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Excitation probabilities for the 1s-2s transition of hydrogenlike ions by low-energy (4-100)E,, protons are
calculated in the Coulomb-Born approximation and compared to the corresponding calculations in the
semiclassical approximation with hyperbolic trajectories. Through the use of a Fourier-Bessel transform, an
effective energy is derived for the semiclassical approximation, which brings the total cross section into

agreement with the Coulomb-Born results.

I. INTRODUCTION

Recent experimental and theoretical studies of
inner-shell ionization of heavy targets by low-
energy protons’~® have shown that relativistic
corrections to semiclassical calculations are im-
portant. The necessity for such corrections is
especially noticeable at large scattering angles.®
That this is true for large angles may be qualita-
tively explained as follows. In order to have a
significant number of excitations of K-shell elec-
trons, the electrons must be subjected to a time-
varying electric field with Fourier components
w, such that

nw=AE, 1)

where AE is the excitation energy. Such a field
is produced by slow protons if their trajectory
makes an abrupt change, i.e., for collisions with
small impact parameters where the trajectory’s
point of closest approach is near the nucleus. Al-
ternatively, the high Fourier coefficients are ob-
tained when the energy exchange is large. For
slow protons, this implies a large momentum
change as well and occurs when the scattering
angle is large. Since the electron velocities in
this region are large, the relativistic corrections
to the electron wave functions noticeably affect
the excitation cross sections. This offers the
possibility that low-energy inelastic proton scat-
tering could be used as a dynamic probe to in-
vestigate relativistic corrections to atomic wave
functions. However, before such a probe can be
exploited, the magnitude of other sources of un-
certainties in the theory should be considered.

In this paper we study one of these: the uncer-
tainty attributable to the use of the semiclassical
approximation in calculations of total and differ-
ential cross sections. The use of the semiclassical
approximation is justified for high incident ener-
gies, but is incorrect for extremely low incident
proton energies. In particular, because the proton
loses as much as 10%~20% of its energy in low-
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energy inelastic collisions, it cannot be said to
follow a classical trajectory. A better description
of the scattering is obtained by the use of Coulomb:
wave functions for the incident proton. In this
study, we proceed by calculating the probabilities
for the inelastic excitation of hydrogenlike ions by
low-energy protons in the CBA (Coulomb-Born
approximation) and comparing this calculation with
the SCA (semiclassical approximation) calculation.
We consider 1s-2s excitation as a model study,
since s-s transitions are the most significant con-
tribution to inelastic scattering for slow protons.
We note that the use of a scaling factor for cross
sections and energy makes the numerical results
presented in this paper applicable to a wide range
of Z. This is possible because we use the un-
screened Coulomb potential; thus the curve Z %

vs E/Z? is universal. Here the energy, and all
other quantities in this work, are determined in
the center-of-mass frame.

In Sec. II we present the necessary formalism
for the calculation of differential excitation prob-
abilities and total cross section using both the
CBA and the SCA for the process

H"+A%-D*(1s)~ H* + A7~ %(2s) (2)

Numerical results are presented and discussed

in Sec. III for He* targets for the energy range
(4-100) times the threshold energy. In addition,
we compare the CBA and SCA by means of a Bes-
sel transform and derive an effective energy for
the SCA. This effective energy permits one to

use the SCA for total cross-section calculations

at low energies with relatively small errors. Con-
clusions are presented in Sec. IV.

II. FORMALISM

A. Coulomb-Born approximation

Oh et al.” have obtained closed form expressions
for transition matrix elements for inelastic elec-
tron-hydrogenlike-ion collisions in the CBA. With
suitable minor changes, we can apply their results
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to inelastic proton-hydrogenlike-ion scattering.
The Hamiltonian for the incident proton is taken
to be

Je=T+Ze*/r, (3)

where we assume that the screening by the orbital
electron is negligible because the proton pene-
trates to a region near the nucleus. The incoming
and outgoing wave functions for the proton in terms
of hypergeometric functions are®

