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Certain systems in physics are commonly referred to as "Hamiltonian systems"; these are all closed
systems: open systems, which may undergo damping or growth phenomena, are "non-Hamiltonian. " The
athematical basis of this distinction is a little-known theorem of Helmholtz, stating necessary and
sufficient conditions on the functions whose vanishing expresses the equations of motion, that a Lagrange
function exist in a certain sense. %hen the Helmholtz conditions are satisfied, the equations of motion
always can be written as 6„(x,x,x,t) = (d/dt)f2„(x, x,t) f,„(x—,x,t) = 0, n = 1-X, but many systems of
physical importance having this form fail to satisfy those conditions. The present paper is the first of a
planned series presenting a new classical Hamilton-Lagrange mechanics for systems having equations of the
form just stated, restricted for convenience to the case det [(sf,„/ax„()+0, but with otherwise
arbitrary f,„,f,„. To get around the Helmholtz conditions in a way useful for application to modern

. theoretical physics (quantum mechanics and statistical mechanics), we have generalized the classical
formalism. The new mechanics subsumes the old in a very reasonable and theoretically promising way. A
formal quantization leads to a generalized Schrodinger equation of a state function whose natural physical
interpretation is a density function (density "matrix"), rather than a "half density, " or wave function.
Another, for closed systems, gives the usual Schrodinger equation twice —once for Q and once for Q, while
a third gives a classical Hamilton-Jacobi p'artial differential equation.

I. INTRODUCTION

In the early part of the century, the classical
Hutherford atom, dynamically unstable owing to
the effects of radiation damping, was salvaged by
the Bohr quantum conditions. As corresponding
quantum phenomena, such as excited atom decay
to a ground state and level (Lamb) shift, have been
well described by quantum electrodynamics (QED),
a phenomenological quantum theory of damping or
"friction, " no doubt has seemed unnecessary.
However, recent heavy-ion nuclear scattering data
at high energy, for example, show effects which
appear to require the operation of strong friction
forces between the two nuclei at close ranges dur-
ing the time of collision and while the nuclear
surfaces are in contact. ' Theoretical approaches
having appropriate (and inappropriate) classical
limits have been devised to treat such problems
as this, and soNe of these have greater generali-
ty than others. "' Nevertheless, a satisfactory,
clearcut first-principles pherLomenologi ca/ quan-
tum mechanics for open systems still appears
lacking; the current theoretical situation seems
analogous to and more reminiscent of the days of
the pre-Schr'odinger "old quantum theory" than
those of the post-1925 era of the "new quantum
theory. "

While microscopic many-body-theory techniques
are available for analysis of macroscopic proces-
ses, these also give redundant and physically in-
appropriate information; and the desired informa-
tion can be difficult to extract. Indeed, quantum

electrodynamics tells of many assumed subproc-
ess contributions (Feynman diagrams) to the be-
havior of atomic systems, such as involve bare-
mass and coupling-constant parameters, but which
are observable only to unphysical, "ideal observ-
ers."' Here, "physically observable" seems even
to imply phenomenological or "macroscopic"
(specifically: renormalized).

Also, it is interesting to note, save for the
Vlasov equation, the absence of a proper Liouville
theorem for the single-particle "phase" space of
a particle in a gas or an electron in a plasma.
For, owing to collisions, a single-particle Ham-
iltonian does not exist. There are various gener-
alizations of the Liouville equation; one example,
based upon the theory of stochastic processes, is
the Fokker-Planck equation. ' But a statistical
mechanics devised for single-particle motions and
employing a Gibbsian-ensemble-type approach'
would require generalization of the Liouville equa-
tion along other lines, e.g. , to the theoretical
mechanics of the single-particle motion as that of
a non-Hamiltonian elementary system.

We believe that an open-system phenomenologi-
cal Schrodinger theory, and a statistical mechan-
ics grounded in generalized Liouville equations as
indicated above, are both likely to find useful ap-
plications. In addition, there are broadly theoret-
ical, fundamental'issues involved. It seems evi-
dent that, apart from an intrinsic interest of its
own, the classical subject deserves serious inves-
tigation.

To begin, it may be that a given system of equa-
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8r~( mx2 m(d2x2)

for which the Euler-Lagrange equation is

d &Bl ~ BL,
'8(mX + ymx+ m e', )=x0,

dt (Bxj Bx

(1.2)

which, as e"' cannot vanish, is equivalent to the
equation of a one-dimensional damped oscillator.
The Hamiltonian" (derivable from I }widely dis-
cussed in the literature of this subject,

H = (1j2m) p'e "'+—,'m(u2e+"' (1.4)

has units of energy, but not the physical signifi-
cance of a system energy. And the physical inter-
pretation of the Schrodinger equation from Eq.
(1.4) has been controversial. '

There is a general theorem due to Helmholtz
stating necessary and sufficient conditions that,
given a set of functions, G„=G„(x,x,X, t), n= 1 N, -
there exists a function I =I (x,x, t) such that

(1 5)

The Helmholtz conditions are"

tions is not derivable from a Lagrangian directly
(see below), but that an e(luivalent set, with inte-
grating factors, can be so derived. Unless one
admits extra variables (about which, more later),
open systems require integrating factors. But the
effect of the latter appears to be to destroy the
all important possibility for an interpretation of
the Hamiltonian as system energy. The last cru-
cial point has been stressed by Havas and is dis-
cussed further below. Recently, H. Dekker has
constructed a very interesting scheme, in which
this requirement is met.

