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Formulas are derived for the mean values and variances of the energy distributions of the levels of an
atomic configuration and of the radiative transitions between the levels of two configurations (in
intermediate coupling). The variance cr' of the distribution of the eigenstate energies belonging to a given
configuration is considered first: cr' is expressed as a linear combination of squares and cross products of the
usual Slater electrostatic and spin-orbit radial integrals. It is shown how this expression can be used to
check the numerical matrices of energy-integral coefficients. Then expressions are derived for the mean
value and for the variance of the weighted distribution of the transition energies between two configurations
(the weight of each transition being its strength) in the nl +' —nl n'l' and nl n'l' —nl n "l" cases.
This derivation is based on the second-quantization formalism. An extension is made to the case of
complementary configurations. For transitions nl" +' —nl"n'l', an explicit formula is obtained for the
shift between the mean energy of the transition array and the difference of the mean energies of the
configurations. Numerical tables of the angular coefficients appearing in cr are given for most cases where l,
l', l" &3. The main application presented here concerns highly ionized spectra of molybdenum, with
transitions between 3d"+' and 3d 4p, 3d 4f, 3d"Sp, and 3d 5f. The agreement between experimental and
theoretical {ab initio) mean wave numbers and variances is good. A discussion of the physical conditions of
applicability of the results to experimental situations is given.

I. INTRODUCTION

In the past few years, the spectroscopy of highly
ionized atoms has gathered large momentum main-
ly from two factors: the research in thermonu-
clear plasmas and the development of x-ray astro-
physics. Quite often, it happens that ground con-
figurations of these atoms possess many equiva-
lent electrons, e.g. , 3d for Mogul-MoXXIV
and for SnXXIII-SnXXXII, 4d" for WXXXI-WXXXV'
and 4f" for Wxvlll-Wxxvlll. 6 The important tran-
sitions of these atoms, which belong to the types
l ~-l l' and l l'-l"l', appear in the range 5-
150 A. In all of these cases, the width of the tran-
sition array is much smaller than the mean wave-
length. Apart from some exceptions (e.g. , in the
2p configurations of FeXVIII-Fe XXII and the like )
it is impossible to resolve the numerous individu-
al lines and therefore the spectra show character-
istic "bands, " each of which originates in a differ-
ent ionization stage and pair of configurations. It
must be stressed that although the individual lines
are merged together by various line-broadening
mechanisms (such as instrumental width, Doppler
effect, Stark broadening, etc.), the spectral
widths of these bands owe very little to these ef-
fects and come essentially from the spread in en-
ergy of configurations and transition arrays. The
existence of these bands made hardly possible the
interpretation of the spectra, and even the identi-

fication of the ionization stages, classically based
on the classification of individual lines. As a con-
sequence of this lack of means of interpretation,
there is a large amount of unpublished material.

The present work is concerned with the descrip-
tion of the bands as such, i.e., as statistical en-
tities characterized by their first two moments,
namely, their mean wavelengths and spectral
widths. Previous work on this question is scarce.
Important numerical studies have been carried
out by Cowan. ' Concerning formal theories,
Moszkowski" treated the problem of the widths of
transition arrays with simplifying assumptions.
He also obtained the width of the (nl)" configura-
tion, for which I ayzer gave later an elegant
derivation. In the present work we expose, in
greater detail than in a short previous article, '
the methods and the formal and numerical results
involving all the relevant radial (Slater and spin-
orbit) integrals. This description, although initi-
ated by the necessity of interpreting highly ionized
spectra, is however more general and could be
useful in any event when one wishes to refer to
transitions between two configurations as a whole.
For instance, in the case of ordinary x-rays, it
allows to take into account the coupling of the hole
in the deep shell with the external open-shell elec-
trons. This could be a means of explaining some
recent high-resolution x-ray measurements
and perhaps of evaluating the effect of the solid
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on the emitting atom. Also, in the classical spec-
troscopic studies of very complex spectra (lanthan-
ides, actinides), it can provide a help for evalu-
ating the spectral range of a transition array.

In the following, we first describe which theo-
retical model we have considered for computing
the expressions for the first and second moments
of the distributions of states in an arbitrary con-
figuration. Then, we present the calculations con-
cerning the transition arrays in the cases l
l"l' and E"l'-l"/", for which we give analytical
formulas, both for the mean wave number and for
the spectral width. These formulas are tabulated
to allow quick computations in the most common
cases. Finally, we describe in some detail the
application to the spectra of highly ionized molyb-
denum MoXV-MoXXIV, where we computed the
transitions Sd" -Sd nl, with N running from 0 to
9 and nl being 4P, 4f, 5p, and 5f, and compared
the results with experiment.

efficients (pp. 17S and 179 in Ref. 15) through the
use of formal Sj coefficients.

The part Of 02 reSulting frOm prOduCtS Of eleC-
trostatic and spin-orbit matrix elements vanishes.
This fact can be understood without calculation.
Consider a coupling where the electrostatic oper-
ator is strictly diagonal (the corresponding eigen-
states, denoted I () = ICOSI.JM), would generally be
obtained through a diagonalization). Products of
any electrostatic (Slater) radial integral R' and of
any spin-orbit integral & have a null coefficient in
both sums of Eq. (2): on one hand, in the second
sum, all g's are absent from the trace, due to the
Lande center-of-gravity rule in any Russell-
Saunders (RS) term; on the other hand, in the first
sum, any product R"f only appears in the squares
(g; IH I g;)2 of the diagonal elements and its coeffi-
cients, for all the states lg, ) of a given RS term,
are a constant times the relevant coefficient of &:
again the center-of-gravity rule shows that their
sum is zero.

II. STATISTICAL WIDTH OF A CONFIGURATION

The standard deviation of the state-energy dis-
tribution in a configuration is the square root of
the variance

i.e., of the average value of the squares of the en-
ergies of the eigenstates y; minus the square of
the average value of these energies. The only part
of the nonrelativistic Hamiltonian H which is rele-
vant here is the sum of the electrostatic and spin-
orbit operators G and A: hence we use

g 2

H=G+ A= P +g((r;)s; '1; .
i& j=i +ij i =&

For real Hermitian matrices, it is well known

that the following quantities are invariant under
any orthogonal transformation: (i) the sum of the
diagonal elements (the trace) and (ii) the sum of
the squares of all the elements. Using these
properties Eq. (1) can be written

c'=- g((g; IH IP,))'-] -g(P; IH I (;)(, (2)
g i, g=f Eg i =j

where the sum indices run over the g basis states
of the configuratiori in any coupling scheme.