W@ =N ¢ED P (+a, 1;i(kr =k F)) (4)
and
WS @ =N D P (=b, 1; ik +K-F),  (5)

where the normalization is to unit amplitude, with
the normalization constants defined by

N"=exp(-Lita )T(1 - a) (6)
and
NV = exp(—5imb)T(1 +0) . ()

The initial and final wave vectors are k and k’ s

respectively, and we define
]

I, = 4n[X2+ (k = K')2"* X —i(k = B')]"O (X — ik +ik') (X +ik—ik’)'°2F1<a, b;1;1-

and
X=%. (15)

We use atomic units throughout this work, so
this scattering amplitude is related to the differ-
ential cross section by the expression

o(E,Q)=(k /R)A, 412, (16)

To facilitate comparison with the SCA calculation,
we prefer to use the excitation probability rather
than the cross section. We obtain the probability
by dividing the CBA differential cross section by
the Rutherfold cross section for the same energy
and angle. This is justifiable in our calculations
since the elastic scattering is the primary com-
ponent in the total cross section at a given angle.
Numerical results were obtain for the process

H*+ He*(1s)—~ H' + He"(2s) an)

at various energies and are discussed in Sec. IIL

B. Semiclassical approximation

The purpose of this section is to obtain an ex-
pression for the excitation probability for the pro-
cess described by Eq. (2) with the assumption
that the incident proton follows a classical hyper-
bolic trajectory.

The parameters necessary to describe hyper-
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a=—iZM/k (8)
and
b=—iZM/E'; (9)

M is the reduced mass of the system, and Z is the
atomic number of the target.
The inelastic scattering amplitude® is given by

Ain= ;2[1:!— f a¥ zp(f.)*('f)Uif(f)zpf’(f) . (10)

Here, U,f(x") is the matrix element of the hydro-
genic wave functions with the potential e?/|F —F'|:

v,@®= [ a ¢f*ﬁ')%%r¢,@'> . (11)

For the 1s—~ 2s excitation, this is readily integrat-
ed to obtain

Use,ss= BV 22)(1+527)e™3%/2, (12)
Now, using the results of Ref. 7, we find
2T i} 5\ o
Als-—»zs = 2T ZMA’?)NJS’) (1 —Xa_X>_a—)?Iab ’
(13)
where
X24 (E _'l;:)z )
X2+(k_kl)2 (14)

r

bolic trajectories have been given by Landau and
Lifshitz.!® Methods of evaluating the integrals
involved have been reviewed by Kocbach!! in a dis-
cussion of the general theory of the SCA, The de-
finition and method that we used to obtain an ex-
pression for the excitation probability are sum-
marized as follows. The probability amplitude for
excitation a;, is given in terms of the time-de-
pendent classical trajectory R (), by

gy = =i f U, R(E)e™ 2% at, (18)

where the quantity U,, is the same as in the CBA
shown by Eq. (12). The classical trajectory and
the time are expressed in terms of the parameter
Q by

R(Q)=(Z/2E) (e coshQ +1) (19)
and _
t=(Z /2Ev)(e sinhQ + Q) . (20)

Here, E is the energy and € is the eccentricity of
the hyperbolic path. It is related to the impact
parameter B by the equation

e=[1+(2EB/Z ]2, (21)
In terms of the scattering angle, B is found to be
B=(Z/2E) cot(%0). (22)
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We also define the quantities
C=Z/2E, (23)

and
w=AE/v. (24)

After making some obvious substitutions, we
find the excitation amplitude to be

I= f RZ%™*R exp[ —iwC (€ sinh§2 + Q)] d ,

=C? j (€® cosh®Q + 2¢ coshQ +1) exp[ =XC (e coshf +1)] exp[—iwC (e sinhQ +8)]dS .

-c0

This is separated into the three integrals

I,= f exp[ —XC (e coshQ +1)] exp[ —iwC (€ sinhQ + Q)] d$2 ,
I= I cosh() exp[ -XC (e cosh® +1)] exp[ —iwC (€ sinhQ + )] 4,

I= f cosh(29) exp[ -XC (e cosh§ +1)] exp[—iwC (e sinh§ + )] dQ .