We remark additionally that Santilli gives a de-
tailed exposition of mathematical features of the
problem when integrating factors are admitted,
and also proposes a new scheme, based upon a
non-Lie algebraic (Lie-admissible) time-evolu-
tion law for the Hamiltonian variables. We will
review some of Havas's early analysis next and
then define the scope of the present work.

The presence of integrating factors, or multi-
pliers, to a set of cia.ssical equations can cause
trouble with physical interpretation for a corres-
ponding quantum theory. Trivially, if the La-
grangian I- does not have units of energy, neither
does the Hamiltonian H, and in the Schrodinger
equation

(
B

ih H~$=0, -—

where t is the time, 5 has the wrong units.
Another example is provided by the Lagrangian"

BG„ BG

Bx Bx„

BG„d BG„BG„'(
+ = — +

Bx Bx„dt BX Bx„&

BG„ BG 1 d BG„ BG

Bx Bx 2 dt Bx Bx
(1.8)

Applied to the example

G=mx+myx+mco~x, y&0, (1.9}

which no longer has the form or even the units
needed (i.e. , force) to assure a Hamiltonian with
the significance of particle energy.

Accordingly, we propose to set a standardization
criterion at the stage of the equations of motion
themselves, and we suppose that a set of func-
tions G„(x,x,X, f) has been specified on physical
grounds to begin with. Furthermore, we require
that a Hamiltonian formulation for a classical
system have the property that the associated

the Helmholtz conditions fail, yet while applied to
e"'G, they are satisfied. The general, situation is
more or less typified here, that "integrating fac-
tors" such a.s e"' in the example, sometimes can
be found when the G„are such that Eqs. (1.5) can-
not be satisfied.

Havas has argued that some form of standardi-
zation of the classical Hamilton-Lagrange mech-
anics is needed for a suitable basis of canonical
quantization. It should be possible to couple any
system, whether open or closed, to a measuring
apparatus for a, physical interpretation of the
quantum theory; so there should exist a joint
Hamiltonian. This requires "normalization" of the
system Hamiltonian function to that of the appara-
tus. The situation is similar everi in classical
statistical mechanics, since no physical interpre-
tation seems possible if coupling to other systems
cannot be effected.

In applications of physical interest, the formul-
ations of physical laws provide bases of choice for
functions G„ to express the equations of motion.
Thus for the motion of a relativistic particl. e in an
electric field, we may require

~ ~0

G„=()-x~c ') '~' mx„+) ~, , mx)-qZ„(x, (),
(1.10)

where E„is the x„component of the field, m the
particle mass, q its charge, and c the speed of
light in vacuo. The integrating factor
(1-x~c '}'~'m ' gives a physically uninteresting
choice, however,

~ 0~

G„=x„+ @,x„-qm '(1-x~c ')'~'E„(x, t), (1.11)
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f,„(x,x—, t) f,„(x,x, t-), n= I N-- (1.12)

for arbitrarily specified f,„,f,„. This includes,
along with many more, all those cases for which
the Helmholtz conditions are met, as we will show
(in a later paper): save for a restriction which we
have imposed for simplicity, to the so-called
"standard case," namely,

det ."
WO,

8+m

which in the Helmholtz case corresponds to

82L

ex „ei

(1.13)

(1.14)

The condition (1.14) assures that the equations of
the generalized momenta can be solved uniquely
for the velocities so that the Hamilton function is
fixed uniquely by L. The new formalism subsumes
the old in a very natural way, and canonical quan-
tization gives a surprising, and gratifying, pre-
liminary result (see below).

For orientation to the formalism we will present,
we make a few initial remarks. Qne of the main
mathematical instruments of our approach is the
Dirac formalism of weak and strong equality. "
In the Dirac formalism, if one is given a Lagrang-
ian, the Hamiltonian is not uniquely fixed if pri-
mary constraints are present, but is fixed only up
to strong equality (i.e. , only as to value and gra-
dient in the constraint hypersurface"). In this pa-
per we will find a Lagrangian that is also not
uniquely fixed, but only to a strong equality de-
fined over the space of coordinates plus velocities.
The resulting Hamilton-(Dirac)-Lagrange theory is
consistent and exhibits remarkable symmetries,
along with a new universal bisymmetric structure

Lagrangian, defined by Legendre transformation
from H in the usual way, satisfy Eqs. (1.5) for the
given G„. With these restrictions the traditional
domain of classical theoretical mechanics is sub-
sumed as the class of systems satisfying the
Helmholtz conditions. All of these systems are
closed systems, exhibiting time-symmetric be-
havior, i.e. , no damping or amplification, no
creation or annihilation, no transient degrees of
freedom (as an "acceleration" coordinate in an in-
elastic process), etc. Classical Hamilton-La-
grange theoretical mechanics, thus restricted,
does not exist for the non-Helmholtz case.

The present paper is the first of a planned ser-
ies describing a generalized Hamilton-Lagrange
theory for treating systems represented by func-
tions G, expressible in the form

G„(x,x,x, t)

reminiscent of, but distinct from that of the sym-
plectic bisymmetry of the ordinary canonical for-
malism. The new bisymmetry appears in the cor-
responding quantum theory, for the Helmholtz
case, in the guise of antiunitarily equivalent rep-
resentations of a system by P and t/r* (.See Sec.
IV for details. )

In the present scheme a universal constraint
hypersurface, which is 2N-dimensional and whose
manifold corresponds to the usual phase space, is
embedded in a doubled, 4N-dimensional phase
space. Together with the constraints, the doubling
gives rise to. identical duplicate classical repre-
sentations of system motion [by generalized Ham-
iltonian equations (3.19) or (3.20)], and this is the
source of the duplicate representation by g and
g* in the quantum theory. But that feature now is
present in the classical theory even for open sys-
tems. Finally, as canonical covariance over the
doubled phase space will control the general
transformation properties of Eqs. (3.19) and (3.20),
a generalized canonical covariance structure also
is implied.

