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Interaction potentials and momentum transfer in ionic collisions: Uranium
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The effect of elastic collisions of U+ with U, U+, and U'+ in a U+ plasma has been investigated. The
required potential-energy curves were calculated by means of the electron-gas (Gordon-Kim-Rae) statistical
method. An effective polarization potential was added to the ion-neutral potential curve, Collisional phase
shifts were evaluated by the semiclassical J%'KB method using a very efficient algorithm. Modifications
necessary to take into account the long-range shielded Coulomb potential in ion-ion coHisions are described.
Momentum-transfer and viscosity cross sections, without charge transfer, are presented and their
dependences on the long- and short-range potentials are examined.

I. INTRODUCTION

Momentum transfer in collisions is an impor-
tant characteristic of plasmas. The momentum-
transfer cross section for an unshielded Coulomb
potential is mell knomn to be infinite, so that
when ion-ion scattering is treated, the Debye
shielding of the plasma must be taken into account
to obtain a long-range potential of the form

the Debye shielding length and of the ion-neutral
cross sections to the polarization-potential cutoff
are discussed.

This work is mainly concerned with direct mo-
mentum transfer. Indirect momentum transfer,
by way of resonant charge transfer in U II-U I
and U II-U III collisions, depends mainly on the
long-range exchange interaction and has been
treated satisfactorily using asymptotic theories.

where Q, and Q, are the ionic charges and An, is
the shielding length. Momentum transfer is dom-
inated at low collision energies by the long-range
(though shielded) Coulomb potential and at rela-
tively high energies by the short-range repulsive
potential. In the absence of detailed knowledge of
the ion interaction potentials, the collision in-
tegrals, which, for example, result from expan-
sion of the collision term of the Boltzmann equa-
tion in powers of the momentum transfer for a
two-body collision or from the Fokker-Planck
equation, ' are often approximated by arbitrarily
neglecting the small-angle and large-angle scat-
tering. Vfhen a complete interaction potential has
been available, the differential scattering cross
section has usually been calculated through the
classical deflection angle.

In the present work, we show that theoretical
developments of recent years make possible ef-
ficient calculation of interaction potentials using
electron-gas methods and of relevant collision
properties using the semiclassical JWKB method.
These procedures should be relatively accurate
for ion-ion or ion-neutral col1isions typical of
many plasmas. The present application is to
U II-U I, U II-U II, and U II-U III collisions in a
U' plasma. First-order momentum-transfer (dif-
fusion) and second-order momentum-transfer
(viscosity) cross sections have been calculated.
The sensitivities of the ion-ion cross sections to

II. INTERACTION POTENTIALS

A. Electron-gas model

The potential interactions were calcg. lated using
a modified electron-gas model, which has become
well known as the Gordon-Kim method, ' including
a correction to the exchange energy by Rae. ' The
Gordon-Kim-Bae (GKH) method has been quite
successful in determining complete potential
curves between closed-shell atoms and short-
range interactions between other species. 4 A few
additional modifications are required for satis-
factory treatment of dispersion interactions, ' but
these do not concern us in the present work. The
GER method requires as input only the unperturbed
charge densities of the isolated species whose
interaction is considered. The basic assumptions
of the method are the following. (i) Each atom
(or ion) is represented by its electronic charge
density. (ii) The charge densities (p, and p, ) are
assumed to be simply additive. (iii) The Coulomb
electrostatic potential is calculated directly. (iv)
The kinetic, exchange, and correlation energies
are calculated using functionals obtained for a
uniform, nonrelativistic electron gas. The ex-
change energy is multiplied by a correction fac-
tor to eliminate self-energy contributions which
can be significant if the number of electrons is
small. The second assumption is the most dras-
tic and limits the method to closed-shell inter-

2310



20 INTERACTION POTENTIALS AND MOMENTUM TRANSFER IN. . . 2311

actions; within this limitation, however, Nikulin
and Tsarev~ have shown that the assumption is
reasonable even in the united-atom limit.

The total interaction energy is then

integrals, Eq. (Sa) can be rearranged

V,(p)= ' ' + f I p'r, p'r, .p.(r, )p, (r, )

V,„„(R)= V, (R) + V„(R).

