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Stark structure of the Rydberg states of alkali-metal atoms
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The authors describe practical methods for calculating the Stark structure of Rydberg states of the alkali
metals based on diagonalization of the energy matrix. A survey of Stark structures is presented for all of the
alkali metals in the vicinity of n = 15. Topics discussed include general methods for evaluating radial matrix
elements, the treatment of fine structure, oscillator-strength distribution, scaling laws, the structure of a
level anticrossing, and sources of error. Experimental Stark maps are compared with calculated. results for
lithium and cesium. Experimental studies of the oscillator-strength distribution within a Stark manifold and
the structure of a level anticrossing are also presented.

I. INTRODUCTION

The growing study of highly excited atoms has
renewed interest in the behavior of atoms in elec-
tric fields. As the principle quantum number n in-
creases, the size of the orbit, and hence the cou-
pling of the electron with an applied electric field,
increases as n', whereas the binding energy de-
creases as n '. Ultimately the Stark interaction
can dominate the level structure of the atom, even
for modest fields. Thus the eigenstates in an elec-
tric field constitute the most useful basis for de-
scribing the system, and understanding these
states clearly is a prerequisite for carrying out
many studies of highly excited atoms. In this
paper we describe methods for efficiently calcu-
lating the energy levels (Stark structure} of Ryd-
berg states of the alkali metals or other one-elec-
tron atoms and we present a survey of the Stark
structure of each of the alkali metals. The calcu-
lations are compared with experiment for two
alkali metals, lithium and cesium.

To set the stage it is important to realize that
perturbative treatments of the energy employing
power-series expansions in the field are funda-
mental. ly inadequate. Such treatments, for exam-
ple, are poorly suited for describing an anti-
crossing between levels of different terms and
fail hopelessly when several anticrossings occur.
(There is one important exception to this gener-
alization: in a pure Coulomb potential, levels
from different terms actually cross and perturba-
tion theory works well. ) Furthermore, each atom
turns out to be a special case. As we shall see,
it is possible to make some predictions about how

the Stark structure is affected if, say, a single
angular-momentum eigenstate is shifted in energy.
On the other hand, if several states are shifted
the results are full of surprises, with unexpected
repulsions between certain levels and apparent
crossings between others. Consequently, we have

chosen to present our results in what is essential-
ly an atlas of maps of the Stark structure of the
alkali metals, accompanied by a description of
how to calculate the Stark structure of other one-
electron systems. For reasons which will be dis-
cussed below, we have chosen to concentrate on
the region about n =15.

In Sec. II we review general. features of the
Stark structure of hydrogen. Section III contains
a discussion of calculational methods for the
Stark structure of one-electron atoms and in Sec.
IV sources of error are described. A brief sum-
mary of the experimental techniques which were
employed to observe the Stark structure is given
in Sec. V. The calculated and observed Stark
maps are presented in Sec. VI. In Sec. VH level
crossings and anticrossings are examined and in
Sec. VIII we present some concluding remarks.

II. BACKGROUND

Because alkali Rydberg states are hydrogenlike
in many respects, the Stark structure of hydrogen
provides a natural starting point for our discus-
sion. Schrodinger's equation for hydrogen in a
static electric field, neglecting electron and nu-
clear spin, is

(--,'V' —1/r+Fz)4(r} = W+(r) .

(Atomic units are used unless otherwise indicated. )
8' is the energy and I is the magnitude of the elec-
tric field which is taken to lie al.ong the z axis.
Equation (1) is separable in parabolic coordinates'
and can be solved analytically for I =0. The quan-
tum numbers n, n„n» and ~m ~

label the states,
where n and m are the principle and "magnetic"
quantum numbers, respectively, and n, and n, are
non-negative integers which obey

n, +n, + ~m(+1 =n.

Silverstone' has applied a general method for
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carrying out perturbation theory to any order in
the field and has evaluated the expansion through
twenty-fifth order. The leading terms are

III. METHOD

A. General procedure

W, = -1/2n', (3a)
An alkali-metal-atom valence electron can be

described for our purposes by the single-particle
Hamiltonian

W, = an(n, —n, )F, (3b) X= —~ v' + V(r) + Fz . (7)

W, = —+n [17n' —3 (n, —n, )' —9m'+ 19]F', (3c)

W, = —,', n'(n, —n, )[23n' —(n, —n, )'+ 11m'+39]F',

W, = —»24 n"[5487n'+ 35182n' —1134m'(n, n,)'

+ 1806n'(n, —n, )' —3402n'm'+ 147 (n, —n, )'

-549m'+ 5754(n, —n, )' —8622m'+ 16211]F

(3e)

6Wo = Wo(n + 1) —Wo(n) —= 1/n' . (4)

The first-order term, Eq. (3b), reveals that for a
given ~m] the adjacent Stark levels are separated
by

W= W( , nn( ()m— W, (n, n, —1, )m() =3nE.

(5)

The location of the first crossing between levels
of different terms (i.e. , between the highest level.
of n and the lowest level of n+ 1) occurs at the field

F=1/3n'. (6)

Such crossings appear to violate the "no-crossing"
theorem, but this is not the case: The Coulomb
potential possesses a dynamical symmetry which
allows levels of identical na to cross. ' In alkali
metals this symmetry is broken by the core, and
levels with the same, value of m generally cannot
cross.

Unfortunately, the perturbation expansion is
asymptotic and nonconvergent. In low fields it is
wel. l behaved, ho~ever, and yields a good esti-
mate of the real energy eigenvalue provided that
one does not carry the expansion too far. ' In
fields below the ionization threshold for alkali
metals (i.e. , F & W'/4), the perturbation expansion
is valid to at least fourth order. When testing our
calculations against perturbation theory we shall
drop terms higher than fourth order. This intro-
duces an error which is usually smaller than the
fourth-order term, and in most cases is below
our level of accuracy.

From Eqs. (3) we can obtain the global features
of the Stark structure of hydrogen. The zeroth-
order term provides a natural unit, the separation
between adjacent principle levels:

Effects of electron and nuclear spin as well as
valence-core electron correlation are small and
neglected, although we shall introduce fine struc-
ture later since it is experimentally important for
the heavier alkali metals.