Qn physical grounds we rejected earlier the ap-
proach through Lagrangian theory which requires
use of integrating factors to the G„(x,x,x, t).
There is a general theorem of Hamiltonian theory
due to Lie and Koenigs" which states that any
system of first-order equations can be given a
Hamiltonian form, by addition of extra coordi-
nates, 'and an analogous result was proved by
Havas for first-order equations for Lagrangian
theory. ' Results such as these seem too general
to be of much use and, without some sort of
bounding consideration problems of physical inter-
pretation, seem likely to get out of hand. More-
over, dynamical laws of particle motions are nor-
mally framed as second-order equations, and this
further reduces the convenience of theorems of
this sort. " The matter was made somewhat less
vague, nevertheless, by G. D. Birkhoff, "who
wrote down a Hamiltonian, also in adoubled space,
that does the job for a given first-order set of
equations. Despite certain similarities of the
Birkhoff Hamiltonian to our Eq. (2.13) below, the
scheme we are developing is a departure from
the usual mechanics, as noted earlier. We will
discuss the Hirkhoff Hamiltonian specifically in
Sec. II.

Qur original motivation in the present undertak-
ing was to explore the consequence of quantization
from the equations of motion of a classically ra-
diating charge, with the Abraham —von Laue four
vector of. radiation reaction, "or a "moral equi-
valeni" of that, " included rather than omitted. It
is clear to us now, as it was not when we first
began, that a consequence of the absence of a
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suitable classical formalism has been that theo-
ries of radiation and particle creation and annihil-
ation, methods of statistical mechanics and kinetic
theory, and even the measurement theory of quan-
tum mechanics, have not had opportunity to de-
velop along lines other than those rooted in closed-
system limited Hamiltonian theory. It is difficult
to refrain from repeating the observation made
earlier, that in the case of quantum electrodyna-
mics the simple "microscopic" (unrenormalized)
description is really supposed to be unphysical. ,
i.e. , the bare masses and charges are not the
observed quantities, while the renormalized theo-
ry seems to correspond to a kind of coarse-grain-
ing description, with physically observable cor-
responding to macroscopic. These remarks, of
course, can be applied as well to theories of non-
Abelian gauge -field interactions.

The formalism begun herein is restricted to sys-
tems for which the G„(x,x,x, t) are linear in the
7„, however, which can be seen from Eqs. (1.12).
This prevents us from considering the problem
of radiation at this stage since the accelerations
necessarily enter quadratically into the equations
of motion. So for those applications it is desirable
to generalize the present formalism to include the
case of G„nonlinear in the x„.

In later papers we will establish formal results
concerning the relation of the new mechanics to
the old, construct the generalized covariance
theory for the new scheme, and extend our theory
to the case of nonlinear G„. The plan of the pres-
ent paper is as follows: In Sec. II we begin by
producing universal Hamiltonian and Lagrangian
theories. In Sec. III we introduce the formalism
of the bisymmetric structure for the Lagrangian
and Hamiltonian theories, along with the genera-
lized Hamiltonian and Lagrangian equations, In
Sec. IV we provide an interpretation of the new
scheme and explore briefly its relationship to
quantum theory. In Sec. V we conclude the paper.

II. UNIVERSAL HAMILTONIAN AND LAGRANGIAN

A. Hamiltonian

together with another N, with which the subsidiary
conditions,

z„=0, n= 1-N, (2.3)

are always consistent. To obtain Eqs. (2.3) them-
selves we introduce N more auxiliary coordinates,
y„.. . . ,y„, and a slightly different Lagrangian

&,—&, = &,(x,z,x,z, t;y) = &,+Q —y„z„'. (2.4)

The new Euler-Lagrange equations now uniquely
imply Eqs. (2.2) and (2.3), and allow arbitrary
time dependence for the auxiliary coordinates.

In passing to the Hamiltonian formalism one
encounters N first-class constraints,

BZ
=p -0, n=1-N,

3'n (2.5)

Hr = Qf, „(x-,x, t)z„+Qx„P„

-g- y„z'„+Pv„P, , (2.7)

where the v„are arbitrary functions of the time.
We have used the Dirac sign = to denote strong
equality.

The consistency conditions to Eqs. (2.5) are

O=P, = fP„,Hr)=zz2, n=1-N,

so that"

z„=0, n= 1-N;

also,

z =0 n=1-N.

(2.8)

(2.9)

(2.10)

Equation (2.9) are secondary constraints and the
consistency conditions to these may be taken to be

the wavy equal sign denoting weak equality after
Dirac."""We need only the N relations,

P, =f „(x,x, t), n = 1-N, (2.6)

assumed soluble for the ~„, to obtain the total
Hamiltonian

'The Euler-Lagrange equations produced from
the Lagrangian

P„=0, n=1-N,

provided

det .'" 0,8 2n

, Bx

(2.11)

(2.12)

consist of the N equations,

G„(x,x,X, t)

fm„(x,x, t)-f, „(x,x,—t)=0, n=1-N,

(2 1)

(2.2)

which is guaranteed by the assumed uniqueness of
the solutions to Eqs. (2.6).