The Coulomb interaction for two atoms (or ions)
with nuclear charges Z, and Zb is given by

Z.Z, ~ ~ p. (r,)p, (r,)

(2)
ZA3 —Q.Q.

(Z. -Q.)(Z, - Q, ) R

Z, 1

+ , (Sb)

-Z d+ P'(") Zb 1 r a 2 rlb 20
(Sa)

To avoid a large degree of cancellation between

where Q, and Q, are the net ionic charges (as-
suming Q, gZ, and Q, tZ, ). This can be reduced
to a two-dimensional integration' if p, and p, are
each spherically symmetric; in that case,

V, (R) = ' ' + dr, 4wr2p, (x,) dr, 42/r2P, (2',)

2g, 1
(4)

where
r

2/(R+2', + IR -2', I), for 22~ IR -2'11

(~, r,)'—
2 r, r, 4f r2 4Brr,

Z(R, 2„~,) =
(,

I

The electron-gas functional (in Hartree atomic
units) for N(N=Z, +Z„—Q, —Q„) electrons can be
written

z„=z„,„+c„(v)z,„,„+z,.„,
where

for ~R r, ~
&r-, &R+r,

for re~R +r~.

—~(S22)2/3 2/ 3

3 (S/2)1/ 3pl/ 3

0.0311 lm", —0.048+ 0.00$", lnr, -0.01r, ,

(8)

(9)

The double integral in Eq. (4) is accurately done
by Gauss-Legendre quadrature. The radial dis-
tance was segmented with Ar = 10a0 and 100 quad-
rature points were taken in each segment (fewer
points would have been adequate). In all cases
the integral was well converged by r, (or r, )

15Q p. %'e may note here that the Gaus s-Legen-.
dre quadrature was found to be- more accurate
than Gauss-Laguerre quadrature with a similar
number of points.

If one ion is fully stripped (say Q, =Z„ for de-
finiteness) then Eq. (4) is replaced simply by

for r, «0.7

-0.061 56+0.01898lnr for 0.7& r & 10

-0.438r '+1.325r '~'-1.47r ' —0.4r '~'

for r, &10

in terms of the radius

2 =(S/42p)'/3

V,'(R) = " +Z, dr, 42r~~, (r,)
0

and

C„(N) = 1 -~5+ 25 ——5 (12)

x 1 2
((rr, r(3 r, l)' (P')-with 5 such that

(1 3t+23~ V3) = (-er)

The integral in Eq. (6) is more conveniently done
in prolate spheroidal coordinates, for which

V„(p) = j p'r((p +p, )2 , (p pp). . .
P((Z 33(pg) P3Z S2(P3)1 ~

r. =-,'(t+2I)R,

r, =-,"(~ -)l)R,

(14a)

(14b)

The non-Coulomb electron-gas interaction ener-
gy is given by
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TABLE I. Potential energies obtained using the GKH
method.

Z(a, )
' U(a. u. )

v+-v+

0.25
0 ~ 50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3 ~ 75
4.00
4.25
4.50
4.75
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.00

8959
1824
581.1
238.6
111.3
56.70
30.65
17.50
10.50
6.550
4.196
2.733
1.787
1.231
0.8511
0.5721
0.4123
0.2898
0.2000
0.1473
0.0732
0.0337
0.0157
0.0060
0.0010

—0.0013
-0.0020
-0.0022
-0.0020
-0.0017

8960
1825
581.4
238.9
111.6
57.00
30.95
17.79
10.79
6.827
4.464
2.992
2.039
1.471
1.081
0.7950
0.6251
0.4945
0.3977
0.3365
0.2487
0.1974
0.1679
0,.1483
0 ~ 1345
0.1243
0.1164
0.1097
0.1040
0.0989

8960
1825
581.7
239.2
111.8
57.20
31.15
17.99
10.99
7.028
4.665
3.196
2.251
1.679
1.287
1.005
0.8268
0.6927
0.5935
0.5250
0.4272
0.3652
0.3239
0.2935
0.2701
0.2513
0.2356
0.2221
0.2103
0.1998

'lao=0, 52918 A.
1 a.u. =27.21 eV.
Does not include polarization potential.