Because V(x) is not precisely known and K is
not separable, analytic solutions to the Stark
problem are not possible. As discussed above,
perturbation theory is not suited to calculating
Stark structure. Precise approximation methods
are possible, however, based on the following
considerations: Outside of the electron core, V(r)
is essentially Coulombic. Thus, in the absence of
the applied field, accurate wave functions can be
constructed for this spatial region which have the
correct energies and which vanish as r- ~. Ma-
trix elements for operators which weight this re-
gion strongly, such as the Stark potential. I' s, or
any operator of the form r~, j&0, can be reliably
evaluated from such wave functions. This ap-
proach underlies the Bates-Damagaard method,
which has been widely employed in calculations of
oscillator strengths for the lower states of the
alkali metals. ' Rydberg states are particularly
well suited to the Coulomb approximation since
Rydberg electrons are localized far from the core.
Another important consideration to our approach is
that off-diagonal matrix elements for operators of
the form r', j~ 0, decrease rapidly as the energy
difference between the states increases. Thus
eigenvalues and eigenvectors in a.particular ener-
gy region can be obtained by diagonalizing the en-
ergy matrix including only those states which are
local in energy. It is, of course, essential to con-
firm the accuracy of the method. We shall do this
by checking our calcul. ated results for hydrogen
with the predictions of perturbation theory and also
by comparing the results for several alkali metals
with experiment.

At first glance the zero-field parabolic repre-
sentation provides an attractive basis for the Stark
problem because it is partially diagonal. Unfor-
tunatel. y, employing the Coulomb approximation
with a parabolic representation presents practical
difficulties. The unperturbed energies for the
alkali metals are diagonal in a spherical, not a
parabolic, basis. Thus one must not only trans-
form between parabolic and spherical representa-
tions, ' but also generalize the parabolic states to
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(W, /, m(Fs)W', E', m')

=6 „6, g ~, F(/, m(cose(E'In')

x(w (6)

The angular matrix elements are derived using
elementary algebra of spherical harmonics, which
gives the familiar result

/2 2 ) 1/2
(), mlcossl) —1,™)((2) ))(2) —)) l

(l+ 1)' -m'
(E, m Icos 8fl +1,m) —

(2l 3)(2/ 1)

(9)

The principal computational task is to evaluate
the radial-matrix elements efficiently and accu-
rately. Numerous analytic formulas have been
proposed, but we have found that numerical inte-
gration of the radial equation is most satisfactory.
The method has advantages of speed and accuracy
and also permits inclusion of perturbations to the
Coulomb potential, such as the & ' fine structure
interaction or the ~ core-polarization term.
The method is described in Appendix A.

B. Region of study

The decision to calculate the Stark structure in

nonintegral order. A more f'undamental problem
is that the Stark effect for the alkali metals is not
diagonal in the parabolic basi:s, so that most of the
advantage is lost.

Because of these difficulties we have chosen to
work with a spherical representation. The matrix
elements of the Stark interaction have the form

the vicinity of n = 15 mas prompted by several con-
siderations. The mean density of Rydberg Stark
states for a fixed value of ~m~ scales as n; for
n=15 the average spacing between levels is 3
cm ', mell suited to our experimental resolution
of 0.2 cm '. Also, we desired to display the Stark
structure graphically so that qualitative features
could be easily identified. In the region of n=15
the plots are simple enough for the entire struc-
ture to be discernible in a single map; for higher
values of n the situation becomes so complex that
local regions of the Stark map would have to be
displayed separately. Lastly, for a given preci-
sion the size of the required basis set scales as
n'. The basis needed for n= &5 matched the
capacity of the minicomputer mith which the calcu-
lations were carried out (64k bytes of memory).

The maximum electric field was taken to be
6 kV/cm. This is the approximate "threshold"
field for ionization in the region studied. Al-
though mell defined levels exist above the thres-
hold field, the situation in that region can become
complicated due to damping effects, and the Stark
structure calculations must be modified.

C. Fine structure

For the heavy alkali metals the fine-structure
interaction is large enough to influence the Stark

'structure and must be taken into account. With a
spherical basis this is straightformard. The total
angul. ar momentum is j= l + ~, and the Stark inter-
action has matrix elements

(W, l, j,m; (
Fs) W', E', j', m,')

=6(m~, m~) 6(/, l +1)(W, l ~r~ W, l )F

(l, p, m»m; —m, (j, m;) (E, 2, m» m& —m, (j, m,.)(l, m, (cos8(/, m, ).
fEt l

The first two factors in the sum are Clebsch-
Gordan coefficients. The angular-matrix element
is given by Eq. (9). Note that the radial-matrix
element is calculated using the exact energy of the
state, including fine structure.

Taking fine structure into account doubles the
basis set; for each value of m& we must include
the two values m, =m& + ~. The probl. em can be
avoided for the lighter alkal. i metal. s by treating
fine structure as a perturbation after the diagonal-
ization is completed. The diagonalizations must
be done twice, however, once for each of the two

values of m, . The energies of the basis states are
taken to be at the "center of gravity" of the fine-
structure multipl. ets. If the fine-structure inter-
action gL ~ 5 is small compared to the term separa-
tion, the L ~ 5 matrix elements which are diagonal
in n, P.„„areknown accurately from the zero-field
fine-structure energy splittings. The fine-struc-
ture interaction depends on the behavior of the
wave functions near the origin. For a given value
of l this varies only with normalization. Conse-
quently, the off-diagonal elements can be estimated
accurately from
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IV. ACCURACY AND SOURCES OF ERROR

=-,'n' —,L. 5 —4in'F(P S, -P,S ), (12)

where P, =P„+iP„. The field-dependent term leads
to the selection rules Al = +1, Am, =+1, and 4m&
= 0. Comparing the two terms at the ionization
field F= 0 1/n. ' yields

Wq, (elec) F(p) 0.1 (r ') p
Wf, (normal) l(r ') n' (r ') n' '

which is smal. l except for states with m& =n.
Physically, parabolic wave functions which are
concentrated near the potential maximum experi-
ence a total electric field which is weak and con-
sequently have a small fine-structure interaction.
Thus it is expected that states whose energy de-
creases with increasing field will have a slightly
depressed fine-structure interaction while states
with increasing energy will. have a slightly en-
hanced fine- structure interaction.

The results presented in Sec. VI mere treated
for fine structure according to Eq. (10). Fine
structure was taken into account for rubidium and
cesium only, since the splittings were unresolva-
ble on the Stark maps for the lighter alkali metals.