For the part of 0 purely due to the spin-orbit
operator, the convenient coupling scheme is pure
j-j coupling. The matrix elements are easily
written and the summations carried out directly.

For the purely electrostatic part of 0, the con-
venient basis scheme is that of Slater determin-
ants. The method used for writing the matrix ele-
ments is that described by Condon and Shortley, "
except for the replacement of their numerical co-

A. nl+ configurations

In the case of an nl configuration, the a expres-
sion would in principle contain three types of
squares and cross products of the Slater integrals
E"—= E'( ln, ln) and of the spin-orbit radial integral

~ I2 ~d'~,
0

namely, E"E', E"l', and K . But in fact (i) the
contributions of the E'f type vanish (see above);
(ii) we have extended the Hamiltonian to take into
account the second-order energy effect ryi. (1. + 1),
first proposed by Trees, ~ which is frequently in-
troduced in the parametric studies of intermediate
coupling because of its numerical importance.

For these reasons, the result for 0' is presented
in Table f(a) as the sum of four contributions:

O' =Dj+D2+D3+D4,2 (3)

where D&-D4 correspond, respectively, to the ra-
dial parts I'I'", gI'", 0.', and f'.

Parts D&-D3 have the same dependence on N,
namely,

N(N —l)(4l —N + 1)(4l N+ 2), -
a result which has already been suggested for two-
electron interaction effects by Moszkowski and
later demonstrated by Layzer. " As concerns the
parts in c. (D~ and Da), this is not surprising be-
cause Tree's operator, n(L)2, is, within an addi-
tive constant, a two-electron operator.

Other second-order electrostatic effects on the
energy levels, due to far-configuration mixing,

' correspond to operators of the type 'EZ~&q-~( N~uq )
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TABLE I. Different parts of the formula giving the variance 0 of the distribution of the level. energies belonging to a
given configuration. g =N{N-1)(4/ —N+1){4/-N+2); b =N(4/-N+2)N'(4/'-N'+2)

(a) Configuration ool: o = QD;, where

l l k1 —(—1)a+
(2/+1)(4/ +1) l l k'

(2l + 1) l k l I k' l g,

(4/ —1}8/(4/+1) ~E (//)& (/l)
0 0 0 0 0 0

l k l1, (/+1)(2/ +1)'
(2l +1)(4l +1) / / 1 2(4l —l)(4l +1) 0 0 0

l l l(l +1)'(2/+1)
(2l + 1)(4/ + 1) 3 / l 1 2(4l —1)(4l + 1)

D4 = N(4/ —N+ 2)K„)

7 4

(h) Configurational n'l': o = QD;+gD'; (see text)

&(k, k') (2 l + 1)(2/' + 1)

l k' l' '
0(k, k') 1 (2l +1)(2l'+1)
(2k+1) 4(2l +1)(2l'+1) (4l +l)(4l'+1) 0 0 OJ 0 0 0

(u unitary operator; k odd), where E', some-
times called a "forbidden" Slater integral, plays
the role of a radial parameter to be fitted in inter-
mediate-coupling studies. The use of Il is equiva-
lent to that of n. In conclusion, the formula for
D& in the first line of Table I applies to all k and
k' values (even or odd), provided that, for each k

having an odd value, the formula is divided by

B. nl+n'I'+ and more complex configurations

In a configuration with two open shells, all the
states can be considered as antisymmetrized
products of states of the two subconfigurations
nl" and n'l' . In this way it-is easy to show that
the formulas in Table I(a) remain valid for all the
products of parameters relevant to only one of the
two subconfigurations. The results gathered in

Table I(b) concern only the squares and crossed
products oi' E'(nl, n'I') and G (nl, n'I ') integrals.
The method used for their derivation is exactly
analogous to that used in the preceding paragraph.

For obtaining the expression of a in nl n'l'
one must add to Eq. (3) the analogous expression
Z; iD, where every radial parameter now cor-
responds to electrons n'l' and N is changed to N',
and D, +D6+D, as listed in Table I(b). The latter
contributions depend on N and N' like

N(4l —N+ 2)N'(4l' N'+ 2) ~—
No crossed product g for t" g aPPears in Table

I(b), as explained by the argument of the preced-
ing paragraph. For the absence of the crossed
product f„,f„,, a similar argument can be found,
in the coupling scheme

[nl aSLJ, n'I' o. '8'L'J']J".

Concerning the crossed products
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E"(nl, nl)F' (n'l', n'l'),

E (nl, nf)E' (nl, n'l'},

E'(nl, nl )6' (nl, n'l '),
and the last two with nl and n'l' exchanged, the
coupling scheme

(nl nSL, n'l' n'S'L')S'L'J'

can be used. Considering

E'(nl, nl )G"'(nl, n'f ')

as a typical example, we group, in the first sum of
Eq. (2), all the matrix elements corresponding to a
given nSL. In this group, the part in E'(nl, nl) is a
common factor, and the other part sums up to a
result proportional to (2S+ l)(2L + l), which appears
in turn as the appropriate weight when the sum is
now extended to all nSL terms. After the division
by g has been carried out, the first term of Eq. (2)
is twice the product of two average quantities and

is exactly cancelled by the second term. For the
absence of terms in

F (nl, n'l')E (nl, n'l'} (k 4k'},

which is a result of our calculations, we have no

transparent explanation.
Similar arguments apply to the cases of

and more complex configurations: Table I is suf-
ficient for building the complete expression of 0

in all cases, by adding the contributions coming
from all relevant subshells and pairs of subshells.

C. Discussion. The 02 check

In a previous paper, "we have computed numer-
ically the standard deviation of the distribution of
energy states in the configurations 3d4, 3d34P, and
3d34s of Fe V, and compared the results with the
values obtained from a direct numerical calcula-
tion using the level energies classified by Ekberg'
with the weight 2J+1 for each level. Comparisons
of this type are satisfactory inasmuch a's the dif-
ferent radial parameters are known with accuracy,
i.e., inasmuch as the intermediate-coupling inter-
pretation is accurate.

