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Saturation of two-level atoms in chaotic fields
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Exact solutions are presented for the equations describing the stationary population of a two-level atom in a
nonmonochromatic idea1 chaotic field. The dependence of the excited-state population on the Rabi frequency,
bandwidth of the field, spontaneous decay, and detuning is studied and compared with the results obtained
for phase-diffusing laser light. The validity of the decorrelation approximation is also investigated.

I. INTRODUCTION

During the last two years, increasing interest
has focused on the problem of resonant atomic
transitions saturated under stochastically fluctua-
ting nonmonochromatic light sources. Its aspects
have been discussed in various contexts such as
resonance fluorescence, ' ' ac Stark splitting in
double optical resonance' "and multiphoton ion-
ization. "" The theory of these effects has been
based on the decorrelation approximation"" (DA)
which is rigorously valid for light with perfectly
stable amplitude but a diffusing phase, ""as is
the case with a stabilized well-above-threshold
cw single-mode laser. Under these conditions,
the effect of the finite laser bandwidth is well un-
derstood and some of the theoretical predictions
are in agreement with recent experimental re-
sults. '"' The understanding of these effects under
chaotic fields (CF) is, however, very incomplete.
Relevant discussions have been either purely qual-
itative' or have employed the DA'"" whose validity
in the regime of saturation under a C F is at best
doubtful, unless the laser bandmidth is much lar-
ger than other relaxation parameters (widths). ""
On the other hand, experiments with pulsed multi-
mode lasers correspond much more closely to the
CF case. There is in fact some evidence that
some of its effects may have been seen in a recent
experiment. " It is therefore necessary to gain
quantitative understanding of saturation under
chaotic fields. In addition to its relevance to the
interpretation of experiments, such understanding
provides valuable insight. into the nature of the in-
teraction of strong fields with atomic and molecu-
lar systems.

In recent work, we have introduced a formalism
capable of dealing with a chaotic as mell as a phase
diffusing field. ""The chaotic field with a nonzero
bandwidth introduces considerable mathematical
complications which render exact solutions ex-
tremely difficult if possible at all. Thus the few
cases for which exact solutions can be found"'"
acquire particular significance in this context as
they can provide a guide for the understanding of

more complicated cases. Moreover such exact
solutions are important in their own right since
they contain most of the basic phenomena of the
more general problem.

In this paper I present an exact solution for the
stationary population of a two-level atom (TLA)
strongly driven by a nonmonochromatic ideal C F.
These stationary populations can be measured, for
example, by monitoring the total fluorescence
from the excited state of the TLA. Furthermore,
knowledge of these stationary density-matrix ele-
ments is required in the more complicated theor-
etical calculations of resonance fluorescence and
ac Stark splitting in double-resonance experi-
ments. The TLA is the basic ingredient of satura-
tion studies and although the presence of a probe-
as in double resonance —perturbs the stationary
state, this perturbation does not destroy the basic
features of the exact results, provided the probe
is sufficiently weak. In Sec. II, we introduce
our model of an ideal C F. Starting from stochas-
tic optical Bloch equations, we derive a continued
fraction expansion for the stationary density ma-
trix elements. In the third section we study the
dependence of the excited state population on the
Rabi frequency, bandwidth of the CF, and detuning.
Also we compare it with results obtained by the
decorrelation approximation or equivalently the
solution for purely phase-diffusing laser light.

II. MODEL FOR ATOM-CHAOTIC FIELD INTERACTION

For the C F we adopt the simple model" in which
the complex amplitude of the field e(t) obeys the
Langevin equations

e(t) = —be(t)+ E,(t), e*(t)= be "(t)+E-, „(t), (l)
with Gaussian random forces

&5',(t)F, *(t')) =2b&l& I')b(t -t')
&&,(t)+,(t')) =&+,*(t)&,. (t')) = o

Thus, c(t) obeys a normal Markov process. "
From the first-order correlation function
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(2)

where b and (~ « ~'& are identified with the band-
width of the Lorentzian spectrum and the expecta-
tion value (~ «(t)

~

'& of the electric field, respec-
tively. As a consequence of the Gaussian property
of F,(t) and E,„(t), a higher-order correlation
function fulfills the equation

&«*«,) "'*«„).«„„)"'«, „)&

d Ki —+ —+ (2n+ 1)b p"+ 4p,"dt 2

Q(ii+ 1)i~ 2 W((y Q(ii+ 1)i~ 2 Wt(+i —0 (4b)

d K
i —+-+b(2m+1))p."+&q"=0, n=0, 1;, ". (4c)