D. Oscillator strengths for excitation of a stark manifold

For some purposes it is desirable to calculate
the intensity of excitation of Stark states from a
low-lying state. The oscillator strength for a
transition from a ground state W, l, m to a Stark
state W, m is

fgr yi = 3 (W- W') g g U~'e i i. (F)
QT&1 g tt

It should be noted that the fine-structure (fs)
operator can itself be modified by the applied elec-
tric field. We can write the operator as

Z f, --
~ n (E x p) - g

=-' 'l(-«. F )xpl S

In this section we discuss the accuracy of our
calculations and the various sources of error. Be-
cause atomic units are not particularly well suited
for examining errors me shall quote the errors in
spectroscopic units, cm '. The following magni-
tudes for n=15, hydrogen, may be hei.pful. in judg-
ing their relative significance: (a) The term se-
paration is 65 cm ', (b) the first-order separation
between Stark subcomponents at 6 kV/cm is 11
cm ', and (c) the maximum fourth-order Stark
effect at 6 kV/cm is 0.07 cm '.

The goal of accuracy in these calculations is
0.05 cm ', though in many regions the maps of the
Stark structure are considerably more accurate
than this. The numerical errors are generally de-
termined by comparing calculations for hydrogen
with the results of perturbation theory evaluated
through fourth order.

A. Effects due to the truncated basis set

Our treatment becomes progressively less accu-
rate as the electric field increases because the
errors generally grow with the size of the pertur-
bation for approximation methods based on expan-
sion in a truncated set of basis states. Truncation
errors grow rapidly with the field and tend to be
greatest for the extreme Stark components of a
given term. This trend is shown in Table I, which
displays the energy errors for various Stark sub-
levels of m =0 states for n=15 at 3 and 6 kV/cm,
for various sizes of basis sets. (The parabolic
number n, has the value of 14, 7, and 0 for the
highest, intermediate, and lowest Stark sublevels,
respectively. ) Table I reveals that the basis set
yg =13-20 is essentially adequate to provide an ac-
curacy of 0.05 cm '. The maximum error occurs
for the outermost Stark components at the largest
field. (At 6 kV/cm the errors actually exceeds
0.05 cm ' for the n, =0 state, but this level is so
close to the ionization limit that our treatment

x (Wlm )
i ~ r ( W l m )

(14)
TABLE I. Energy error (in cm ) of several n=15,

m= 0 Stark levels. Positive error indicates that the cal-
culated energy is too high.

where U~N, -(F) is the unitary transformation
which diagonalizes the Stark matrix. Although the
Coulombic approximation is not well suited to cal-
culating accurate matrix elements involving low-
lying states, it can yield accurate relative values
for matrix elements from a given low-lying state
to various Rydberg states. Thus the distribution
of oscillator strengths among a manifold of Ryd-
berg Stark states should be given reliably by Eq.
(14).

Field

3 kV/cm
3 kV/cm
3 kV/cm
6 kV/cm
6 kV/cm
6 kV/cm

n1

14
7
0

14

0

n= 15 14-16 13-18 13-20

0.70
0.91
0.83
2.73
3.70
3.59

0.25
0.11

-0.03
1.59
0.92

-0.41

0.01
0.00
0.00
0.23
0.03
0.13

-0.02
0.00
0.00
0.04
0.00
0.08

Terms included in basis set
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cannot be used with confidence. At 5 kV/cm the
error is less than 0.03 cm ' and below 4 kV/cm
it is less than 0.01 cm '.)

B. Effects of errors in the matrix element

Various errors can affect the precision of the
matrix elements, and these all represent potential
sources of error in the Stark energies. It is dif-
ficult to predict generally how the error in a given
matrix element propagates, but it is possible to
place a limit on the resulting errors in the eigen-
energies. If all the matrix elements are in error
by the same fractional amount, the result is equi-
valent to a rescaling of the electric field. The
maximum first-order Stark shift of the term n = 15
at 6 kV/cm is 40 cm ', if we take 0.04 cm ' as the
maximum tolerable energy error, then the matrix
elements must be reliable to 0.0l%%uo. A more real-
istic situation, however, is one in which the ma-
trix-element errors are largely uncorrelated and

their effects largely cancel. If the errors arise
from only a few of the matrix elements, their ef-
fect is generally diluted due to the strong mixing
of the spherical states.

ization problem is to terminate the wave functions
near the core and neglect their short-range con
tributions to the matrix elements. Because the
density of wave function near the origin varies as
I/n', the error decreases rapidly with n. As we

shali. show, even in the worst case this cutoff pro-
cedure introduces negligible error for n=15 states.

To put an upper limit on the normalization error
we have compared matrix elements with various
radii for the inner cutoff with exact results for hy-
drogen. (The actual errors for the alkali metals
will be substantially less because the high kinetic
energy of the electron within the core decreases
the amplitude there. ) In calcuiating the alkali-
metal matrix elements, the cutoff radius was
taken to be the effective core radius +~ ', where
e„ is the dipole poI.arizability of the core. For the
alkali metals, n~ ranges from 0.2 to 20 a.u. Table
II shows results for matrix elements between a
variety of states in the n=15 region. As expected,
the normalization error is only observable for
low-l matrix elements. In the worst case, an s-P
transition with &„=100, the error is less than
0. 1'%%uo.

C. Sources of error in the matrix elements

As discussed in Appendix A, numerical integra-
tion of Schrodinger's equation leads to matrix-
element errors which are generally less than
0.001/o, so that for our purposes the integration
procedure is essentially exact. Nevertheless,
errors in the matrix elements can arise from ap-
proximations required to treat the core and from
corrections for other non-Coulombic effects. De-
viations from pure Coulombic behavior for single-
electron systems divide naturally into short-range
and long-range effects. The short- range effects
arise from the tightly bound inner-core electrons
which cause departures from a -I/x potential.
The long-range effects are due to core polariza-
tion and fine structure. '

l. Normalization error

The major effect of the core is to shift the ener-
gy of the penetrating (low L) states These .shifts
are well described by quantum-defect theory. The
quantum defects are frequently known from spec-
troscopic studies and are essentially treated as
empirical constants in generating the Coulombic
wave functions. Although these wave functions are
accurate outside the core where the major contri-
butions to the matrix elements arise, there is a
small uncertainty in the normalization of the wave
functions due to their unknown shapes at short
range. This uncertainty is the leading error due

to the core. The simplest way to treat the normal-

2. Errors due to long-range deviations from the

Coulomb potential

Outside the core, deviations from the Coulomb
potential arise from core polarization and fine
structure. Core polarization results in a pertur-
bation with a leading term'

y& ——-2 o.& I/r', (15)

where a„ is the dipole core polarizability. The
fine-structure interaction is

TABLE II. Fractional charge in dipole-matrix ele-
ments due to cutoff at core and to core polarization po-
tential.