—-co

Defining the quantity ¢ by the relations

cos<p=X/(X"‘+w2)1/2 (31)
and

sing=w/(X%+w?) 2, (32)
and with the transformation

Q=Q+igp, (33)

we can integrate I, I,, and I, analytically. The
results for these integrals are given in closed
form by modified Bessel functions of the third
kind*':

I,=2e7%C ¢~ K, (Ce(X P+ w2y | (34)
L= %C e e~k _ . o(Ce(X2+w?)V?)

+e' K, ,olCe(X?+w?) 3], (35)
and
I,=e™¥C e~ 39K . o(Ce(X?+w?Y?)

+e%K,, c(Ce(X?+wdV ], (36)
We find that the integral

fw R ¢™*F exp[ —iwC (€ sinhQ + )] dQ (37)

can be simply written in terms of I, and I;. Thus
when the preceding equations are used with Eq.
(25), we have the excitation amplitude given by
the relatively simple expression

AND J. MACEK 20
w2z e -
G152 = = g I_mR(l +XR)e XR
x exp| —iwC (€ sinh§ + Q)] dQ ,

(25)

where X =37,

To evaluate the amplitude in Eq. (25), we con-

sider the integral
(26)
(27)
(28)
(29)
(30)

I
15,5 = (=4 2Z /210)[(C +3C K e* +XC I,

+(Ce+2C%eX)I, +5C2%3X 1,
(38)

for the 1s—~ 2s transition. The desired probability
is then simply !

P(ls~2s)=a,, ,a¥ ,. (39)

III. RESULTS AND DISCUSSION

In this section we report the numerical results
obtained for the process described by Eq. (17) for
both the CBA and the SCA over the energy range
(4-100) times the threshold energy (E, =1.5 a.u.).

The hypergeometric functions necessary for the
CBA calculations were accurately evaluated by
computer using a series approximation with ap-
propriate transformations of the argument to as-
sure rapid convergence.'? The modified spherical
Bessel functions of the third kind (MacDonald
functions) K,(Z) occurring in the SCA formulas
were evaluated from the relation

KV(Z) = [”/2 sin(ny)][I_U(Z) 'Iu(Z)] ’

(v#0,1,2,...) (40)
where I,(Z) is the modified Bessel function of the
first kind.*? Values of ,(Z) and I_,(Z) were ob-
tained from a series expansion. We note that for
small energies the values of I,(Z) and I_,(Z) are
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FIG. 1. Differential excitation probability vs angle for
E/Ey,=5. Curve labeled A is the SCA result; curve la-
beled B is the CBA resulit.

quite large and very close in value, thus care
must be taken in evaluating K,(Z).

A. Differential excitation probabilities

The results of the calculations of differential
excitation probabilities are illustrated in Figs.
1-4. These particular energies were chosen
because the shape of the probability versus scat-
tering angle curves are typical for those energy
regions.

The shapes of the curves in Fig. 1 are similar
to those obtained from the lowest energy considered
for CBA (E=3E,,) up to approximately 8E,,. The
deep minima near 103°-105° in this figure are
present in all the probability curves for this ener-
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FIG. 2. Differential excitation probability vs angle for
E/Ey,=9. Curve labeled A is the SCA result; curve
labeled B is the CBA result.
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FIG. 3. Differential excitation probability vs angle for
E/Ey,=10. Curve labeled A is the SCA result; curve
labeled B is the CBA result.

gy range, although the minima shift toward larger
angles as the energy increases. Mathematically,
these minima occur because at low energies in
both the CBA and SCA, the probability is obtained
by summing large complex numbers that are
slightly out of phase. This effect is physical as
well. In the SCA case the variation of probability
with angle is attributed to the interference of in-
coming and outgoing amplitudes®; in the CBA case
the interference (at low energies) is between the
incoming and outgoing Coulomb waves for the in-
cident proton. We particularly note that the scat-
tering has a higher probability for large angles in
this energy range.