0 P I I I I I I III I I I I I IIII I I I I I I III I I I I I I

IO 10 ~ 1O ' 1OO 1O'

" ('0)
FIG. 1. Charge densities (muliplied by 47).x2) for the

ground-state configurations of V, U', and U '.

The g integral is trivial and yields a factor of
2m. The g integral was performed the same way
as the radial integrals in Eq. (4); the q integral
was performed using 32-point Gauss-Legendre
quadratur e.

8. Results for uranium

TABLE II. Components of the GKH energy for the V+-
V+ interaction.

Energy (a.u. )

R(ao) Coulomb Ki'netic Exchange ' Correlation

0.5
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

525.4
-15.68

11032
—2.145

' -0.6064
-0.1268

0.0486
0.1047
0,1132
0.1076
0.0990

1329.5
265.00
31.44
5.849
1.6796
0.5897
0.2089
0 ~ 0724
0.0250
0.0087
0.0030

-29.7
-10.06
-2022
-0.662
-0.2526
-0.1118
-0.0516
-0.0239
-0.0111
-0.0051
-0.0023

-0 ~ 6
-0.31
-0.11
-0.049
-0.0257
-0.0146
-0.0085
-0.0049
-0.0028
-0 ~ 0015
-0.0008

Includes Hae correction factor C„(3.82) =0.7165.

The charge densities were calculated with num-
erical relativistic Hartree-Fock wave functions
for the ground-state configurations, U(5f'6d' Ve'),
U'(5f'Vs'), and U"(5f'6d'), using the program of
Cowan and Griffin. ' The one-electron wave func-
tions represent an average over the component
fine-structure levels and are thus spherically
symmetric. These charge densities, shown in
Fig. 1(in a.u. , e= 1), were then used in the GKB
method described above to obtain the potential
energies given in Table I. The use of the nonrela-
tivistie electron-gas model with relativistic charge
densities is not inconsistent since we are mainly
concerned with interactions involving shells where
the only significant relativistic effects are due to
orthogonality constraints and are hence taken into
account by the atomic charge densities. We note
that in the present calculations C„=0.72 in Eq.
(7). The separate contributions to the GKB energy
are given in Table G for the O'-U' interaction.
The procedure was repeated using densities for
the low-lying excited states U'(5f'6d'Vs') and
U"(5f'Vs'), but the differences in the results were
not considered important for present purposes.

The GER potential curves for the ion-ion inter-
actions already include all essential contributions,
but the GER potential curve for the ion-neutral in-
teraction does. not include the important contribu-
tion of induced polarization since the charge dis-
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IO of the differential cross section I(0) by

o, =2& I 8 1-cos8 sin8d8

l02
g, = 2n I 8 sin'8d8, (19)

0

respectively. If the two atoms are different or
the energy is such that symmetry effects are neg-
ligible, then these cross sections can be written
in terms of the partial-wave phase shifts as fol-
lows":

10I 4m
o, =, (l+1) sin'(q„, -qg) (20)

and

2s ~ ((+1)(l+2) »n 61i+2
g 2

(21)

2

R(ao)

FIG. 2. Potential energy curves for U'+U, U'+U',
and U'+U2'.

IO

tributions were fixed. To take into account the
polarization contribution to the latter, the poten-
tial is written

III. COLLISIONS

A. Semiclassical treatment

For the collision of two atoms (possibly one or
both ionized) the momentum transfer (or diffusion)
and viscosity cross sections are given in terms

where
n

f„(x)= 1 —e-* + —;~=0 &'

is a cutoff function analogous to that obtained in
the polarized-orbital method for electron scatter-
ing. ' Note that f,(x)/g -x/120- 0 as x- 0. The
dipole polarizability n of U I has been determined
in numerical Hartr ee- Pock calculations' to be 66.0
A'. The potential curve for the O'-U interaction
assuming 80=1 is shown in Fig. 2. This value of
Ao will be shown in Sec. III B to be a reasonable
choice.