S'" and p," are defined by

W"=«.([«(f)
[

'/&
I
«)'&) (P„(f)-P..(f))& = P,",-P.".,

(5a)

P

~* t~ ~ t~("~) p."=&«*(f)~'.(/«(f)'/(/«['&) pio(f)&/[(ii+1)"'&[«/&]~c c.

thus confirming that «(t) is an ideal chaotic field. "
The time evolution of the strongly driven TLA is

determined by the optical Bloch equations" which
under the presence of a stochastic driving field be-
come a system of stochastic differential equa-.
tions. " The usual way to solve these equations
for nonmonochromatic fields has been the DA
which decor relates atom-field averages"-"' "

&«*(f)«(f') P; (i')& = &« *(f)«(i')&&P„(f')&,

with f,„(x)being the Laguerre polynomia1s. 2O Thus
for n= 0, we identify wo=(w(t)& =(p»(t)-p, o(t)& with
the averaged population inversion of the TLA.

Restricting ourselves to the stationary limit of
the averaged atomic density matrix, Egs. (4) be-
come an infinite system of linear algebraic equa-
tions. Eliminating p," and p" in favor of 8'", we
find a three-term recursion formula for W",

where pi&(t) denote the density matrix elements of
the TLA. This DA, although perfectly correct for
the phase diffusion model, '"' can be justified in
general, and specifically for the CF described
above only in the limit where the Rabi frequency
Q= 2li((~ «~'&)'»' —with p, the dipole matrix ele-
ment of the TLA —is much smaller than the band-
width b, or the spontaneous decay rate v or the
detuning & of the mean frequency of the laser
from the resonance. frequency of the TLA. Thus,
in general, the DA becomes questionable if the
driving field is sufficiently intense to saturate the
transition in the TLA. In this approximation,
which we indicate by a subscript DA in the aver-
age, we find for the averaged stationary population
inversion

W" —a„„W"'i—b „W" = (W(t)&n~ 5

with the coefficients given by

A„
((:+2(n-1)b+ A„+A„,

A„
I(. + 2~b+4„„+A„

2 g+ (2n-l)b
4'+ [-,

' ~+ (2n-1)b]'

Introducing the ratio q"= W"/W" ' we obtain the
continued -fraction expansion"

b„ b„

j.-a„„b„„
j 0 ~ ~

and can write the solution of Eq. (6) as

(6)

(8a)

(3)

Note that the same result is obtained for the phase
diffusion model' which has the same spectrum as
our CF but differs in higher-order correlations. "
For the phase-diffusion model, however, (3) is
exact.

As we have shown recently, "the stochastic op-
tical Bloch equations can be reduced to an infinite
set of differential equations for certain one-time
atom-field averages:

di —+ s+ 2bn W" —Q(n+ I)'~'p."
dt

+ Quid p" '+i((:5~=0,

(w(t)& =w'=(w(t))nA[1/(1 aH )]~-
qy ~0. 8c

By application of Worpitzky's theorem" which
states that continued fraction (8b) converges uni-
formly over any domain in which

~

a„b„~ ~ —,
' for

n=1, 2, . . . , we find that the continued-fraction ex-
pansion for the averaged density-matrix elements
converges for arbitrary ~, a, b, and &.

III. DISCUSSION

Before investigating the general exact solution
(8), let us discuss the two limiting cases of large



P. ZOLLER 20

and zero-bandwidth fields. For A«b the contin-
ued fraction may be truncated in the first step
neglecting terms of the order of (0/b)', so that
(w{t))=(m{t))», l.e. , we recover the decorrela, —

tion result. For zero bandwidth fields (b= 0), the
continued fraction (Bb) simplifies to

(w(t)) =(su(t))n„(1+ ~/&, ) e" " E,(a/&, ),

with E, denoting the exponential integral. " This
result is expected since for zero-bandwidth fields
the statistical averaging reduces to an average of
the population inversion in the monochromatic
coherent field with respect to the P-distribution
function"