In Figs. 2 and 3, one can see the gradual dis-
appearance of the minima, and an increase in the
component of scattering at smaller angles. The
magnitude of the probability increases as the
energy increases, a relationship that is true over
the entire energy range we studied.
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FIG. 4. Differential excitation probability vs angle for
E/Ey,=30. Curve labeled A is the SCA result; curve
labeled B is the CBA result.
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TABLE 1. Probabilities of excitation for scattering
angle of 180°.

Energy Probability Probability Difference
(E/Ew) (SCA) (CBA) (%)
5 1.525x107°  2.2418x10710 580
6 1.795%1078  6.565 x107° 170
7 6.370 X10"%  4.061 x1078 57
8 8.666 X108 9.180 %1078 5.6
9 2.199%107% 7,913 x1078 72
10 7.428x107% 3.242 x1078 130
12 4.441x107% 2,528 x107° 76
15 5.337x107%  4.090 x107° 31
20 4,341x10™*  3.829 x107¢ 13
30 3.087x107% 2,940 x107° 5.0
50 1.551xX107%  1.529 x1072 1.5
100 5.874X107% 5.867 x1072 0.12

In tne energy range beyond 10E,, the shape of
the probability curves rapidly approaches that
shown in Fig. 4, with the SCA curves always high-
er than, but getting closer to, the CBA curves as
the energy increases. Since we are particularly
interested in scattering at large angles, in Table
I we compare the probabilities for excitation at
a scattering angle of 180° with the difference D
calculated as

PsCA. pCBA

D= 100—-5E]3A——% .

(41)
The difference appears erratic at the lower ener-
gies, due primarily to the phase differences in the
amplitudes. This is considered in more detail
later.
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FIG. 5. Total cross sections. Curve A is the SCA
result; curve B is the CBA result. Both are in a.u.

B. Total cross section

The total cross section was obtained by numer-
ically integrating over the differential excitation
probabilities in the usual way. As would be ex-
pected, the agreement is very good for relatively
high energies, with the SCA total cross section
being too large at low energies, as shown in Fig.
5. ‘The uniformity of the difference between the
two curves suggests that an energy-dependent
correction might improve the SCA results. Such
a correction is derived through the analysis in
Sec. IIC. The total cross sections obtained from
the SCA and CBA are presented in Table II

TABLE II. Total cross section for CBA, SCA, and SCA (corrected) in a.u.

Energy Difference Difference
(E/Ey) oBAa.u.) o¥Ma.u)  from CBA () o$GA(E—AE/v) *from CBA (%)
4.0  8.551x1071%  5,940x10713 6900 eee
5.0 8.565x10712 1,016x10710 1100 1.230x1071 44
6.0 5.480x1071% 2.907x107? 430 6.341 %1010 16
7.0  9.301x107% 2.937x1078 220 1.020%1078 9.6
7.5  2.700x107%  7.325%x1078 170 2.937 %1078 8.8
8.0  6.690x107%  1.622x1077 140 7.325x1078 9.5
8.5  1.482x1077  3.227x107' 120 1.622x1077 9.4
9.0  2.966Xx1077  5.927x1077 100 3.227x1077 8.8
9.5 5,518 1077  1.023x1078 86 ©5.927 %1077 7.4
10.0  9.744%x1077  1.667x107° 71 1.023 x107¢ 5.0
12.0  5.302x107%  7.766x107¢ 47 5.534 %1078 4.4
15.0  2.837x107°  3.629x107° 28 2.930%x107° 3.3
20.0  1.550x107%  1.811x107* 17 1.589x1074 2.5
30.0  9.774x107%  1.069%x1073 9.4 9.986 x107* 2.2
50.0  5.595x107°  5.806x107° 3.8 5.644 X107° 0.88
100.0  2.931x107%  2.951x1072 0.72 2.924 X107 -0.23
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C. Effective energy for the SCA

In this section we express the scattering am-
plitudes for both the SCA and CBA calculation
in similar forms. This is important because from
a comparison of these expressions, parameters
for the SCA are established that are analogous
to those of the CBA formalism. Thus, by equating
these parameters, we find an equivalent energy
for the SCA calculation which produces results for
the total cross section that are in good agreement
with the CBA results. .