An interesting by-product of this study is the
possibility which the formula for 0 gives to check
the matrices of the coefficients of energy parame-
ters "in the computer. " Indeed the methods pro-
posed by Racah, Roth, 9 and others do not a,pply
to all cases. For what may be called -the "0
check, " proceed as follows: give any value to the
radial parameters whose matrix you want to check,
then diagonalize all the J matrices, and eventually
check that the variance of the eigenvalue distribu-

tion agrees with the numerical value obtained with
the formula for cr2 (Table I).

To obtain a more refined description of the dis-
tribution of the level energies in a configuration,
it would be necessary to compute its third mo-
ment, which defines the asymmetry. However this
is outside the scope of the present work.

III. STATISTICAL VfIDTH OF A TRANSITION ARRAY

q =g(a I HI a) (0 I HI 5) (a I Z I 5) (g I Z I a)
a, b

occuring in p, 2, we can write it equivalently

(a IZ I b)(b IH Im)(m IZ In)(n IH la), (6)

where indices a and n (g and m) run over all the
eigenstates of configuration A (8). The second-
quantization method, which was introduced by
Judd in atomic spectroscopy, makes it possible
to write the operators in the form

E = Qa', (n If I P)ay
a~8

for monoelectronic operators Z and A, and

1
aya5('Yg62 Igg2 I&&A)a %62 Xsosse 0

(8)

for the electrostatic interaction. This enables the
specialization of the different operators, occuring
in sums like q, to the relevant electronic orbitals.
Suppose that we are interested in the transitions
between A =nl ~ and B=nl n'l' and in the 6 term
of H. Then the operator Z occuring in the first
matrix element of Eq. (6) can be replaced by ex-
pression (7) with a (P} running over all states

The standard deviation of the weighted line wave-
number distribution is the square root of the vari-
ance

c'=u2-(Vi}'
where

~ [(a IH la) —(b IH Ib)]"zg„
P n=~

a, b

is the nth moment of the distribution. The weight
of a transition is its strength u„and W=Z, „w~
is the sum of .the weights. The sums Z, „run
over all eigenstates g and 5 of respective config-
urations A and 8 in intermediate coup/ing. In the
following, zv~ can be replaced by I (a I Z I b) I',
where Z =Z;z; is, within a constant factor, the z

component of the usual dipole operator.
The question of intermediate coupling may be

dealt with first. Considering, as an example, the
quantity



C. BAUCHK-AB, A OUI, T, J. BAUCHE, AND M. KI. APISCH 20

nlm, m, (n'l'm', m,') of one nl (n'l') electron. In the
same way, in the second matrix element of Eq. (6),
G can be replaced by expression (8) where the
pairs (y, 5) and (e, y) are either both pairs of nl
electron states or both pairs of one nE- and one
n'l '-electron state.

After such replacements have been made in Eq.
(6), each one of the indices a, b, m, and n ean be
allowed to run over a complete set of states, with
the consequence that the sums over 5, nz, and n
can be dropped together with the corresponding
kets and bras. We are left with

q =Q(a I Op I a), (9)

where the Hermitian operator Op is a sum over
magnetic quantum numbers I, and m, of products
of many annihilation and creation operators and of
mono- and bi-electronic matrix elements of Z, A,
and 6, and where states a can evidently be re-
placed by states a' in any other coupling. In the
following, we sometimes use the fact that only the
scalar part of Op is of interest: this property
stems from the fact that the sum

g(o.ZM I To 'I aJM)

for a tensor 7" with k @ 0 is zero.
The direct calculation of a quantity like q for

arbitrary N would be very cumbersome. It is
quicker, in the first step, to try to determine the
dependence of each part of o' (or of p& or p2) on
E and, in the second step, to compute directly its
formal expression for one or two simple cases
(nl shell almost empty or almost closed). As an
example, we present in the Appendix the applica-
tion of this general procedure to the most compli-
cated case, which concerns the E'(nl, nl} integrals
for the nl -nl n'l' transitions.

q'=g(a IZ Ib)(a IG la)(b I A Ib)(b IZ Ia) (10)
g, b

corresponds to an operator Op [see Eq. (9)] of

A. nl + -nl n'l' transitions

In the case of the transitions between configura-
tions 2 =el"' and B =nl "n'1', the variance 0 is a
linear combination of (i) squares and cross prod-
ucts of "internal" Slater integrals E"(n!,nl) (which
we denote E„" and E~ in configurations A. and B,
respectively) and of "external" Slater integrals
F'(nl, n'l') and G'(nl, n'l'); (ii) squares and cross
products of spin-orbit integrals f„, (which we de-
note f«, & and g„, ~ in respective configurations
A and 8) and r„„

No cross products of Slater and spin-orbit inte-
grals occur. Indeed a quantity like

rank 1 in the spin space, whose scalar part is
therefore also of rank 1 in the orbital space. To
such an operator the Lande center-of-gravity rule
applies, and yields q'=0.

The complete results for this kind of transitions
are presented in Table II. 0 is equal to the sum
Z; &H, . In the H, quan. tities, the factors depending
on N are labeled x, y, z, u, v, and gg and are de-
fined in the caption of the table. With the assump-
tion E„' =E~, the N dependence of II& would become

x+y -2z =2N(4l -1)(4l -N+1),
a result in accordance with Eq. (3.6) of Moszkow-
ski. ' The resemblance between expressions H&

and D, (Table I) is considered at the end of the
next paragraph.

B. nl n'l' —nl n "l" transitions

The complete expression for 0. in the case of the
transitions between configurations nl"n'l' and
nl n'l." is presented in Table III. In the expression

8

0 = E+ E'+E&
i=2

not only the crossed products of Slater and spin-
orbit integrals are missing (see above}, but also
those of the F'(l, l)E'(l, l') and E'(l, l)G (l, l') types.