The auxiliary coordinates may be discarded
from the total Hamiltonian. The third term in Eq.
(2.7) actually vanishes by Eq. (2.10), and the sole
effect of the last term in the canonical equations
is to give back the physically irrelevant equations



2374 ROBERT CA% LEY 20

of the y„and p, . So we have"

H X Q—F,„(x,p„t }g„+QF,„(x,p„t)p„, (2.13)

where we have written

grangian theory now also. We really do not need
the auxiliary coordinates at all. They have been
an aid to constructing 3' and the constraint for-
malism, and now can be dismissed entirely. The
strongly specified Lagrangian-

f,„(x—,x, t) =F,„(x,p„t),
x„=F,„(x,p„t) .

(2.14a)

(2.14b)
. ,„x,x, t z„+,„x,x, t z„ (2.19)

As f,„,f,„are arbitrary, Eq. (2.13) holds univer-
sally; so we refer to X as the universal Hamilton-
ian. Similarly, the 2N first-class constraints,
Eqs. (2.9) and (2.11},are the same for all sys-
tems; they will be called the universal constraints,
and the 2N-dimensional hypersurface they define,
the universal hypersurface.

B. Lagrangian

If two Lagrangians, and 2 differ by an "0,
term, "

by which is meant a function of (x,x,x,i, t)
vanishing quadratically in the, z„and z„, for small
values of these, the universal Hamiltonian is un-
affected. We show this as follows. Equations (2.9}
will still hold as they are consistency conditions
to Eqs. (2.5); while the consistency conditions giv-
ing Eqs. (2.11) are more conveniently for present
purposes expressed as

is the universal Lagrangian for systems defined
by Eqs. (2.2). Equations (2.3) are now to be re-
appended to the equations of motion as subsidiary
conditions, but no arbitra, ry (gauge) functions are
introduced into K as a consequence.

C. Simple example

(2.20)

for which
~ ~

&= [-myx+5 (x, t)] z+mx ~ z,
so that

p, = mx

(2.21)

(2.22)

For a single particle experiencing linear damp-
ing one has the equations of motion

dt
—mx= -myx+5(x t)7

z„=0, n= 1-1V .
Given

(2.15) X = [yp, —5 (x, t) ] ' z+ m p, p, .

Evidently,

(2.23)

=+0
we have

9g
p» = ~ + 02= p»ex„ fl

azp" ez„ez„

(2.16)

(2.17a)

(2.17b)

p„= -ymz+ mz = 0 . (2.24)

We note the crossed associations p, -x and p„-z.

D. Birkhoff's Hamiltonian

Birkhoff observed" that the equations, for arbi-
trary functions X„

whence, supposing the appropriate eliminations to
have been performed for the computation of 3',
the uniqueness of which is assured by Eq. (2.12},

' =X,.(q, t), i=1 n, -

are produced from the Hamiltonian

(2.25)

3C=Q(p„x„+p, ~„)-Z=X; (2.18)

for Eq. (2.16), combined with Eqs. (2.9) and (2.15)
guarantees Z=Z, while Eqs. (2.15), (2.17a) and
(2.17b). give the rest."

From the point of view of the canonical formal-
ism it is therefore unnecessary to specify ~ to
more than a strong equality on the "expanded. can-
figuration space, " of coordinates plus velocities,
with the hypersurface defined by Eqs. (2.9) and

(2.15) being used to define weak and strong equali-
ty on this space. If we regard Eq. (2.4),aq a strong
equation, the last term vanishes and the auxiliary
coordinates, with this, disappear from the La-

dp, ~ 8Xg
8 pf

If we apply a Legendre transformation to H~
with the p& as active variables, we find the La-
grangian

(2.27}

Le =gq~p~-Hs —0, (2.28)

He = —QX)(q, t)p ), (2.26)

where the p& are n additional coordinates conjugate
to the q&. The equations of the p, , concomitant un-
der Eq. (2.26), are
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since the defining equations for the transformation
are

BIIg
q, = = X~—(q, t), j= 1-n .

Pf
(2.29)

On the other hand, a Legendre transformation of
Eq. (2.13) for 36, with p„, p, active, gives Eq.
(2.19). Despite the striking difference, the func-
tion H~ will be the same as the function appearing
on the right-hand side of Eq. (2.13) for &, provid-
ed n= 2N and we make the identifications,

q
4 ~ 4 q ~p ~ ~ 4+ 4 P 4 ~ 4 ~P ~Z 4 ~ ~ Z ~

1 N 1 N& N+1 2N 1 N~

P1 PN Pz PzNt qN+1 q2N PZ1 PZN &

duced below, to be called principal coordinates.
Before introducing these we note a gauge feature

of the present scheme.

Z C„x)g (3.3)

where the ~ „are arbitrary, so that under

we find the generalized gauge transformation

A. Addition of a time derivative to &

The most general time derivative of a function of
the coordinates and the time can be written

N+1 2N 11 lN& 1 N 21 2N '

(2.30)
d

fin fin fin df ~n ' (3.5)

The staggering of the correspondences reflects the
crossed associations of conjugate variables to ve-
locities noted for the example of Sec. IIC.

Two features of the present formalism disting-
uish it from the usual mechanics. One is the oc-
currence of tetrads of crossed pairs, (x,p, } and

(z,p„), half of which are first-class (and there-
fore crossed-pair) constraints. A second is the
fact that 3' and 2 are specified only to strong
equality, and hence do not represent functions,
two members of a given class being allowed to
differ by a strongly vanishing function. Thus it is
meaningless to infer from Eq. (2.30) that Hs = &.
Moreover, regarded as a transformation (the in-
verse of), Eq. (2.30) will not be available to us,
even though it is canonical, as its effect would be
to destroy the crossed association structure de-
fined by the universal constraints. So Il~ also can-
not be equivalent to (any of the representatives of)
Kin this formalism.