As shown by Wilets and Wallace'® and others!*

the semiclassical probability amplitude a‘,(b), and
]

ACBAE _(M/zn)lv(;)N(k-l)*Iab

the inelastic scattering amplitude ASGA(6) are relat-
ed by the Fourier-Bessel transform

©

ASGA(6) = Mo f a;;(bM [ 2Mvb sin(36)]b db . (42)
0

This relation was obtained from Eq. (51) of Ref. 13,
with modifications appropriate to scattering via
a strong Coulomb potential.'®* Equation (42) indi-
cates that evaluation of the pertinent Bessel trans-
forms would permit a comparison of the CBA and
SCA expressions for A;,. Since the amplitudes are
obtained by linear operations on I,,, we need con-
sider only I, and its semiclassical analog.

Using Eq. (6.576-3) of Ref. 15 we may write an
amplitude A®®A as

4 ~(a+d) / 2 L. . X . X
= Z(W) expliin(a - b)] exp[—z (a+b) arctm<m> —i(a —b)arctan P k’)
XM f t1-e=v K JIX2 4 (B =R )]V 2447 [2M (vo')Y 2 sin(26)t] dt . (43)
1]
r

To write Eq. (43) into a functional form similar to
Eq. (42), we define

W' =20E(w+v'),
C'=-Z/Mvv (44)
¢’ = =37 +arctan[X /M(v —v')]= —arctan(w’ /X) .

In addition, since X2?/(k+%')?is on the order of
10~% or smaller, we neglect terms of this order
to obtain

Aanz( 2 )’(‘“") exp(-XC' - w'C' ¢’ )Mv
k+k

x(v-lf E10K e [(X0% + w0 2)Y 2]
1]
XJ[2M (vv')Y 2 sin(% 6)¢] dt) . (45)

Except for the phase factor [2/(k+%')]"@*  this:
expression is similar to Eq. (42), with a,,(b)
corresponding to I,,/v. The most significant dif-

ference is that ¢ in Eq. (45) replaces € in Eq. (34);-

this is necessary to obtain agreement between the
1

o

j lAanlzy dy = 2M21)2exp[-2XC’ - 2wlcl¢/] f
o

-2% 48?

SCA and CBA total cross sections.
In order to see this, we define -

y=2M(vv') 2sin(%6) , (46)

/
and note that because Bessel transforms preserve
normalixation, we have

J. IACBAlzy dy = M?p? exp(-2XC’ - 2wlc/¢l)

0
XI ’Kmrcr[(X2+w'2)1/2t]]2tdt.
0

(47)

Now since (v/v')y dy=M?»?sinfd0, we see that the
integration over y on the left-hand side of Eq. (47)
includes nonphysical regions where sin(36) is
greater than unity. This corresponds to the for-
bidden region where € <1, We exhibit this region
by defining an impact parameter B’, such that

B'2=t2-Z%/4F? (48)

Upon substitution of this expression, Eq. (47) be-
comes

/ z2\V 4|2
v—lKiwlcl[(Xz"'w,z)l 2 B’2+ 4E2> d(Blz). (49)

In this form, the integrations in Eq. (49) include some nonphysical regions of ¥ on the left-hand side and
B’ on the right-hand side. Now we limit the integration on the left-hand side to physical values of y
<2M (vv')l/ 2, and compensate for the error introduced by this by taking zero as the lower limit on the
right-hand side. [That the errors do indeed compensate is seen by noting that for a Coulomb potential
where the relation y=2Mv /(1 + 4E2B'%/Z Y 2 holds, the region 2Mv < y< « corresponds exactly with the re-

gion 0 < B'%< —Z2/4E2] Recalling that
(w/v')y dy=M?**sin6dé,
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we have