The resemblance between expressions E&, E2,
E~, E, (Table III) and D&, D „D6, D, (Table I) is
noteworthy. It can be explained through the follow-
ing argument. Consider the sum

g(a I G la)(a IG Ia)(a I Z Ib)(b I Z I a)
a, b

(a cnl "n 'l ', b e nl"n" l "}

which leads to expressions E&-E4. Replace Z by
its second-quantization expression [Eq. (7)] and
carry out the sum over 5: because it is acting be-
tween (a I and I a), the operator Z,Z Ib)(b I Z can be
written

g a„(& I z I p)a Ba,(y I z I &)a,
aB y5

a (n Izl p)(pl@ l5)a,
n 6

=pa —,
'

I (n'I '
I I & I I

n" l ")
I
~a

= 3 I
(n'1'

I I x I
ln" l') I

'

where &, b (p, y) run over all the states of an n'l'
. (n"l") electron. Therefore the strength (a IZ I b)
(b I Z la) of transition a bplays no role in t-he con-
sidered expression, and the remaining computa-
tion is identical with that of the width of the state-
energy distribution of configuration nl n'l' (Sec.
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TABLE II. Different parts of the formula giving the variance & of the energy distribution of the transitions between
z/ + and «+p'/' configurations. E~~ andE~~ are the Slater integrals E"(z/, z/) in the configurations A =pgl +~ and B
=~L n'/' respectively. 0» ~ and K» ~ are the spin-orbit integrates in the respective configurations.

x =N(N+ 1)(4l -N)(4/ -N+ 1), u =N(4l -N)(4l —N+ 1),
y =N(N-1)(4l -N+1)(4/ -N+2), v =N(N- l)(4l -N + 1),
z=N(N-1)(4l -N)(4l -N+1), ce=N(4l -N+1) .

26(k, k') 1 ~+~i (2l + 1)
(2k+ 1) (2/+ 1)(4l + 1) / / k' (4/ —1)8/(4/ + 1)

lkl) l k'l)
u ~'+

&&

0 j ) (gE~ E~ +yEg Eg —2zEgEB )

l' l' k l l k' l l k' l l k'

(2l+y) (2, +y) (l k l)~
~

l' k' l' l k' l

(4l 1)2l(4l+1) 'io 0 0) Eo 0 0 0 0 0
4 A '(// ).v 8 '(/L )l

k k' 1 l' l' k l' l' k

H3 —— -2 +
p~p pl /' l l l l 1 l l k' (2l +1)(4/ +1) 3 (2/'+1) ~

l k' l' l k /

fuS'zG (ll')+vE'G (ll')1

l l k I ~1 l /I 1
2&(k,k'), 1

~
(2l +1) (2/'+1)

(2l+l)(2k+1) (4l+)) l' l k l' l k') 4l(4 l1+)

k' l'

(l k /I l k' lt(/' k /'t(/' k' l'

"«o o& o o o&&o oo&&o o o
1

24(k, k')
(2l'+ ~)(2k+) )

k

(4l+1) 3 ' (2l'+1)I (3 ' (2l'+1)
&

l'

4 (4 ) 0 0 0 i0 0 0) sad(//')d (/l')

l' l' k k k' 1 k k' 1 1 l l'

g~p g (2l'+1) l l k' l l' l' l' l l (4l +1) l' l k 3 ' (2l'+1)—2(—1)' —~(k', 1)-

(2l+pp(2l'+y)& (l k l IL' k l' (l k' l'

2l(4l+') l&o o o ~o'o o &o o o

For the spin-orbit contribution:

H7 = (N+ 1)(4l —N+ 1) + 1 ~n), A+N(4/ —N+ 2) +1 ~n1 B+ 4 ~n'l'
l(/ + 1) g l(l + 1) g

l'(l'+ 1)

l(/+1) 4 + l(l +1)+l'(/'+1) -2 l(l +1)+/'(/'+1) -2
2(4/ +1) ~

& &~ & & N 1)
4(4/ +1) ~

& &~ '&'
4(4/ +1)
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TABLE III. Different parts of the formula giving the variance 0 of the energy distribution
of the transitions between ~l yg'l' and peal ~Q" configurations.

&E"=& (ll)(in l l') -+ {ll){inl"l"), &&n~ =&n~(in l"l') —En'(in l l )

y =N(N —1)(4 l —N+ 1)(4 l -N+ 2), t =N(4 l -N+ 2)

2 +1 3 l k l l k' l
X

(4l —1)8l(4l + 1) 0 0 0 0 0 0

I I

&(k, k') (2l + 1)(2l'+ 1) 1

A ~0k'~0

E2 . same as E2 with l" replacing l'

I 2 I /

6(k, k') 1 (2l+1)(2l'+1)
~ EGa(EE, )~a (ll, ){2k+1) 4{2l + 1)(2l'+ 1) (4l + 1} 0 0 0 0 0 0 j

E3 . same as E3 with l" replacing l '

E4 .. same as E4 with l" replacing l'

II II

2(-1) ~(k, k') (2l + 1)(2l'+ l)(2l" + 1)E5= ~~
&~~0& ~o (2k+ 1) (4l + 1)

k k' 1
1 (2l + l)(2l + 1)(2l' + 1)Ee= +l" l' l 2(2l + 1)(2l'+ 1)(2l + 1) (4l + 1)

E k l' (E O' E")
EG (EE')G (ll")

II II II II

l l' 1 l l k' (4l +1)

EY . same as E7 with l' and l" interchanged

For the spin-orbit contribution:

l(l + 1) 2
l'(l'+ 1) 2 l "(l"+ 1) 2 l'(l'+1) +l "(l"+1)-2

E8 4(4l + 1) t{ ~nl) 4
~n'l' 4 ~n" l" 4 n'l' n" L"
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II).- This argument can also be used for explaining
the analogy between expressions H& (Table II) and

D& (Table I).
Moreover, it can be easily understood why the

differences

dd'=F (inl "l') -E'(inl l')
of the "internal" Slater integrals appear in E&
(Table III). If the other parameters were zero,
both configurations would be split by the energy
contributions in F (l, l) only. Due to the intensity
selection rules, the transitions would occur only
between states with the same l" part, and would
coalesce into just one line if the ~" quantities
were zero.