~(e go) (1/~(~ ~
~

2)) e-I I2/&I I2)

of the C F'~

a+ 4p'(~~ '"-'a/(&'+-'a')] ' (

which may be shown to be identical with (9).
In general, the continued fraction for the popula-

tion inversion must be calculated numerically. Re-
sults of these calculations are presented in Figs.
1—3. In these figures the excited state population
(p»(t)) is compared with the corresponding popu-
lation (p»(t))z, „ in the DA or, equivalently, the
population according to the phase diffusion model. '
The dependence of the ratio (p»)/(p»)n„on 0 for
6=0 and b=0, 0.2, 0.5, 1, 2, and 5a is given in
Fig. 1. As expected, this ratio is close to 1 in
the weak field —where the DA is valid for any
field. However, with increasing intensity, the
ratio drops off very rapidly until a minimum is
reached. This minimum at 0= v is most pro-

nounced for b=0, where (p») =0.81(p»)n„. As b

increases, it becomes shallower and shifts to
larger values of O. Finally, for high intensities
(fl » g, b), the ratio (p»)/(p»)n„ tends again to
one, since both (p») and (p»)n.„saturate at —,'.
Thus, the population in the excited state is al-
ways less for an ideal C F than for a phase diffus-
ing field.

Figure 2 shows (p»)/(p»)n„as a function of the
bandwidth b for D = 0.2, 0.5, 1, 2, 5, and 1% and
4= 0. For small bandwidth, we have the drastic
lowering of the ratio (p»)/(p»)n„as a function of
0 which we already noted in Fig. 1. While for
0= ~ a small nonzerp bandwidth immediately
raises (p»)/(p„)n„close to 1, for 0» a a mini-
mum in the bandwidth dependence appears near
5 = rc. With increasing 0, this minimum flattens
and shifts to larger values of b. In the large
bandwidth limit b» 0, a' all curves in Fig. 2 tend
asymptotically to one in agreement with the DA.

The dependence on the detuning 4 is given in
Fig. 3forb=0, 0=0.2, 1, and 5' andb=v, 0=0.2, 1,
and 5y. Again we find (p»)= (p»)n„ for small
Rabi frequencies and, therefore, the resonance
curve for (p») has Lorentzian line shape. For
0 = It the ratio (p»)/(p»)z, „shows a deep minimum
near 6=0 which is most pronounced for b=0.
Therefore, the on-resonance maximum of the dis-
persion curve for ~= v increases more slowly with

than for phase diffusing light. At high intensity
Q» v, when both resonance peaks of (p») and

(p»)» saturate and their ratio is close to one,
(p»)/(p»)n„drops sharply off-resonance until a
minimum is reached. This minimum is again
most pronounced for b= 0. An increasing band-
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FIG. l. Batio {p«)/(p~, ) nA is shown as function of Q
for 6= 0. The curve index running from 1 to 6 denotes
results for b =0, 0.2, 0.5, 1, 2, and 5.

FIG. 2. Ratio (p«)/(pq&) DA is shown as function of 5
for 6= 0. The curve index running from 1 to 6 corres-
ponds to 0=0.2, 0.5, 1, 2, 5, and 10.
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width tends to smooth this behavior. For large
detuning 4» 0, when perturbation theory be-
comes valid, the ratio (p»)/(p»)» approaches l
again.

From the above discussion we infer that the DA
is accurate to 20/z or better in predicting the sta-
tionary populations of the TLA. This good agree-
ment is a peculiarity of the TLA and may be mis-
leading in some respects. Every approximate so-
lution for the TLA with saturation included —such
as the one obtained by the DA—predicts (p») -s so
that (p„)/(p»)»- 1 inthehigh-intensity limit. The
behavior (p») - (p»)n„cannot be expected for an at-
omic system in which many levels are populated
in the saturation regime and share the populations
in a more complicated way. For the TI,A, the
disagreement of the exact solution and the DA be-
comes apparent when instead of (p»)/(p»)n„we
consider (w)/(w)n„, the ratio of the population in-
version, since both (w) and (w)o„approach zero
for high intensities. In particular, for b= &= 0
and 0» v, from Eq. (9) we find

(w) /(w)n „=1n(2Q'/e') —0.577,

which increases with intensity. A similar be-
havior is found for finite values of b.

It will take considerably more theoretical ef-
forts to get a complete understanding of resonant
atomic processes in intense nonmonochromatic
CF. It seems that the method employed in this
paper is directly applicable to more complicated
problems such as resonance fluorescence under
a chaotic field, ac Stark splitting in double res-
onance" and, finally, multiphoton ionization, "
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FIG. 3. Ratio (p») /(p») ~~ is shown as function of d.
The curve index running from 1 to 6 corresponds to b
=0, 0=0.2, 1, 5, and b=1, 0=0.2, 1, and 5.
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where a full time-dependent treatment is often re-
quired.
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