,l}I m
T f |ACBA{ 2sinfd6
0

~exp[-2XC’ - 2w’C’¢>']2f
0

Now in Eq. (50) we have the integrated CBA am-
plitude on the left-hand side of the equal sign ex-
pressed in terms of the corresponding analogous
SCA amplitude on the right-hand side. Thus we see
that the integrated CBA and SCA expressions
agree to the extent that w’=w and C'=C. We note
that the approach of the approximate expression in
Eq. (50) to an equality depends quite sensitively
on the index w’C’, since the magnitude of K, de-
pends upon cancellation of I, and I_, [see Eq. (40)].
Accordingly, we propose that SCA cross sections
be calculated for an effective energy E,, such
that w'C’=wC. To find E ., we simply write
w'C’ =wC explicitly in terms of E; to obtain

ZAE/zUcff Eetr = 2ZAE/MUU'(’U+Z)') , (51)

With the approximation v’ ~ v —AE/(4vM), and
using v = (2E ¢ /MY 2, we find

E ot ~E —LAE. (52)

This means that one obtains a good approximation
to the CBA result for the total cross section at low
energies by using the computationally simpler
SCA equations at the lower energy E. ;. Specifical-
ly, the modified Bessel functions K, present fewer
problems numerically than the hypergeometric
functions ,F,. This results in the SCA calculation
using approximately one-fourth as much computer
time as the CBA calculation for total cross sec-
tion.

T

o,
H
T

-
F

TOTAL CROSS SECTION(A.U.)

ENERGY (E/E 1)

FIG. 6. Total cross sections with energy shifted SCA
result. Solid curve A is the SCA; dashed curve is the
energy shifted SCA, and solid curve B is the CBA result.

2 \1/2) |2 )
v'lK'-w,c, [(X2+w’2)1/ 2<B'2+%2—) ] \l B' dB’ =I IASCAIZB' dB’ . (50)
0

r

In Fig. 6, the CBA cross section (curve B) is
compared with the energy-shifted SCA cross sec-
tion (dashed curve). One can see easily the great-
ly improved agreement between the two calcula-
tions. This is seen more accurately in Table II,
The energy-shifted SCA cross section agrees to
within 10% of the CBA cross section for energies
above seven times the threshold energy, in con-
trast to the 200% difference for the unshifted re-
sult.

A prescription frequently given!® for correcting
the SCA is to introduce an effective velocity vesr
=4 (v+v'), with the corresponding effective energy
E -3AE. Our derivation, and the results in Table
II, show this to be in error: rather, one should
use the effective energy in Eq. (52).

The effective energy of Eq. (51) is chosen to ob-
tain equality of the total cross sections; however,
a stationary phase evaluation of the Bessel trans-
form of Eq. (45) suggests that the angular distri-
bution results might be improved as well. Figure
T compares the CBA probability at =7 (curve
B), with the energy-shifted SCA results (dashed
curve). We see that above E=12E,, the shifted
curve represents an improvement over the un-
shifted curve A, although there is still a notice-
able difference. In fact, it overcorrects the cross
section for large angles, and it does not provide
a good description near E=10E,,. Above E=30E,,,

PROBABILITY
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FIG. 7. Excitation probabilities for 6 =7 as a function
of energy. Curve A is the SCA result, solid curve B is
the CBA result, and the dashed curve is the energy-
shifted SCA result.
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the unshifted results are actually better. In view
of the indifferent agreement between the CBA and
the energy shifted SCA angular distribution, there
is little reason to prefer one version of the SCA
over the other. Below 30Ey a full wave treatment
is needed for a consistent picture of the angular
distribution.

IV. CONCLUSIONS

We have presented the SCA and CBA approxima-
tions for the 1s-2s inelastic excitation cross sec-
tion, and as an example we report numerical re-
sults for He* at low incident proton energies. This
calculation is intended as a prototype of low-ener-
gy inelastic excitation processes in proton-atom

collisions. The numerical results obtained may
be used to determine the cross sections for hy-
drogenlike ions of different Z by the use of a scal-
ing factor. We find that SCA total cross sections
calculated at an effective energy are reliable at
all energies of practical interest. However, an-
gular distributions require a full wave treatment
below E =30Ey,. Since this is the region where
relativistic effects are most important, it is de-
sirable to employ a full wave treatment with rela-
tivistic wave functions.
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