T vanishes when
I=1_,., then

0=-2 f et (" e
= - 4 ll(p 1/
o ®{')pu"J,

+C1flmaxdl’exp[U(I’)]+C2. (24)

On the other hand, as I in Eq. (23) gets larger and
larger, we expect the first passage time 7T to in-
crease also, but more and more slowly, such that
dT(I)/dI -0 as [ -«. This leads to the condition

2 = 2
Co=g [ areun-=. (25)
0

If we use this value of C, in Eq. (24) to determine
C,, and then substitute for both C, and C, in Eq.
(23), we obtain the following expression for the
first passage time from I=1

min’

I'min 1 o
T—2f dlmf, are(r). (26)

Tmax

We can make an order-of-magnitude estimate of
the diffusion rate D(I) in the following way. We
first transform the original Fokker-Planck equa-
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tion (4) to polar coordinates by putting x, +ix,
=JT, expi¢,, and x,+ix,=V1,expi¢,, and then in-
tegrate over ¢,, ¢,, I,. This leads to the follow-
ing equation of motion for the probability distribu-
tion @,(Z,) of I, ,

8®.(1,) o [< 2) ]
——-a—t——-—a—ll' a1—11+112116’1(11)

_ 4'53‘1[11 <12>,1a>l(11)]

_(~®U,,L),dI,
Iy, = fo :IHT

is the conditional mean of I, for a given I,. If we
approximate this term by replacing it by the un-
conditional mean (I,), the equation of motion has
the form of a Fokker-Planck equation for ®,(I,),
with diffusion rate

D(I,) =8I, (28)

in our dimensionless units. We can now use this
form of D(I,) together with the steady-state solu-

1 92 tion for @ (I,) given by Eq. (6) to substitute in Eq.
+§_87$ [87,¢,(1)]. @7 (26). To a reasonable approximation when a, ~a,,
Iy.~a, and [, ~+a,, so thatwe obtain from Eq.
Here (26) for the average first passage time
I
- ftu de” expf,—(I” 2_ 112) — (a?, - %dl)(f” - I') 1- erf(I” 'El'az) (29)
st 4r 1-erf(l' —3ay)"

For approximately equal pump parameters, the
time T is found to vary between 1.5 natural units
of time when g, ~6, to 70 units-when a,~10, to

9x 10° units when g, ~15. The natural units of
time are probably in the range 10-100 usec for a
homogeneously broadened dye laser. Evidently
the crossover time becomes very long when the
laser is operated sufficiently far above threshold,
where the instability effectively disappears. How-

ever, closer to the region of threshold, the
switching effects should be both rapid and pro-
nounced.
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