IV. AVERAGE WAVE NUMBER OF A TRANSITION
ARRAY

%e turn now to the results for the weighted
average energy T„of the transition array between
two configurations. More precisely, our interest
lies in determining the relationship of T,„with the
difference of the average energies E,„of the states
of the two involved configurations. For these
average energies, tables are available.

The weighted average wave number of a transi-
tion array (the weight being the transition strength)
is its moment p& [Eq. (4)]. It is present in the ex-
pression for v2 (Sec. III) and has been computed
along the same principles as p. 2. Using an argu-
ment analogous to that developed about the com-
putation of the expression (11), it is shown imme-
diately that

(

T„(l l"-l I')=E„(l"l")—Z,„(l l'). (12)

But the same type of quick argument does not hold
for computing the quantity

g(b I G I b)(b I Z la)(a I Z Ib),
a, b

with g eg =l and 5 c8 =l"l', which is part of
T„(l l'-l" 2). As a result of the formal computa-
tion, we obtained for the difference

bE(lNl t I S+2)

=T„(l"l'-l" ) —[E„(l"l')-E,gl" )]

the formula

5E =N(2l + 1)(2l'+ 1)~(gfP'"(1 l ~)
4l + 1 &~~p

l k l0 2 1
0 0 o,l —,b» —,(»+1)(» +1),l.

Thus there exists a shift between the weighted
average energy of a transition array and the differ-
ence of average energies of configurations of these
types; its formal expression is not symmetrical
with respect to the half-filled l-shell. This shift
has already been put into evidence by Cowan in
1968, for the 3p"'~-3P 3d transitions in the series
FeLX-FeXHI. Other examples are presented in
the following paragraphs.

V. COMPLEMENTARY CONFIGURATIONS

From the results for the l"'~-l"l' and l "l'-l"l"
types of transitions, those for the respective com-
plementary types

l4l - N+fl l4l'+2 l4l - N+2l!4l'+g

and

l41-8 2ls4l'+glts4l "+2 l4l- E'2l ~4k'Qle4l" +g

can be immediately deduced.
It is well known that, formally, the relative en-

ergies of the levels are identical in complementary
configurations, "but for the change of sign of the
coefficients of the spin-orbit parameters, and that
the same property is valid for the matrix elements
of nonscalar tensor operators, except for a pos-
sible phase factor. Therefore quantities like those
in expression (11) are transposable to complemen-
tary configurations. The same is true for the M'

shift [Eq. (14)], as can be shown by considering
the effect of adding a constant to either one of the
6 matrix elements in the definition of T„

& l(a IZ I b) I [(b I G I b) - (a I G la)]
Q,, q l(a IZ I b) I

In conclusion, for both the variance c (Sec. III)
and the shift 5E (Sec. IV), the formulas for com-
plementary types of configurations are identical,
e.g. ,

bZ (I El g
IN+& ) bE (i4 I-N+2 s4i/'+ 2141 N+1 I i4 l'+2)

This correspondence, together with the evident
relations

o'(C -C') =v'(C'-C)

and

with

+ Qg'aG"(1 l') ~,

l k ital' k. I''I l k l=
0 0 0&~~~0 0 0&~ l' 1 l'

(14)
5E(C C') =-5E(C' C)

valid for any pair of configurations C,C ', allows
one to treat the case of some types of transitions
involving holes rather than electrons; for instance,
the cases 1s2P'ml"-1s'2P'nl" and nl"' "1s
-nl"' "2P are identical (in particular, 5E =0).
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VI. NUMERICAL APPLICATIONS

A. Numerical tables

In Tables IV and V, we list the numerical values
of the N-independent parts of the angular coeffici-
ents in o. of the electrostatic-parameter products
appearing in Tables II and III, respectively.

Table IV, for the l '-l"l' transitions, includes
all the cases for which l, l' ~ 3, except s -sP.
Table V, for the l l'-l l" transitions, includes all
the cases for which l =1 or 2 and l', l" ~3. It
must be noted that all the entries in these tables
have been multiplied by 10', and that using once
gll the numbers of the relevant column insures that
the correct total expression for the electrostatic
part of (T is computed.

B. Example: the Fe v spectrum

For an explicit check of our results, we chose
the spectrum of Fe V, where Ekberg" classified
622 and 360 lines in the 3d -3d 4P and 3d 4s-3d 4P
arrays, respectively.

Starting from the matrices for the angular coef-
ficients of the energy parameters and of the tran-
sition amplitudes, we checked that the explicit
computation of all the transition energies and
strengths yielded exactly the same value of 0' as
that obtained with Tables IV and V. Moreover,
using Ekberg's values for the radial parameters,
we could compare our calculated 0. value to that
deduced from Ekberg's experimental data for the
line wave numbers and estimated intensities. That
comparison, published previously, ~ showed a
reasonable agreement. It was noted that the width
of each transition array is smaller than that of
either of the two relevant configurations (up to
four times smaller in the case of the 3d 4s-3d 4P
array). Following an argument given by Cowane
in 1973, it can be predicted that the l"l'-l l" ar-
rays are particularly narrow. The dominant ra-
dial integrals are generally the core electrostatic
integrals E (nf, nf). But they appear in o (line E&
in Table III) only through the differences

bE =E"(inl"I') -E"(inf"l"),

which are much smaller.

VII. APPLICATION TO THE SPECTRUM OF MOLYBDENUM

A. Comparison between the experimental and theoretical spectra

'The spectrum of molybdenum is of great im-
portance for tokamak research. Furthermore, it
has been recorded recently between 10 and 100A
not only in tokamaks' but also in high-power
vacuum sparks' and in laser-produced plasmas. '

We have applied the above formulas to the follow-
ing transi. tions: Sd""—Sd"4P, Sd""—Sd"4f, Sd""
—3d"5p, and 3d""—Sd"5f. The energies and
Slater integrals have been computed by the rela-
tivistic-parametric-potential method, using the
HELAC code. "In order to use our nonrelativis-
tic formulas, the relativistic Slater integrals were
averaged following the prescription of Larkins. "

In Figs. 1 and 2, we compare transition patterns
explicitly computed in Mo XV& 3d' —3d'4P and
Sd' —3d'4f with a Gaussian curve whose mean
value and variance are calculated using formulas
obtained above. The computed lines are displayed
with an intensity proportional to their strength and
with a linewidth assumed to be equal to 0.03A,
which enables the summation effect of neighboring
lines to be apparent. These two cases are very
different. In the 3d —4P case (Fig. I) the Gaussian
curve nearly fits the envelope of the group of lines
whereas it is not so in the Sd —4f case (Fig. 2).
However, both cases are interesting because they
clearly show that the probability of finding a line
belonging to one pattern at a large distance from
the average is very small although not zero. This
is all the more striking since the ground configura-
tion in these two cases has only two levels, which
is really a limit for the usefulness of a statistical
description.