R 52 y(+) I/ 2

g, =k lim
R ~ R

1--
2 dr (22)

where b = (l+ —,')/k and R, is the outermost classi-
cal turning point. For scattering not involving
the very long-range shielded A ' potential, the
phase shift can be efficiently evaluated by convert-
ing Eq. (22) to a form suitable for Gauss-Mehler
quadrature" (25 points were used). For ion-ion
scattering the Debye electron shielding length is
typically several orders of magnitude larger than
atomic dimensions and more care, though little
additional computational time, is required. The
integral in the latter case was done numerically
from the lower integration limit to R (a simple
change of variable allows the techniques of Ref.
11 to still be used) and analytically from R to ~,
with R = max(5R„5b, 10). At r & R the inverse y de-
pendence inEq. (22), with V(r) givenby Eq. (1), was
expandedthrough fifthorder. We should also note
that better accuracy was obtained by calculating
the phase differences, g,, —g» directly.

where A'= 2MB in terms of the reduced mass M
and collision energy E. Whenever a large num-
ber of partial waves contribute, which is the case
in the present work, l can be treated as a contin-
uous variable and the summations can be replaced
by integrations. The integrations over / were per-
formed by Gauss-Legendre quadrature with the
interval lengths determined by the rate of varia-
tion of the phase shift (typically, 20 intervals of 10
points each were used).

The phase shifts in the semiclassical JQTKB

approximation with the Langer modification are
given by
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B. Results for U+ scattering by U, U+, and U +

20 =wB,

with R«such that

V(R, ) =8,

(22)

(24)

is not a usual kinetic cross section but provides
an interesting comparison. At low energies the
behavior of the kinetic cross sections in Fig. 3

105 X I ~ I ~
I I I I

The GKH model used to obtain the potential
curves works with atomic charge densities rather
than wave functions, so in the case of an interac-
tion like U"-U, which actually has a splitting owing
to inversion symmetry, it yields an average poten-
tial. There are several gerade-ungerade pairs
of potentials which arise from the U'-U interac-
tion but we approximate the scattering by the aver-
age potential consistent with the charge densities
described above. This potential should be a good
approximation for the "hard-body" contributioa
to momentum transfer. The results for scatter-
ing of U+ by U' or U", obtained with an electron
shielding length of 10'a„(= 5.29&10 ~ ctn), are
shown in Fig. 3. In addition to g„ the momentum-
transfer (or diffusion) cross section, and o„ the
viscosity cross section, we show 0„ the "energy-
dependent geometric" cross section. The latter
cross section, defined by

approaches that characteristic of Coulomb scatter-
ing; .namely, the cross sections vary as E ',
o(U"-U') = 4o'(O'-U"), and o,= 2o, . As the energy
increases the effect of the long-range Coulomb
potential diminishes and the cross sections for
O'-U' and O'-U" collisions become similar.

The ion-ion cross sections depend, of course,
on the Debye electron shielding length

iI.o,= (ke T, /4IIe'n, )'I", (25)

where k~ is the Boltzmann constant, T, is the
electron temperature, and n, is the electron den-
sity. Only the electrons have been assumed to be
in a Boltzmann distribution. Shielding by ions is
neglected in the above expression but, if import-
ant, would reduce the effective shielding length
somewhat. The dependence of the momentum-
transfer cross section g, on XD, over a four-decade
range is shown in Fig. 4 for U'-U" scattering at
four different energies. Considering that the cross
sections would be infinite without shielding, the
dependence is remarkably weak even at low col-
lision energies. We may note that even though
extremely large angular momenta, of the order of
kAD„contribute weakly to the cross sections, no
difficulties are encountered with the integration
techniques described above.

The scattering of U+ by neutral U is qualitatively
different from the ion-ion scattering. " The cross
sections, assuming a polarization cutoff constant
R„=1 [see Eq. (16)], are shown in Fig. 5. The
low-energy ion-atom scattering is interpretable
in terms of classical orbiting; i.e. , the attractive
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FIG. 3. Cross sections for U'+U' and U'+U ' col-
lisions as a function of energy (center-of-mass system).
See text for definition of &To (lao -—0.28 A. ).