States (a)

15,0; 15,1

15,6; 15,7

15,13; 15,14

15,0; 18,1

10
100

1000
10

100
1000

10
100

1000
10

100
1000

1.3 x ].0-4

5.9 x 10&
1.7 x 10

1.1 x 10-4

5.7 x 10&
1.8 x 10&

1.7 x 10~
6.7 x 10+
1.9 x 10~
3.0x1p 5

- 2.5 x 10+
1.9 x 10+
3.3 x 10&
3.1 x 10&
2.8 x ].0&

1.7 x ].0&

6.9 x 10+
2.3 x 10

Fractional error for inner radial cutoff at ~ =0.
&

3.
"Fractional error for column (a) plus effect of polari-

zation potential.
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(16)

where a is the fine-structure constant. As Table
II shows, including V~ in the potential produces
small though observable corrections. No shift in
the matrix elements occur due to V~, at a level of
precision of 1 part in 10'. Because inclusion of
V~ and Vf, introduces such minor corrections to
the electric field matrix elements, they have been
dropped and the potential taken to be exactly 1/r.

W(n, l) = —a(n*) ' (17)

where n*=n —6„and the quantum defect 5, is a
constant, or a slowly varying function of energy,
for each value of l. Thus the quantum defects
provide a complete specification of the structure
and behavior of a Rydberg system. Errors in them
lead inevitably to errors in the Stark structure.

It is useful to regard a quantum defect as a mea-
sure of the departure of an energy level from the
hydrogenic value.

if we compare this result with the term separation
AWc=-1/n' [Eq. (4)], we see that

b, W(6) = 6d, Wo. (19)

Thus if the energy is to be known to within 1%of
the term separation, 6 must be known to 1%. More
precisely, the nonintegral portion of 6 must be
known to 0.01.

Errors in the quantum defects enter the Stark
structure in two ways: through errors in the zero-
field eigenenergies and through errors in the ma-
trix el.ements. The first error is generally not
serious for the observed energies can always be
used to correct the quantum defects to the accuracy
needed. Thus for n=15, where 6$",=40 cm ',
spectroscopi. c measurements at zero field within
an accuracy of 0.04 cm ' directly yield quantum
defects within an accuracy of 0.1%. Often this ac-
curacy is not actually needed. If the Stark interac-
tion is large compared to EW(6), which is usually
the case except at very low fields, the levels are
so strongly mixed that the errors in the quantum
defects are averaged throughout the Stark mani-
fold, reducing their effect on any single level.
(The level structure at level anticrossings is .

highly sensitive to the quantum defects, however,

D. Quantum defects

A Coulombic state is specified by its energy and

angul. ar momentum. The term energies of the al-
kalis are most commonly expressed in the form

and small errors may have conspicuous effects.
We shall consider the role of quantum defects at
anticrossings in Sec. VII.)

Let us turn to the effect of quantum defects on
the matrix elements. If the quantum defect for a
particular state is in error, all the matrix ele-
ments involving that state will be affected. The
final errors in the Stark energies mill vary with
the size of the quantum defect. Figure 1 shows
(n*, 1~r~15, 0), the s-P matrix elements from the
15s state to the n*P state, where n* ranges from
14 to 23. The matrix element varies most rapidly
near n* = 15.8, or 5 =. 0.2. From Fig. 1 we can
find a limit on the tolerable error in 6. If the en-
ergy is to be precise within 0.05 cm ' at 6 kV/cm,
the matrix elements must be accurate to within
0.2 a.u. A change in 6 of 0.25 yields a change in
the matrix element of 100 a.u. Thus for a preci-
sion of 0.2 a.u. , 6 must be known to &.0005. This
represents a limit to the average error for all the
quantum defects and, because the defects are un-
certain only for the lowest angular-momentum
states, errors a good deal larger are often toler-
able. Thus errors in the matrix elements due to
uncertainties in the quantum defects are generally
not important.

V. EXPERIMENTAL PROCEDURE

In order to assure that our calculations are
realistic and to check their accuracy, we have mea-
sured experimentally the Stark structure of two
alkali metals, lithium and cesium. We selected
these for comparison with our calculations be-
cause lithium and cesium are respectively the
most hydrogenlike and the least hydrogenlike al-
kali metals and because they represent extreme
cases in which fine structure may and may not be
ignored.

Excitation spectra mere obtained at numerous

400-

m 320

~ 240
Ld

IJJ l60
LLJ

x 8o
LLI-

0

8Q I I I I I I I I I

l4 l5 l6 l 7 le l9 2Q 2I 22 23
n"

FIG. 1. Va.riationof the radial-matrix element (n*,
1~ r~15, 0) with effective quantum number n~.
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PEG. 2. Experimental arrangement.

values of an applied electric field in the energy
region about n =15. At each field, atoms'in a beam
were excited stepwise from the ground state via
resonant intermediate states. The Stark structure
was displayed by sweeping the final laser while
monitoring the excited-state population by the
technique of pulsed-field ionization. A schematic
diagram of the experimental arrangement for
lithium is shown in Fig. 2. An effusive beam pro-
vided a density of 10' atoms/cm' at the interaction
region with a mean atomic speed of 1 mm/gsec.
The interaction region was defined by the inter-
section of the atomic beam with the three laser
beams. The first laser was tuned to the transition
2s - 2P (671 nm) and the second was tuned to the
transition 2P-3s (613 nm). The final laser was
swept over a 100-cm ' interval centered on the
3s —15P transition (626 nm); its polarization was
adjusted to be parallel or perpendicular to the
field to excite states with ~mj=0 or 1, respective-
ly.

The pul. ses from the first two lasers were simul-
taneous and the final pulse was delayed until the
initial pulses were extinguished, about 5 nsec.
The lasers were all of the &'grazing-incidence"
type" with a peak power of 2 kW and a linewidth
of 0.2 cm '. All three lasers were pumped by
harmonics of a Nd: YAG laser.

The interaction region was centered between
two electric field plates separated by 0.500(5) cm.
The static field was applied by a wel. l. regulated
high-voltage supply. Atoms in Rydberg states
were detected by applying a 10 kV/cm field about
3 p. sec following excitation. Thi. s pulsed field
ionized al. l Rydberg atoms present and accelerated
the ions toward a grid-covered hole in the
grounded electric field plate. The ions were de-
tected by an electron multiplier. The multiplier
output was measured with a gated integrator and

the data were stored and processed for display by

a laboratory computer.
The measurements of cesium employed a simi-

lar procedure, except for the excitation scheme.
The first laser was tuned to the transition 6s -7P
(455 nm). The atoms were allowed to decay radia-
tively to the 7s level and 40 nsec following the first
laser pulse a second laser at 810 nm excited tran-
sitions from the 7s level. to the Rydberg states.
The second laser was linearly polarized parallel
to the electric field so that only ~mJ=-2 states
were excited.