Figure 3 shows a theoretical spectrum con-
sisting of a superposition of several individual
transition arrays computed separately. It is com-
pared to the experimental spectrum of molybdenum
(shifted upwards for sake of clarity) obtained from
a higher-power vacuum spark. ' 'The relative
weights of the different ionization stages are fitted
to experiment in a simple manner: they vary
linearly between 1 for Mo XVI and 0.1 for
Mo XX[II. The relative intensities of the different
transition arrays within each ionization stage
were taken as equal to the theoretical ratio ob-
tained for Mo XV" in a plasma having the charac-
teristics: n, =10" cm ', QT, =200 eV. It may be
noted that the transition arrays, here, are not
described by Gaussian curves but actually by
Lorentzian profiles, possessing a full width at
half maximum equal to that of a Gaussian whose
variance is computed with the formulas of the
preceding paragraphs. This was done in order to
reproduce the effect of the photographic plate,
having an apparent strong background.

It can be seen that between 36 and 50 A, where
one does not expect any other type of transition,
the model agrees very well with experiment.
Between 20 and 36 A, the agreement is still good,
but one sees that there are some experimental
peaks which have the same wavelengths as some
"dips" in the theoretical spectrum. This suggests
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TABLE IV. N-independent parts of the coefficients of the parameter products in the vari-
ance & for l +~-/+/' transitions. {All entries have to be multiplied by 10 4.) E~~ and E~~ are
the Slater integrals E~{//) in the configurations A =/++ ~ and B=/+/' respectively.

x =N(N+1)(4L -N)(4/ -N+1),
y =N(N —1){4l-N+1)(4/-N+2)

z =N(N-1)(4l -N){4l —N+1),

u =N(4/ —N) (4/ -N+1),

, ~ =N(W-1)(4/ —N+1),
u =N(4/-@+1) .

pg+ i ps pE+ 1 pNd dE+ f dip dE+ i
deaf f + fNd

{10 ') (10 ') (10 ') (10 ') (10 ')

xE~E~ +yEgEg —2zE~Eg 2
2

4

4
6
6
6

2
4
6
2
4.

2

6

12 12 1.7033 1.7033
-0.3214 -0.3214

-0.3214 -0.3214
0.8034 0.8034

0.4986
0.0598

-0.0894
0.0598
0.0952

-0.0151
-0.0894

0.0151
0.1582

uE~E (ll') +vE~" (ll') 2
2

4
6

2

2
4
2
4

-24 -4.7691 -5.4504
0.4285

0.8998 1.0284
-1.0712

-1.7095
-0.1252
-0.2049
-0.1995

0.3065
0.0317

uE' G' (//')+vE" G' («) 2

. 2
2
4

6
6

-80 -8
-30.8571

-3.4853
0.7481

—0.8398
-3.6250

0.7044
-3.4005

0.9738
-1.1312

0.5827
-2.4346

-0.5478
-0.3862

0.3415
—0.0062
-0.3512

0.0415
—0.2926

0.0557
-0.6851

70.2857 32.7160 20.0554
0.4199
0.4199
7.8576

13.2781
0.2415
0.2415
5.1265

zoG (/l')G" (ll')

3

1
3

266.6667 77.3333
15.4286

15.4286
39.0437

88.2030
2.0282

2.0282
18.5941

49.0804
-2.4859

4.3901
-2.4859
10.8956
—l.0180

4.3901
-1.0180

7.5390

52.5540
-1.4384

1.6955
-1.4384

6.7971
-0.5747

1.6955
-0.5747

4.8893

2
2

4
4

-16
4.4082

-25.5144
-1.2850

-3.4266
13.8742
-7.2532
-6.7187
-3.9193

1.5328

-8.5658
7.4459

-4.3831
-6.0111
~2g7312

0.6684
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TABLE V. N-independent parts of the coefficients of the parameter products in the variance
for l l'-l l" transitions. (All entries have to be multiplied by 10 .)
&& =& («) (in l"l') -+ (ll) (inl l"),
y =N(N- 1)(4l -N+1)(4l -N+ 2},
t =N(4l -N+2) .

(10-4) (10 4) (10-') (10-4)
d"P —d"e'

(10 ')
gag pic

(10 )

~~Ag~k' 1.7033
-0.3214
-0.3214

0.8034

1.7033
-0.3214
-0.3214

0.8034

1.7033
-0.3214
-0.3214

0.8034

~~'(«')~' (ll'} 2 45.7143 45.7143 25.3968 25.3968 16,9312
6.4133

tG (ll')G («') 1
1
1
3
3
3
5
5
5

166.6667 168.8889 168.8889
-5.7143 -5.7143

—5.7143 -5.714,'3
27.8134 27.8134

93.8272
-3.1746

-3.1746
15.4519

93.8272
—3.1746

-3.1746
15.4519

93.1973
-0.907,0
-1.0307
-0.9070

7.6594
-0.4581
-1.0307
—0.4581

6.1048

w'(«') &' («')
2
2

w («")+ («)

-53.3333 -53.3333 -29.6296
-9.7959 -9.7959 -5.4422

42.6667

—29.6296
-5.4422

18.1406
10 ~ 0781

—21.7687
4.4344

—4.5810
—9.0703
-4.0312
-0.2082

18.1406
10.0781

tG («")~" («") 0
0
0
2
2
2

0
2

0
2

0

1944.4444 1944.4444
-22.2222 -22.2222

-22.2222 -22.2222
55.1111 55.1111 58.0408 33.3333

-2.7211

—2.7211
16.7968

1100
-3.1746
-3.1746
—3.1746
17.2336
-0.9070
-3.1746
-0.9070

9.1711

1100
-3.1746
-3.1746
-3.1746
17.2336
-0.9070
-3.1746
—0.9070

9.1711

e'(«")C" («") 2
2
2
4

u"(«')+' («") 2
4.