We will give substance to these remarks through
the developments of Sec. III, where we deal with
the constraints.

III. GENERALIZED MECHANICS: CENTRAL
COORDINATES AND PRINCIPAL COORDINATES

For convenience we rewrite the expressions
here for the universal Lagrangian and Hamiltonian,
Eqs. (2.13) and (2.19):

f2.-fn.=f4.+ ~.. (3 6)

s

~] f2. fl. = 0- (3.V)

Conversely, the transformations (3.5) and (3.6) of
the f,„,f,„, induce (3.4) via Eq. (3.1). Some of the
significance of the foregoing will be apparent
presently.

B. Principal coordinates

We perform a point transformation of the (x„,z„)
to a new set of coordinates ((„,$„') which are the
principal coordinates for the problem

$„=x„+—,
' z„,

$'„=x„-—,
' z„.

(3.8a)

(3.8b)

The transformation of Eqs. (3.8), induces a canon-
ical transformation in the phase space, the other
half of which is determined by

P„=PZ„+2P~„P (3.9a)

Pn Pzn 2 Pxn (3.9b)

Notice ($„,$'„,p„,p'„) is canonical, while ($„,$',p,
-p„') is not. The universal constraints are given:
by

The transformations (3.5}and (3.6) leave Eqs. (2.2)
invariant,

~ =gf, „{x,x, t)z „+gf,„(x,x, t)~ „ (3.1)
z =$ —$'=0,

p, „=p.+O'. = 0

(3.10a)

(3.10b)

~ =QZ, „(x,p„t)~ „+QZ, „(x,p„t)p„.
n n

(3.2)
We write and K in an alternative form,

~=L(~, ~, f)-L(~', ~', t)+5~(~, t ~' ~' f)

The formalism will contain two classes of coordi-
nate system, the one used in Eqs. (3.1) and (3.2)
and consisting of the, (x, z,p„,p, )—these will be
called central coordinates —and another, intro-

(3.11)

K=H(), p, t)-H($', -p', t)+ 5K(t,p; $', -p', t),
(3.12)
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where the function pairs (L, 52) and (H, BBC) may be
chosen arbitrarily. Equations (3.11)and (3.12) will
be called "principal decompositions" of 2 and 3C;
L, and H are "principal part" functions; and 5Z and
5K "residual part" functions of the respective de-
compositions. We substitute Eqs. (3.8) and (3.9}
into Eqs. (3.11) and (3.12) and expand in Taylor
series about vanishing (z, k) and (z,p„), respect-
ively, retaining only first-order terms since high-
er-order contributions all vanish strongly. The
resulting expressions, upon comparison with Eqs.
(3.1) and (3.2), yield

It ma, y be that 62 $ 0, but a, gauge transformation
(3.5) and (3.6) exists, sending 2-g + 42, and
where Z+ 4Z has a principal decomposition with
vanishing residual part. In this case Eqs. (3.17)
are again recovered. In the most general case
5Z cannot be made to vanish in this way, and this
is the non-Helmholtz case, where a "Lagrange po-
tential" does not exist.

Generalized Hamiltonian equations in the univer-
sal hypersurface now follow from the canonical
equations for BC, via Eqs. (3.2) and (3.15) and
(3.16); these are

f,„(x,x, t)= ' ' +Bf,„(x,x, f, ),BL(x,x, f)
Bx

f,„(x,x, t) = .' ' + Bf,„(x,x, f),BL(x,x, f)
Bx

(3.13a)

(3.13b)

BH
x„= + 5E2„,

BP

BH
P = — —5E

Bx„

(3.18a)

(3.18b)

with

6f,„(x,x, f)

6&($, t; 5', 5', f)
4 '=4=x, 4 '=4m

(3.14a)

Bf,„(x,x, f)

and with analogous equations for the Hamiltonian
quantities,

In the Helmholtz case where 62 vanishes (having
been brought to zero by a gauge transformation,
let us say), the I egendre transformation to X
factors, and Eq. (3.11) induces a natural principal
decomposition of X for which 5X vanishes. Equa-
tio» (3.18) then reduce to the ordinary Hamilton
equations. In the general case 5E,„, 5F,„cannot
be brought to zero in this way.

There is a difficulty with Eqs. (3.18), namely
that the x„and p, all have vanishing Poisson
bracket with one another. However, if we start
from Eq. (3.12) we find

E,„(x,p„t)= ' "—-+»,„(x,p„f), (3.15a)
BH(x,P„f) —+ BE,„($,P, f),

BH

~ fl

(3.19a)

E,„(x,P„t)= '" +6F—,„(x,p„t), (3.15b)
BH(x,P„f)

BP8

(3.19b)

where

»,„(x,p„f)

B
6X($,P; $'-P', f) (3.16a)

,}
+ BE,„($', P', f), -

BH'P='- —»-((' P' f)—
where H' =H($', -p', f) an—d we have used

(3.20a)

(3.20b)

»,„(x,p„t)

6K($,p; (', —p', f) (3.16b)

d Bl BI
dt Bx Bx

(3.17)

We have written Eqs. (3.13)-(3.16) as strict equa-
tions since they involve only coordinates of points
in the universal hypersurface and are independent
of the constraints.

The Euler-I agrange equations from Eq. (3.1)
are Eqs. (2.2). If a principal decomposition of 2
exists for which 6& = 0, then Eqs. (3.13) and
(3.14) give

5H($', -p', (,P, t) = —5H($, P; $', -P', t), (3.21)

which follows from Eqs. (3.1), (3.10), and (3.12);
Eq. (3.21) is needed to obtain the identity of the
residual term functions in Eqs. (3.20) to those in
Eqs. (3.19). Since the ($,p) variables satisfy the
usual fundamental Poisson-bracket relations, as
do the (f', -p'} apart from a sign, the previous
difficulty with Eqs. (3.18) is now removed. Thus
the formalism has produced duPlicate sets of gen-
eralized Hamiltonian equations, in terms of the
unprimed variables and the primed variables,
separately [as well as'Eqs. (3.18)].