The electric field was known absolutely to about
2% and was calibrated to within 1% by careful map-
ping of a level crossing. The two methods gave
good agreement. Nonlinearities in the laser scans
for lithium presented a somewhat more trouble-
some error. Discrepancies up to 0'. 5 cm ' oc-
curred in the first 15% of the laser scan (540-525
cm '), but the discrepancies for the ~m~=1 and

m =0 data were so well correlated that the source
of the error was unambiguous.

VI. STARK STRUCTURE OF ALKALI METALS

In this section we present our calculations of the
Stark structure of the alkali metals and our exper-
imental data for lithium and cesium. The results
are displayed as a series of maps. In two cases, '

lithium and cesium, the calculated energy levels
are compared with experimental data. We have
worked in a single range of energy and electric
field: 440-540 cm ' and 0-6 kV/cm, respective-
ly. These values encompass the n=15 manifold at
fields up to the ionization region.

The energies were calculated at 100 V/cm in-
tervals and the energy-level plots were generated
by connecting the eigenvalues, using quadratic in-
terpolation between the field points. It is impor-
tant to realize that Stark-structure plots based on
calculations at a finite grid of field values will
display spurious level anticrossings if the field
values happen to straddle a level crossing. The
maximum size of the apparent level repulsion at
such a spurious antierossing is approximately
, (dW/dF)b, F, where —dW/dF is the relative slope
of the levels and AI' is the electric field grid in-
terval. Such errors are generally less than 1

cm ', but they can be discerned in certain plots.
For instance, all the anticrossings visibl. e in the
~m~= 1 Stark map for lithium (Fig. 3) are due to
this cause. Thus level repulsions greater than 1

em ' are real, but smaller ones may be artifacts
of the plotting procedure. In order to study an
anticrossing in detail the energies must be calcu-
lated at several values of the field in the immedi-
ate vicinity of the anticrossing. An example of
this procedure is displayed in Sec. VII.
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TABLE Gl. Quantum defects of the alkali metals.

2259

Atom l Levels Ref. Atom / j Levels ~ Bef.

Li 0 0.399(6)
' 10,11

0.053(9)

2 0.002

10 20

K

2 0.0144(4)

0 2.178(6)

1 1.712(2),
2 0.267 (1)

3 0.010(1)

23 41

10 20

10 17

10,11

10 14 13

Na 0 1.3470(14) 23 41 12

1 0 8541(13) 23 41 12

Cs

0 i
2

1 i
2

1

2 3
2

2
2

0 i
2

1

~Ma
3
2

2
2

2 5
2

3

7
2

3.135(l) 10 12 11

2.658 (1) 10 20 11

2.645 (1) 10 20 11

1.343{2) 10 —13 11

1.341(2) 10 13 11

4.057(2) 11-12 11,14

3.595(3) 10 20 11

3.562(3) 10 20 11

2 476(0) 10 —20 11,15

2.467 (0) 10 20 11,15

0.033(1) 10 12 14

0.033(1) 10 12 14

Principal quantum numbers of terms observed.

The quantum defects and core polarizability used
in the calculations are listed in Tables III and IV,
respectively. " " The quantum defects were de-
rived from the most authoritative spectroscopic
data that we have been able to obtain, though ef-
fects of errors less than about 0.01 are not actual-
ly visible in the maps.

TABLE IV. Dipole core polarizability of alkali met-
als.

Alkali metal n& (a.u.) ~

Li
Na

K
Bb
Cs

0.191
0.945
1.0015(15)
5.490
9.023

14.752

'From Bef. 16.
"Experimental value from Bef. 8.

A. Lithium

Turning first to the results for ~m~=1, Fig. 3,
we observe the typical hydrogenlike behavior of a
system with small quantum defects. The only
noticeable departure from pure hydrogenic behav-
ior is the depression of the P state visible at zero
field. Because of its nonvanishing quantum defect
(5, =0.05), the P state initially experiences a
second-order Stark effect, in contrast to the first-
order behavior of the remaining levels. If the field
exceeds about 400 V/cm, however, the P state

merges into the "fan" of linear states and the Stark
map becomes indistinguishable from a map for
hydrogen. At about 2. 1 kV/cm the uppermost level
of the n=15 manifold encounters the lowest level
of the n= 16 manifold and at 3.1 kV/cm the first
encounter with an n = l4 level. occurs. As explained
previously, the anticrossings which are observable
between numerous levels are actually artifacts of
the plotting procedure; the true level repulsions
are too small to be observable.

Experimentai results for the ~m[=1 states are
displayed in Fig. 4, and in Fig. 5 they are shown
superimposed on the calculated Stark map. The
horizontal peaks represent the ion signal collected
as the tunable laser passes through coincidence
with a Stark state. The excitation curve for each
scan has been plotted at its corresponding field
value, so that the base of an excitation signal
straddles the position of the true energy level. As
expected, only the P state is excited at zero fiel.d
(excitation is from the 3s level), though the entire
Stark manifold is excited at even a small field.
The intensity of the signals indicates that the P
state is well distributed throughout the Stark man-
ifold. The discrepancies in the positions of l.evels
for the range 540-520 cm ' are due to the non-
linearity of the laser drive.

The m =0 Stark maps, Figs. 6-8, provide a
striking contrast to the case of (m~= 1 and display
many of the nonhydrogenic features typical of al-
kali-metal Stark structure. In the case of lithium
these features arise entirely from a single large
quantum defect, 5p 0 35 A conspicuous result is
that the s levels never display linear Stark behav-
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ior. Instead they are repelled by levels above and
below and are "squeezed" between the manifolds
of the adjacent terms as the field increases. When
this occurs the entire Stark structure becomes
radically altered. The levels appear to interact
strongly at high field and the resemblance to hy-
drogenic Stark structure is lost. This is in striking
contrast to the ~m ~= 1 behavior, Fig. 8, where the
resemblance is preserved. Another notable fea-
ture is the appearance of regions where levels
suddenly approach closely, or even appear to
cross, for instance at 4.56 kV/cm, 455 and 465
cm ' or 4.8 kV/cm and 507 cm '. As the data
show (Figs. 7 and 8), such "crossings, " or weak .

anticrossings, are quite real.
The line strengths for m =0 are qualitatively

different from those for ~m~=1. Large portions of
the linear manifold disappear with increasing field,
only to reappear at still higher fields. At the
same time the s-state signal, absent at zero field,
becomes extremely strong. These dramatic re-
distributions of oscillator strength provide an ex-
cellent opportunity for checking the calculated line
intensities.