~ tG («')& («) 1
1

.1
3
3
3
5
5
5

0
2

0

0
2
4.

-266.6667 -266.6667
-10.6667 -10.6667 -27.4286

-8.4656

—73.1429

28.5714
-70.8571 7.0671 -28.5714

-41.2051

-333.3333 -844.4444
-133.3333 14.2222 -' 180.5714 -44.4444

8.4656

-63.4921
3.8873

—5.1830
-63.4921
-5.1830
-0,1440

—25.3968

—281.4815
-25.3968

4.2328
9.5238
1.1662

-20.6025

-63.4921
3.8873

-5.1830
-63.4921
-5.1830
-0.1440

-29.0249
-6.7187

-434.9206
-0.9070

2.7211
4.2328

-15.3763
1.0174
4.8100
1.3743

-13.8956
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TABLE V. (Continuedj

pN AN@/ pNd pNp/ pNd pNf de dN de dNdI deaf dNdI

(10 ) (10 ) (10 ) (10 ) (10 ) (10

tl (ll')G (ll ) 2 0
2 2
2 4
4 0
4 2
4 4

133.3333
5.3333 23.5102

7.2562

44.4444
-2.7211

3.6281

50.7936
-3.1098

4.1464
21.1640
1.7277
0.0480

tF (ll")G (ll') 2 1
2 3
2 5
4 1
4 3
4 5

37.3333
6.8571

42.6667
7.8367

14.8148
2.7211

0
0

18.6589
-3.8009

3.9265
4.7511
2.1116
0.1091

000

00
O)

00-
IO

00—

00
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00—
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00—
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00-
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CV

00—

t

43.00 44.00 - 45.00
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'
46.00 47.00 48.00

FIG. 1. Transiti. on array Mo XVI 3d -M 4P. Com-
parison of the computed wavelengths and intensities of
individual lines with the theoretical distribution
(assumed to be Gaussian), using moments calculated
with the formul, as presented in the text and tables. The
arrow indicates the place where the maximum of the
Gaussian curve would be if DE IEq. (13)]were not taken
into account.

that one should consider some additional transition
arrays like 3d""—3d"6f, etc. , as well as Sp'3d"
—3P'3d"4s, etc. , but the relative intensities of
these transitions have not yet been calculated.

B. Analysis of the N dependence

Figure 4 shows the shift, in wavelength, cor-
responding to 6E defined by Eq. (13), for transi-
tions 3d""—3d"4P and Sd""—3d"4f. Please note
that the values quoted here differ by nearly a
factor of 2 from the entries in Table 2 of Ref. 12,
which are erroneous. It is clear that this shift is
nearly proportional to N and is not symmetrical
with respect to the half shell. Its very large value
for Mo XVI 3d' —3d'4f is illustrated on Fig. 2 by
the arrow which indicates the place of the wave-
length corresponding to the difference between
centroids of configurations.

In Fig. 5 we have plotted the spectral widths of
the transition arrays versus N. Here, the sym-
metry around the half-filled subshell appears only
for Sd —4p-type transitions and not for the 3d —4f
type. This can be explained by the behavior of the
Slater integrals as a function of At (or stages of
ionization). It occurs that the largest numerical
contributions to the formula of a' are the first
two terms H, and H, (Table II), which are actually
of different signs. 'The relevant integrals in 3d"4p
do not change very much with N, yielding a nicely
symmetric curve for cr. On the contrary, the
variation with N of the Sd"4f integrals is quite
conspicuous, yielding the other curve of Fig. 5.
Thus, considering a series of ionization stages
of one element, it is difficult to predict which one
will give the broadest arrays without evaluating
the different Slater integrals explicitly.
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FIG. 2. Transition array
Mo XVI Bd -Bd 4f. Com-
parison of the computed
wavelengths and intensities
of individual lines with the
theoretical distr ibution
(assumed to be Gaussian),
using moments calculated
with the formulas presented
in the text and tables. The
arrow indicates the place
where the maximum of the
Gaussian curve wouM be if
6E fEq. (13)] were not taken
into account.
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VIII. DISCUSSION

It is obvious that the results of our formal study
can be useful when the transition arrays of in-
terest are composed of numerous lines, and even
more so when these lines cannot be observed
separately. 'The case where the number of levels
is small in both involved configurations is there-
fore not relevant.

When comparing these results with experiment,
one must be aware of the underlying physical
conditions, which may not always be satisfied.
The formulas for the width and mean of a transi-
tion array suppose that all the states of the upper
configuration are equally populated, i.e. , that the
levels are populated according to the statistical
weight population (SWP). This happens if the
plasma is in local thermodynamic equilibrium
(LTE), and if the variation of the Boltzmann
factor e' ~~ ~ ~' can be neglected, i.e. , if &@

p

«kT, . 'There &E„p is the energy spread of the
upper configuration, and T, is the temperature of

the electrons of the plasma, which are responsible
for the populating mechanisms.

Conditions for LTE are not usually met in most
high-temperature (T,) and low-density plasmas
of interest (such as in tokamaks) which are much
nearer to coronal equilibrium (CE). Thus, in
gene ral, the expe rimental arrays may appear
more or less "distorted" when compared to our
formulas.

However, there are important particular cases
where SWP is approximately fulfilled by the levels
of the upper configuration: the cases, for highly
ionized atoms in CE plasmas, when the ground
configuration is nl "and the resonant configura-
tion is nl" (n+ l)l' and decays radiatively to nl""
(mainly). In this case, the population of the non-
metastable levels of nl (n+ 1)l' is governed pri-
marily by the balance between collisiqnal excite;
tion from nl" ' and radiative deexcitation to it, if
effects of cascades from higher levels can be
neglected. Taking into account the usually valid
condition &E «kT, for the energy spreads &E of
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FIG. 3. Comparison be-
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spectrum of Mo XV-
Mo XXII. Theoretical. trans-
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both relevant configurations, we know that excita-
tion cross sections are approximately proportional
to line strengths for allowed transitions, and we
derive the existence of SWP in nl~(n+1)l'.

sw (A)
]IL

0.8

. 0.7.