From Eqs. (3.19) the divergence of the phase
fluid velocity vector ($,p) no longer vanishes un-
less the 5E terms do; so the Liouville theorem
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will be affected. Thus, for instance, in the gener-
al case 53'.will not vanish, but it can always be
sent to zero by canonical transformation, and with
it the residual (5E) terms in the generalized Ham-
iltonian equations. However, such a transforma-
tion need not be canonical with respect to the uni-
versal hypersurface manifold; also, canonical in-
variance in the full space will induce a significant
transformation structure in the manifold, an intri-
cate matter whose consideration we defer to a la-
ter paper. %e consider some examples now.

If we substitute for x,z in Eq. (3.1) in favor of
g, $', the choice, Eqs. (3.29), gives

& = (-'m &'—-'m(u'&') —{-,'m g"- -'m(u'g")

.'-m-r(&+ &')((- (') . (3.30)

(3.31a)

gives

If we drop the $g and $'$' terms, as they are time
derivatives, then

I = —'m$'- —'mu)'g'
0

5&= ——'my($$'- $'f), (3.3lb)
C. Examples

1. Charged particle in a Lorene force field

The equation of motion is

(3.22)
(3.32a)

which does not vanish and cannot be gauge trans-
fol med away.

Using the form (3.11) with (L, 58) given in Eqs.
(3.31) we have

p = m j+ —,'my'',
with

f, =q(E+c 'v x 8),
f = mv(1- c 'v') '~'

(3.23a)

(3.23b)

-p'= m$ '+ p my).

'The universal Hamiltonian is

(3.32b)

where q is the charge on the particle, c is the
speed of light in vacuo, v=—x, E and B are the field
strengths, and m is the mass of the particle. 'The

choice, Eqs. (3.23), leads to a universal I.agrang-
ian for which 5Z cannot be made to vanish. But if
we write

BAE= —vy-c-' H=VxA (3.24)

L= —mc'(1-c 'v')'~'-qQ+qc 'v A. (3.27)

2. Linear velocity damping of an oscillator

From the equation of motion

rnx+ myx+ me,'x = 0, y 4 0, (3.28)

we take

the generalized gauge transformation of Sec. IIIA,
with 0=—qc 'A, leads to an f,', f,' choice for which
a principal. decomposition of having 6Z = 0 can
be found. One has

A dA
, f f' = —qV p+ qc ~ ——+ v x {'7-x A)+—

1 1 dt

=V';(-qP+qc '.v A), (3.25)

f f~- mv(1 c 2v2) ~~2y qc
"~A

=P;[-mc'(I-c 'v2)'~'+qc 'v'A], (3.26)

so that Z is given by Eq. (3.11)with 5Z = 0 if we
take

.'r& (--p')1 .'r[&'p -h-(-p'-)], (3.33)

where we have grouped the terms to suggest the
(most natural) identification of (H, 5X), viz.

(3.34a)

(3.34b)

IV. DISCUSSION OF FORMALISM

The principal part function H is the Hamiltonian of
an undamPed, resonance frequency s-hifted osci-l-
lator. As before, 5X does not admit a principal
decomposition with vanishing residual part, and
it can be shown that there is no gauge transfor-
mation which will induce a vanishing 5K in the
canonical formalism.

The principal part functions L and H possess a
uniqueness only when 5Z = 0 and 5X= 0. In the
general case, however, there is (as yet) no ap-
parent basis for fixing either L or H. Neverthe-
less, Eqs. (3.3la) and (3.34a) are very natural
choices for the present problem, and the results
are interesting and suggestive. The uniqueness
problem for H seems important from a physical
point of view. It corresponds to the specification
of the system (or, putting it another way, to the
identification of the Heisenberg picture).

f, = —myx- m~,'x,
f2™

(3.29a)

(3.29b)

%e provide a conceptual picture of the structure
of the new formalism, and then turn to the pro-
blem of quantization.
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A. Interpretation of formalism

The present formalism requires an interpreta-
tion. It is different from the Hamilton-Lagrange
theory ln essential respects. Thus although we
began our arialysis by representing an N-dimen-
sional system by a point x„ in an N-dimensional
configuration space, as in Eqs. (2.2), we have
produced, instead, two different methods for rep-
resenting a classical system in a point space. In
the first, which is t;he central-coordinate method,
the system is represented once, by a point whose
motions are confined to a hypersurface in the
space. In the second, which is the principal-coor-
dinate method, the system is represented thrice,
by points which execute coordinated motions. 'The

two modes for representation of system behavior
are connected through the equation defining the
transformations between central and principal co-
ordinates. We depict the approach schematically
in Fig. 1. 'Thus the "extra" coordinates z„really
provide only apparent additional degrees of free-
dom; parallelling this, the equations of primed and
unprimed coordinates form dup/ical sets.

Correspondingly, 2 and are not just the sys-
tem Lagrangian and Hamiltonian. Equally approp-
riately, we may put the matter this way: that the
quantities (f,„,f,„) and (E,„, E,„) completely char-
acterize the system behavior from the central-
coordinate point of view; while the principal-coor-
dinate method introduces principal decomposition
elements, viz. , (L, 52) and (H, 5X), for the pur-
pose. 'The traditional Hamilton-Lagrange theory
does not have this structure, but only possesses
objects to which the principal part functions L and
H correspond.