In Fig. 9 we display an expanded plot of a single
laser sweep at 2.125 kV/cm. The most intense
lines are clipped due to detector saturation, but
the remaining lines are suitable for comparison
with calcul. ation. The relative l.ine intensities
shown on the data were calculated using the pro-
cedure described in Sec. III D. The oscillator-
strength distribution in this region is extremely
sensitive to the field and the best fit was obtained
at a field 10 V/cm above the experimental value.
(This adjustment is within the experimental uncer-
tainty in the field. ) Fluctuations in the pulsed
lasers, combined with a relatively short averaging
time, result in an uncertainty in the experimental
line intensities of approximately 25%. Within this
uncertainty the agreement with theory is good,
particularly in view of the large variation in oscil-
lator strength, greater than 30:1.

Sodium

Maps for the (m~= 1 and m =0 Stark states of
sodium are presented in Figs. 10 and 11, respec-
tively The Im.1=1 map is simiiar to the 1~1=1
map for, lithium (Fig. 8) except that the nondegen-
erate p state now lies slightly above the linear
manifold, rather than just below. [This state is
actually a member of the term above, but because
6, is close to unity (6, =0.85) each P level is ef-
fectively displaced downward one-term. ] The
"effective" quantum defect, 5, —1 = -0.15, is large
enough to induce sizable anticrossings, typically a
few cm '. In contrast to Fig. 3, the anticrossings

UR

7-

% 6-
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FIG. 9. Lithium, m = 0; blowup of the scan at 2125 V/
cm showing oscillator-strength distribution. Arrows in-
dicate calculated distribution.

for sodium are quite real.
The m =0 Stark plot, Fig. 11, reveals an anoma-

lously smal. l. second-order Stark effect for the s
states. This occurs because the s states lie close
to midway between the P states (5, —5, =0.49) and
are repelled almost equally from above and below.
Repulsions between the ns = 0 levels are so large
that all character of the low-field states are lost
at high fields and the energy levels generally slope
downward. (Data displaying some of this behavior
have been published previously. ") Nonetheless,
apparent crossings can occur, as at 500 cm ',
4.5 kV/cm.

C. Potassium

The (m~=2 Stark structure of potassium, Fig. 12,
is similar to the case of sodium ~m~= 1, (Fig. 10):
A single nondegenerate level interacts with the
linear manifold via a second-order Stark effect
and finally joins the manifold. The ~m(=1 and 0
states, however, have an anomalous Stark struc-
ture due to accidental coincidences among the
quantum defects. These anomalies provide some
useful insights on interactions among Stark states.

The P states of potassium lie practically midway
between the d states because 5, —6, =0.54. Conse-
quently, the second-order Stark effect of the ~m(
=1 p states is extremely weak, as can be seen
from Fig. 13. TheP level effectively crosses into
the linear manifold, showing no significant repul-
sion until very high fields. The reason is that the
P state interacts only with the d-state component
of the manifold, but the d component is small and
second order at low fields.

A similar coincidence occurs for the m =0 levels
(Fig. 14). The s state lies close to midway between
the P states (6, —6, = 1.46) and displays an ex-
tremely weak second-order Stark effect. Its inter-
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action with the linear manifold, which depends on
the p-state content, is third order, essentially
negligible. For this reason the s state in Fig. 14
appears to be merely superimposed on the ~m~= 1

Stark map of Fig. 13.

D. Rubidium

the d levels become visible due to second-order
mixing with the P state. Th s states become visi-
ble at somewhat higher fields for the same reason.
Finally, the p character mixes into the linear
manifold via the d state, and the entire structure
is displayed.

The fine structure of the P and d states of rubi-
dium is too large to be neglected, so that ~m~ ~

rather than ~m, ~
is the "good" quantum number.

Each ~m, ~
manifold is a mixture of states with m,

=m& +2. This effectively doubles the size of the
basis set required for a given accuracy. Because
our calculations were carried out with a fixed
number of basis functions, the calculations are
less accurate at high fields than those for the
lighter alkali metals. Some discrepancies caused
by this problem will be pointed out in the discus-
sion of cesium.

The ~m~~= 2 Stark map, Fig. 15, displays the
characteristic effects of fine structure on Stark
levels. At high fields two separate manifolds can
be distinguished: the manifold of states ~m, ~=3

and the manifold of states with ~m, j=2. The former
is essentially hydrogenic, while the ~m, ~=2 mani-
fold shows the now familiar pattern of repulsions
between Stark states in which a single level has a
sizable quantum defect. The two manifolds inter-
act via the fine structure of states with L&2, but
this is so weak that they appear to cross.

The Stark map for (m&~= ~, Fig, 16, and (m&(=2,
Fig. 1'7, can be understood along similar lines, ex-
cept that repulsions between the two manifolds
now occur via the fine-structure interaction of the
admixed low angular-momentum states. These
are large enough to cause visible avoided cross-
ings.

E. Cesium

The systematics of the cesium Stark structure
are similar to those of rubidium and Figs. 18-20
are qualitatively similar to Figs. 15-1|, respec-
tively. Turning to the experimental Stark map for
~m~~=2, Fig. 21, and its comparison with theory,
Fig. 22, systematic discrepancies can be observed
in the upper right-hand quadrant. These errors
are a result of effectively halving the basis set to
accommodate the fine-structure effects. The cal-
culated levels are generally too high, reflecting
the omission of the higher n staths which would

depress the levels.
The oscillator strengths in Fig. 21 can be under-

stood a1,ong the lines developed in the discussion
of level mixing in potassium. The Hydberg states
are populated from the 78'/2 level and in zero field
only the p state is excited. With increasing field

VII. LEVEL CROSSINGS AND ANTICROSSINGS

The regions of intersection between Stark levels
of different terms are interesting theoretically
and experimentally. The avoided crossings pro-
vide sensitive tests for Stark-structure calcula-
tions and can be studied in great detail since the
relative positions of adjacent levels can be mea-
sured to a much. higher precision than the posi-
tions of isolated levels. Furthermore, the sys-
tematics of pulsed field ionization frequently de-
pend on nonadiabatic effects which occur as the
states are swept through anticrossings in a rapidly
rising field. Because the probability of a non-
adiabatic transition depends exponentially on the
level separations at the anticrossings, it is im-
portant to be able to calculate these separations
accurately.

A. Level crossing in hydrogen

For hydrogen the Stark structure at the level
intersections is unique. Nonrelativistic Stark
l.evels cross in a pure Coulomb potential' but, as
Hatton has pointed out, " inexact calculations of
the Stark energies will generally predict spurious
anticrossings. Thus the regions of level crossings
for hydrogen are particularly suitable for testing
the accuracy of our calculations.