This argument explains the good agreement
between the formulas and the experimental spectra
presented for 3d""—3d 4p in Fig. 3, although
the plasma —here a vacuum spark —is not in LTE;
in the same plasma conditions, other arrays,
e.g. , 3d 4P —3d"4d, may be quite distorted. The
transition arrays 3d' —3d'4P and 3d'4s —3d'4p,
which have been obtained by Ekberg" with a sliding
spark, compare also nicely" with our formulas.

'The comparisons with experiment might be

0.6

0.5
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0.2

—3d 4f'
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FIG. 4. Shift, in angstroms, corresponding to 5&
fXq. (13}3for transitions 3d "-3d 4f and 3d "-3d 4p
of Mo XVI-Mo XXIV. The curves represent the shift
between the difference of the centroids of the config-
urations and the weighted mean of the transition arrays
vs Ã.

0.1

3 4 5 6 7 8 N

FIG. 5. Spectral. width of the transition arrays
3d++ -3d 4f and 3d + -3d 4P in MoXVI-MoXXIV,
plotted vs ¹
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spoiled because of some other reasons.
(i) In our formulas, we use line strengths as

weighting factors instead of the transition pro-
babilities. The only difference, apart from a
constant factor, lies in the v' term. We have
verified that the influence of the latter can be ne-
glected in the examples we have computed.

(ii) We have supposed, right at the beginning,
that there was no configuration mixing. If there
were some it would obviously shift and distort
the distribution of levels. Moreover, because
several different electric dipole radial integrals
would have to be introduced, they would not
simplify out in the calculation of Eq. (4).

(iii) Another kind of approximation is involved
if one uses ab initio values of the Slater integrals.
Most ab initio evaluations are too large for neu-
tral atoms, but approach the empirical values
when the ionization stage goes up.

It is worth noting that approximations (i)-(iii)
are valid, in particular, for highly stripped heavy
atoms in hot plasmas.

Finally, our formulas are not explicitly rela-
tivistic. This is a drawback in the cases (e.g. ,
x-rays) where one spin-orbit interaction is much
larger than the Slater integrals; in that case,
the spectrum would show several peaks, which we
could not reproduce through the present results,
which concern global distributions only. A com-
pletely relativistic treatment (jj-coupling scheme)
would involve relativistic-configuration mixing
and is outside the scope of the present study.

However, the existing data on x-ray linewidths""
suggest that there may be a contribution to the
linewidths of the separate peaks, for transition
elements, due to the interaction of the holes in the
deep shells with the outer electrons. 'This would
mean, in fact, that when the hole is produced, a
kind of shake-up occurs which leaves the atom
with a certain probability to be in any one of the
possible excited states. Then, formulas akin to
those of the present work might give more syste-
matic results than previous attempts (e.g. , Ref.
29) to tackle this problem.

IX. CONCLUSION

We have presented above a formalism which
allows computation of the first and second moments
of the distributions of energy levels and line wave
numbers in atomic spectra. Two phenomena,
which have been noted for many years by experi-
mentalists, are clearly apparent. First, for
some types of transitions, the mean wave number
is not equal to the difference of the energy aver-
ages of the configurations. Second, the width of
the transition array is, in some cases, much

smaller than the widths of the configurations them-
selves.

'This work can be helpful in all cases where the
different lines of a spectrum cannot be studied
separately, i.e. , when all the transitions between
two configurations are seen as one broad peak.
For this reason we will derive more general
formulas for transitions between other types of
configurations, for example E"/'"'k""" to /"E'""
I""" ' (some recent experimental results in plas-
mas of heavy atoms involve configurations with
three open shells' ). In order to extend the ap-
plicability of such a formalism, we will also con-
sider the possibility to take into account configura-
tion mixing and relativity.

APPENDIX' CALCULATION OF A PART OF 02 FOR THE
TRANSITIONS BETWEEN A = nl + AND 8 = nl+ n'l'

This example is restricted to the determination
of the coefficients of the products

I"» „s(ml, nl)I""„' „s(nl, nl)

in o'. These coefficients are denoted C„""„'(N),

C~~(N), C„"~~(N), and C~~~„'(N).

(a). It can first be shown that each of these co-
efficients depends on N through a polynomial
whose highest power is 4. Indeed, (i) the total
weight W in Eq. (4) is a multiple of ('„"'); (ii)
considering, as an example, the quantity

q' =g (a/6 /a)(a/G /a)(a [2/b)(b /Z/a)
a, b

in p.„ it appears that the corresponding operator
Op [defined in Eq. (9)] is the sum of operators
acting on two, three, four, and five nl electrons,
yielding contributions to q which are multiples of
('„',), („",'), ('„','), and ('„','), respectively; dividing
those combinatorial quantities by W shows that q'
is the product of N by a polynomial in N whose
highest power is 3.

It is evident that C„"»„'(N)= 0 for N = 0, 4I, and
4l+ I, that Css(N) =0 for N = 0, 1, and 4l+ I, and
that C~~(N)=0 for N=O, 1, 4l, and 41+1. There-
fore C»»„'(N), C»s»s(N), and C~~s(N) contain, re-
spectively, the factors N(4/-N)(4l —N+ 1),
N(N —1)(4l -N+1), and N(N —1)(41-N)(4l —N+ 1);
both C»»„'(N) and C»s~s(N) contain also an unknown
binomial factor linear in N.

(b) The explicit expression of C»s»~, for ex-
ample, can be computed directly by Racah's ten-
sor-operator methods in the simple eases N = 2
and N =4l, which allows the complete derivation
of its formula for arbitrary N. For C„„', we have
proven, through comparing their expressions ob-
tained by means of Bacah's methods and of the
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symmetry relation for coefficients of fractional
parentage with respect to the half-filled shell, "
that

C~~„(N') —= C~~~(4l —N + 1) .

As concerns C~z(N), we have written explicitly
its part of highest degree in Ã (due to that part of
Op which acts on five nl electrons) in the second-
quantization formalism and found it exactly
opposite to the analogous part of C~~~„'(N).
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