FIG. 4. Dependence of the U'+U' momentum-trans-
fer cross section on. the electron shielding length at
four different collision energies.
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FIG. 5. Cross sections for U'+U collisions as a
function of energy (center-of-mass system). The polar-
ization cutoff paraxneter is Ro ——lao. The contribution
of charge transfer is not included.

potential together with the centrifugal term pro-
vide an effective potential with a barrier. Hence,
at sufficiently low scattering energies there exists
a critical impact parameter b„ the "orbiting ra-
dius, at which the classical tuning point is dis-
continuous. For a pure polarization potential,

b, = (2o. /Z)'~4 (26)

(in a.u. ) and orbiting can occur for any Z. For a
realistic potential, b„depends on the short-range
potential as well and orbiting is limited to col-
lisions at energies less than about half the poten-
tial-energy well depth. This behavior can be seen
in Fig. 5. At energies less than about 1 eV, the
kinetic cross sections are about nb', with the cor-
responding energy dependence of E '~'. This value
is much larger than the energy-dependent geo-
metric cross section which ignores the effect of
centrifugal barriers. In the low-energy limit
o,/o, = 1.43. Strictly speaking, the semiclassical
method" is not valid for impact parameters close
to bo. Nevertheless, this treatment is expected
to be accurate for the integrated cross sections.

The cross sections in the transition energy
range, where the scattering switches from dom-
inance by the polarization potential to dominance
by the short-range potential, are somewhat un-
certain because of the arbitrariness in the choice
of the cutoff distance Bo in the polarization-poten-
tial function. The momentum-transfer cross sec-
tion is shown in Fig. 6 for four choices of R~:
0.5, 1.0, 2.0 and ~. If polarization is neglected
(Ro- ~) the cross section is much too small at low
energies. On the other hand, for R„=0.5, the
polarization potential affects the. cross section sig-
nificantly even at relatively high energies (a 100
eV), a behavior which is not physically reasonable.
The choice R0=1 makes the cross section insen-
sitive to small changes in R, except in the transi-
tion region and also yields a reasonable potential-

FIG. 6. U'+U momentum=transfer cross sections for
four different polarization cutoff parameters Ro.

energy well depth (see Fig. 2).
It may be noted that in the special case of the

transport cross sections, g, and 0„ the semi-
classical method with l treated as a continuous
variable is equivalent to the classical result. "
This equivalence is not general since it obviously
does not hold for the non-Coulomb differential
cross section I(8). In any event, the method de-
scribed in the present work is computationally as
fast as classical calculations. Hahn et al."have
previously discussed quantum effects in ionized
gases and calculated quantum cross sections for
a shielded Coulomb potential not modified by a
short-range barrier.

Molecular inversion symmetry and the associat-
ed resonant charge transfer in collisions have
been neglected in the present work. At the higher
energies considered resonant charge transfer will
make the dominant contribution to the effective
momentum-transfer cross section for collisions
of U' with U or U" (charge exchange is relatively
unimportant for U'+ U" collisions, of course).
The contribution to 0, by charge transfer is given
approximately by tzvice the charge- transfer cross
section. " Charge transfer has little effect on the
cross section g, since 0, has zero weight in the
backward direction. Charge transfer cross sec-
tions for U'+ U collisions have been calculated by
Sinha. and Bardsley'"; they obtain

v~" ++ = (23 8 —2 93 log +)'+ 4 12K '"
where E is the center-of-mass energy in eV and

p„, is in ao. This is in fairly good agreement with
the result obtained using the very simple theory
of Dewangan" (fit for the energy range 1-1000
eV),

v~,", 'I = (24.4 —2.50 log, P)'.
According. to the theory of Dewangan

(U++U ) 0 58 (U +U)
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This result may be reasonable at energies large
enough for the impact parameter method with
straight-line trajectories to be valid. However,
it should be viewed with caution since resonant
charge transfer between U+ and U2' requires a
change in configuration from s' to d, and hence
the simple one-electron asymptotic theory is not
really applicable.
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