We have calculated the separation at the first
anticrossing between the n = 15 and n = 16 mani-
folds for various basis sets (see Tabie V). The
states involved are (15, 14, 0, 0) and (16, 0, 15, 0),
in the notation (n, n„„n~m~). The apparent "re-
pulsion" between these Stark levels was obtained
by a careful mapping of the intersection region
with a fine grid of field values. The error in the
energy of the intersection varies between O. V5 and
0.002 cm ', depending on the basis set. Such er-
rors are quite consistent with the expected calcu-
lational accuracy of individual 1evels in this re-
gion. The size of the separation between the
levels, however, is surprisingly small. ; it varies
between 2 x 10 and 5 x 10 cm ' and is least for
the smallest basis set. Apparently this separation
reflects the residual numerical errors in the
diagonalization procedure which grow. with the
size of the basis set, rather than errors resulting
from an |ncomplete basis set. Thus we are as-
sured that the level repulsions in alkalis pre-
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dieted by our calculations are not artifacts of using
a truncated basis set.

B. Experimental map of a level crossing

As a further check of the accuracy of our calcu-
lations we have mapped the avoided crossing be-
tween two ~m ~=1 levels of lithium: the intersec-
tion of (18, 16, 0, 1) and (19, 1, 16, 1) at 321.5 cm
843 V/cm. The experimental procedure is simi-
lar to that described above except that a pulse-
amplified cw dye laser was used to excite the
final step. The spectral resolution was approxi-
mately 0.01 cm '. The results are shown in Fig.
23. The levels are actually doublets due to the
hyperfine splitting in the 3s state," but the doublet
splitting is not fully resolved. An interesting
feature of the data is that one level disappears at

the anticrossing while the other becomes twice as
intense. Away from the crossing the oscillator
strengths to the two states are approximately
equal. The eigenstates at the anticrossing are the
symmetric and antisymmetric combination of these
states, so that the oscillator strength is trans-
ferred completely to one state.

The calculated level structure is superimposed
on the data. The calculated separation is 0.0'72

cm ', while the measured separation is 0.072(5)
cm '. To ensure that this agreement was not sim-
ply fortuitous we also mapped the crossing at
321.8 cm ', 1531 V/cm. The calculated separation
was 0.204 cm ', while the observed separation
was 0.207(6) cm '. These results suggest that
anticrossings in the alkali metal can be calculated
reliably to within at least 0.01 cm '.

TABLE V. Calculated level separation at apparent anticrossing. Intersection of hydrogenic
levels (15,14,0, 0) and (16,0, 15,0).

Basis set Field (V/cm) Energy (cm ~) Separation (cm~)

n = 14-16
n= 13-18
n = 13-20
Perturbation
theory

2042.15
2043.45
2043.40

2043.35

459.854
460.592
460.603

460.601

2 x 10-4

4 x ].0-4

5x10
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of the s-state quantum defect. As expected, the
separation vanishes as 60-0 or 6,-1. For small
defects the separation varies linearly with 5 ac-
cording to hW= (1.9/n')5. This relation is obeyed
accurately for n = 15, 16 and n = 25, 26, which sug-
gests that the curve may be universal.

VIII. REMARKS

(2 V/cm} FIELD

FIG. 23. Level anticrossing in lithium. Intersec-
tion of state (18,16,0, 1) and (19,1,16,1) at 321.5 cm ~,

943 V/cm. The calculated level structure is superim-
posed on the data.

C. Anticrossings in onewlectron atoms

We expect that level separations at anticrossings
in one-el. ectron atoms should be sensitive func-
tions of the quantum defects, vanishing as the
quantum defects approach zero and the system be-
comes hydrogenic. The Stark maps in Sec. VI
suggest that this is the case. In general, large
fractional quantum defects produce large level
repulsions, Compare, for instance, the Stark
maps for Na m =0 and ~m I=1 states. For m =0
(Fig. 11) the quantum defects are 5, =1.35 and 5,
=0.84. (The remaining defects are close to zero. )
For ~m~=1, Fig. 10, the only large defect is 5,
= 0.84. The level repulsions are markedly strong-
er for the case Imp=0. This behavior is typical.

Unfortunately, it is difficult to generalize about
the structure of anticrossings for states with se-
veral large quantum defects. Although repulsions
are generally strong, they can suddenly diminish,
producing unexpected pseudocrossings. Gne such
case has been noted for lithium m =0 (Fig. 6) at
4.8 kV/cm, 507 cm '. Under certain conditions
another interesting feature may be present; a
singl. e level may "cross" levels from a nearby
Stark manifold. Such a feature for potassium can
be seen in Fig. 12 near 4.6 kV/cm, 455 cm '.

In situations where only a single quantum defect
differs from zero lt ls possible to provide a gen-
eral characterization of the anticrossings. For
example, consider the first anticrossing between
the manifold n and n+1. This occurs between the
states (n, n —1, 0, 0) and (n+1, 0, n, 0) at a field
F —= 1/3n'. The average density of m =0 Stark
states is dn/dE =n', and since the maximum pos-
sible level repulsion is one half the separation be-
tween states the natural unit for measuring level
repulsions is the mean separation, 1p'n .

In Fig. 24 we show the magnitude of level se-
parations calculated for the first anticrossing be-
tween the n and n+1 manifold, m =0, as a function

In this paper we have focused exclusively on the
energy range in the vicinity of n =15. The applica-
tion of our methods for calculating alkali-metal
Stark structure to other energy regions is straight-
forward, and the only reliable way to predict the
Stark structure in a particular region of energy
and field is to carry out such a calculation. Cer-
tain qualitative features, however, can be extra-
polated from our results thanks to the constancy
of the quantum defects. For instance, the intru-
sion of the rubidium s and P states into the linear
manifold discussed in Sec. VID will occur for all
values of n. The size of the level anticrossings
for a small quantum defect has been shown to obey
a simple n ' scaling law. Other scaling laws are
easily determined. The density of Stark states
scales as n' for m=0 and n' for ImI=n —1. The
field for the initial crossing between two manifolds
scales as n ', the field for the onset of field ion-
ization scales as n ', and the number of crossings
before a given l.evel reaches the threshold for ion-
ization scales as na for m =0 and as n for ImI=n

If the high-field Stark states form a strongly
interacting manifold for one range of energy, as
in the case of Na m = 0 (Fig. 11), they can be ex-
pected to behave similarl. y for all values.