Finally, as we saw in Sec. III, these structural
features over the big 4X-dimensional phase space
induce a generalized Hamiltonian formalism over

PRINCIPAL
COORDI NATES

the 2N-dimensional constraint manifold, in which
the latter plays the role of the usual phase space.

Consider, on the other hand, a system repre-
sented by a density matrix given by

p(k, k', i) =Q&~kg(&, i)Pg(h', i)*, (4.2)

where the P„are a set of Schr'odinger amplitude
functions governed by the time-dependent wave
equations

ih =H $ ih -, i —@. sA
e$& (4 2)

and where the real coefficients n.
~ sum to unity.

The state corresponding to p is a mixed state un-
less all the w„, save one, are zero; in either case
p($, $', i) satisfies Eq. (4.1). This suggests a phys-
ical interpretation of 4($(', i) as a density, in Eq.
(4.1).

In the presence of damping, however, the situa-
tion is a little less direct. We have seen that 53.'
= 0 is not always possible. In the general case,
typified in the example of linear damping, Eq.
(4.1) is replaced by

ih =H—(, ih , t H$', + N-—-94 . 9, . 9

si i ski i e)l i

9 . 9+OX, -iS—;',+i@,, t i.
s tl (4 4)

On the other hand, in usual quantum damping the-
ory the density matrix for a dissipative system
typically satisfies an equation of the form

B. Quantization

Formal quantization from Eq. (3.12) with MC= 0
leads to a partial differential equation for a uni-
versal Schr'odi. nger function 4($, $, f) satisfying

ih —= H $ -ih , t—H$'-+ih —i 4'. (4.l)9, . 9
S('4 i egl&

C IPAL COORDINATES

(4.5)

where p denotes the density operator for which
p($', $', i) is the representative, viz. ,

(4 5)

FIG. 1. In central coordinates the system is represen-
ted by a point: ONCE, keeping z (t) = 0. In principal co-
ordinates the system is represented by a point: but now
TWICE, keeping $(&) —(' (~ ) = 0.

and where 1" is an operator associated with the
damping. Evidently, the last terms in Eqs. (4.4)
and (4.5) should correspond, but this correspon-
dence is not straightforward. In Eq. (4.4) the
primed and unprimed variables are eigenvalues of
distinct operators, while in any expansion of the
matrix element of I'p, appearing in Eq. (4.5),
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primed and unprimed variables instead are dis-
tinct values of the same operator, viz. ,

(4.7a)

(4.7b)

'The root of the difference is the corresponding
classical theories, of course. In the case of Eq.
(4.4) the underlying classical formalism is real-
ized on a 4-(or 4N-) dimensional phase space,
while in the case of Eq. (4.5) the classical roots of
the description involve the usual 2-(or 2N-) di-
mensional phase space and only this.

On the other hand, if we sta.rt directly from
Eqs. (3.19) and (3.20), corresponding to 5X= 0,
we recover the usual Schrodinger equation, in
duplicate, of course, and gratifyingly so (that for
the unprimed coordinates being for P and for the
primed coordinates g*). But if 5Ãg 0, we are
forced to consider again some kind of generaliza-
tion and we cannot escape implications of the re-
marks made in the closing paragraph of Sec. IIIB.
Evidently, the quantum mechanics deriving from
the big 4N-dimensional phase-space picture and
from the 2N-dimensional hypersurface should be
equivalent. We prefer to delay more serious con-
sideration of the overall quantization problem until
later, after the formal classical covariance theo-
ry has been constructed.

We make one further brief remark concerning
quantization. If we follow the usual procedure for
handling constraints, first used by Dirac, "$- ('
= 0 and p+ p'= 0 would be realized as "wave"
equations restricting 4. It is easy to show that
this wouM so restrict the physical states. that the
right-hand side of Eq. (4.4) would vanish identical-
ly. All the dynamical information would be lost.
'The method of Bergmann and Goldber'g" fails in
the same way. There the dynamical variables are
identified first in the classical theory; but the test
is so strict when applied to the present case that
there are no dynamical variables in the theory
(the entire phase space is annihilated at the
sta.rt).""

In the present paper we have treated the con-
straint problem by "peeling apart" the faces of the

hypersurface, "refilling" the big phase space,
and representing the system motion with duplicate
principal-coordinate equations (Fig. 1).

We close by noting a remarkable feature of the
present formalism, when we quantize formally
from central coordinates. Starting from Eq. (3.2),
we obtain

(4.4')

where 4 is defined over the manifold of the con-
straint hypersurface, and x and p, commute. The
i5 factors cancel out of Eq. (4.4'), and the equa-
tion defines a family of integral surfaces in the
state space of the motion, which are composed of
the classical histories. " Thus quantization from
principal coordinates gives a generalized Schro-
dinger equation, Eq. (4.4), while quantization
from central coordinates gives the classical limit,
from Eq. (4.4'), on a phase space having no Pois-
son-bracket algebra.

V. CONCLUSION

We have presented the beginnings of a formal-
ism extending the classical Hamilton-Lagrange
mechanics to a large class of open systems, for
which the Helmholtz conditions for the existence
of a Lagrange function for the equations of motion
are not satisfied. The new scheme is a generaliza-
tion of the traditional subject of mechanics and
subsumes the latter in a natural way. 'The equa-
tions of motion display a new, generalized, gauge-
invariance feature. We have derived classical
generalized Hamiltonian equations, and we have
explored certain preliminary aspects of formal
quantization.

ACKNOW( LEDGMENTS

I wish to thank D. J. Land for critical sugges-
tions to improve the presentation of this work,
and for encouragement. This work was supported
by the Naval Surface Weapons Center Independent
Research Program.

~ James J. Griffin and Kit-, Keung Kang, Rev. Mod. Phys.
48, 467 (1976); J. P. Bondorff, M. K. Liou, M. I. Sobel,
and D. Sperber, Nuovo Cimento A 42, 1 (1977).

~The theoretical problem is reviewed by Rainer W.
Hasse, J.Math. Phys. 16, 2005 (1975).

~M. D. Kostin, J. Chem. Phys. 57, 3589 (1972); B. Beck
and D. H. E. Gross, Phys. Lett. B 47, 143 (1973); Kit-
Keung Kang and James J. Griffin, Phys. Rev. C 15,
1126 (1977).

4F. J. Dyson, Phys. Bev. 75, 1736 (1949).
5Selected Papers on Noise and Stochastic Processes,

edited by Nelson Wax, (Dover, New York, 1954).
J. Willard Gibbs, Elementary Principles in Statistical
Mechanics (Dover, New York, 1960).

~P. Havas, Bull. Am. Phys. Soc. 1, 337 (1956); Acta
Phys. Austriaca 38, 145 (1973).

H. Dekker, Z. Phys. 821, 295 (1975); ibid. 824, 211
{1976);Phys. Rev. A 16, 2126 (1977). Dekker" s meth-



2380 ROBERT CA% LEY 20

od, which employs complex coordinates, I,agrangians,
and Hamiltonians in a certain zoay, is based on an in-
genious device of decomposing second-order equations
of real variables into first-order equations of complex
variables. Despite certain innocent appearances, Dek-
ker' s mechanics is not just the usual mechanics with
complex coordinates, but rather something quite new.
It is probably related to the mechanics presented here-
in, but exactly how is not clear to us yet.

9R. M. Santilli, Hadronic J. 3. , 223 (1978). This author
gives an extensive list of references to the subject,
older as weD as more recent.

~ P. Havas, Nuovo Cimento Suppl. (Ser. X) 5 (3), 363
(1957).

~~E. Kanai, Prog. Theor. Phys. 3, 448 (1948).
~2P. A. M. Dirac, Can. J. Math. 2, 147 (1950).
~SE. C. G. Sudarshan and N. Mukunda, Classica/ Dynam-

ics: A Modern PersPective (Wiley, New York, 1974),
Chap. 8.

~ S. Lie, Arch. Math. Naturvidensk. II, 10 (1877); G.
Koenigs, C. R. Acad. Sci. CXXI, 875 (1895) f. by E. T.
Whittaker, Ana/ytica/ Dynamics, (Cambridge Univer-
sity, London 1937), p. 275.] For similar results see
also C. Caratheodory, Calculus of Variations and P«-
tia/ Differential Equations of the I'irst Order, (Holden-
Day, San Francisco 1964), (English translation), Chap.
3; and R. Courant and D. Hilbert, Methods of Mathema-
tica/ Physics, (Wiley, New York, 1962), Vol. II p. 106.

~5But see E. H. Kerner, Adv. Chem. Phys. 19, 325 (1971)
(there the intended application is to first-order sys-
tems encountered in biological problems) .

~6G. D. Birkhoff, Dynamical Systems (American Mathe-
matical Society, New York, 1927), pp. 57 and 58. A
more recent reference is Pontryagin, Bol' tyanskii,
Gamkrelidze, and Mishchenko, The Mathematica/ The-
ory of Optima/ Processes (Macmillan, New York,
1964), p. 17.
F. Rohrlich, Classical Charged Partic/es (Addison-
Wesley, Reading, Mass. , 1965).

iaW. B. Bonnor, Proc. R. Soc. A 337, 591 (1974); E.
Marx, Int. J. Theor. Phys. 14, 55 (1975); E. G. p.
Rowe, Phys. Rev. D 12, 1576 (1975).
P. &. M. Dirac, I.ectures on quantum mechanics
(Yeshiva University, New York, 1964).

20Robert Cawley, Phys. Rev. Lett. 42, 413 (1979).
2~This procedure of shrinking the phase space is not new.

It has been used previously by Dirac )Proc. R. Soc. A
246, 333 (1958)l in his treatment of the gravitational
field. There the arbitrary coordinates are the g», and
their conjugate momenta p & are constraints. The
"contracted" phase-space coordinates are the g„, and

p; r, s=1, 2, 3 ~

We have used several times the property that if X= 0
and Y=0, then X ~ Y=O.
P. G. Bergmann and I. Goldberg, Phys. Rev. 98, 531
(1955).

24The test identifies as dynamical variables only those
quantities satisfying certain Poisson-bracket relations
with the constraints. These involve the null vectors of
the matrix whose entries are the Poisson brackets of
the constraints with one another. Since the universal
constraints all are first class, this matrix is the zero
matrix and every vector a null vector; One finds then
that a function & must have vanishing Poisson bracket
with all the constraints if it is to be a dynamical vari-
able. So it must be independent of the manifold coor-
dinates. All the dynamics is lost and we are left only
with the uninspiring assurance that the constraints will
stay equal to zero.
If the Dirac approach is in the spirit of the Schrodinger
picture for restricting g, the Bergman-Goldberg
approach is in the spirit of the Heisenberg picture for
its focus on the dynamical variables. The two methods
seem to be equivalent [E.Marx, (private communica-
tion)l .
In fact, Eq. (4.4 ) without the ik is identical to the
Hamilton-Jacobi equation which results after the ca-
nonical transformation zP, —p, z.