The scaling laws are helpful in predicting quali-
tative features of the Stark structure in uncharted
regions, but they must be used with caution. For
example, the accidental degeneracies, or "sharp
crossings, " in the midst of a set of strongly re-
pelling lines do not appear to obey any simple
scaling law. Such degeneracies can cause confu-
sion in the identification of a level or lead to un-
expected nonadiabatic effects in the presence of a
time-varying field.

Our goal of accuracy, 0.05 cm ', is not ambi-
tious in the context of modern spectroscopy,
though it: is entirely adequate for the principle ap-
plication: the rel, iable identification of compl, etely
resolved Stark states in an arbitrary field. It
should be realized, however, that the potential.
accuracy is very high. For instance, relative en-
ergy separations as judged by level separations at
anticrossings appear to be accurate to 5 &10 '
cm ', as discussed in Sec. VII. Furthermore, the
major error, perturbations due to states excluded
from the basis set, decreases rapidly with de-
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FIG. 24. Calculated level separation vs quantum defect
for the first anticrossing between terms n and n+1.
Solid line is given by AW=1.96/n .

creasing field. If higher accuracy is desired, the
most straightforward course is simply to expand
the basis set. Alternatively, the effect of nonde-
generate states can be taken into account by per-
turbation theory once the, system has been diagona-
lized. In any case, the importance of the trunca-
tion error can be revealed by varying the size of
the basis set, providing a reliable procedure for
judging the accuracy of a particular calculation.

The ability to calculate Coulombic matrix ele-
ments accurately and efficiently has numerous ap-
plications beyond the problem of alkali-metal Stark
structure. For example, our methods have been
applied successfully to the cal.culation of the dia-
magnetic energy of Rydberg atoms in a strong
magnetic field. " Also, .the method can be applied
to two-electron systems by using multichannel
quantum-defect theory to identify the correct con-
figurations. One example of this.—the Stark struc-
ture of barium for Rydberg levels in the vicinity
of a doubly excited state —has been previously re-
ported. "

This study has provided a number of insights in-
to Stark structure. For instance, it has revealed
qualitative features which were quite unpredicted,
such as the strong nonhydrogenic structure in-
duced by a single large quantum defect or the
accidental degeneracies in high fields. In some
respects, however, our understanding is incom-
plete. Diagonalization of the energy matrix,
treating the field as a perturbation, may not be
the best approach. The physics of alkali-metal
Stark structure is completely determined by the
quantum defects, so that in principle one should
be able to predict the structure directly from them.
This suggests that it may be better to calculate
the Stark structure in a parabolic representation
and then treat the effect of the core as a perturba-
tion.

The major goals of this work have been to deve-

lop practical methods for calculating alkali-metal
Stark structure with sufficient accuracy to allow
every level to be unambiguously identified, to
provide a comprehensive collection of Stark maps
of the alkali metals, and to obtain insights into the
systematics of Stark structure. We believe that
these goals have been substantially accomplished.
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APPENDIX A. EVALUATING RADIAL-MATRIX ELEMENTS

We have calculated the radial-matrix element
(nl~r'~n l ), &~ 0, for nonhydrogenic one-electron
Rydberg states by generalizing the Coulombic
wave functions to nonintegral n, and also by nu-
merically integrating the radial wave equation
with a general central potential. The calculations
presented in this paper employed numerical inte-
gration because it is less susceptible to roundoff
errors for large values of n —l than the polynomial
method and because non-Coulombic potential terms
can be added to account for effects of fine struc-
ture (V r ') or core polarization (V-r '). In
some cases, however, the polynomial expansion
is convenient to use. In particular, for n- l ~12,
it is faster and more accurate than numerical in-
tegration. For completeness we shall describe
both methods. Note that the phase convention for
the radial wave function R is R(r- ~)-O'. IThe
usual phase convention is the sign of R(r ~)
= (-1)' I

A, Polynomial expansion

The polynomial expansion for Coulombic wave
functions proceeds directly from the radial wave
equation. ' Taking e = v-2Wand R(r) = exp(-er)f(r),
we obtain

Z —e II+1 &

We can expand f in the form

(Note that f is written as a decreasing power
series in r. ) For R to be normalizable the power
series must terminate. Solving for A. and a„yields
the relations
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A, =Z/e —1 =n —1,
W= -Z'/2n',

a„=-a„,(n/2Z) (n —l —v)(n —v+ l +1)/v.

The series terminates when v = n —l —1, provided
that n is an integer. It explicitly satisfies the
inner boundary condition that 8 be finite as r-0.
The series is related to the associated Laguerre
polynomial I&(y):

ylL l2+x ~ ( 1)n l g a ynv-l
V —P

If the energy 8' is allowed to become nonhydro-
genic, n becomes nonintegral, the series fails to
terminate, and the inner boundary condition is no
longer satisfied. This is to be expected, for the
1/y potential is incorrect within the core of inner
el.ectrons near the origin and the wave function
cannot be Coulombic in that region. The radius of
the core, however, is small compared to n', the
radius of the Rydberg electron. Thus the series
can be terminated with the same number of nodes
or terms as for hydrogen. Writing n*=n —5&,

where 6, is the quantum defect and n is an integer,
the number of terms in the series is the integer
of n*+&.

Calculating the matrix element of &' between
two states n, l and n, l and normalizing by putting
a=0 yields

(nl~y'~n l )=G(v)„"'„[G(0)„",'G(0)"„,,'] ' ',
where

G(&)nl g g e-Avyn+n' -v -v'+ady
V V' P

I
I I'(n+n - v —v +o+1)aa. g &n+ n ™V-V'+r+Z)

V V'

I I I
Here v=0, 1, . . . , n —l —1, v =0, 1, . . . , n —E -1,
and A = 1/n+1/n . To evaluate these expressions
numerically the terms must be arranged to pre-
vent large numbers from appearing in the fac-
torials. The major source of error arises from
taking small differences between large alternating
terms in the series. With 16 decimal digits of
precision, the error for n —l =10 is less than 10 '.
For n —/=18 the error is 10%, and beyond that it
diverges.

The method can be applied to higher values of n

by using extended precision but only at great cost
in computer time. " Because of this, and because
the polynomial method is incapable of dealing with
non-Coulombic terms in the potential, we have
chosen to generate the matrix elements by numer-
ical integration.

B. Numerical integration

When numerically solving differential equations
with oscillating solutions, it is desirable for the
number of grid points per oscillation to be ap-
proximately constant. The period of a Coulombic
wave function increases rapidly with &, so that
either a nonuniform grid spacing or a change of
variable is needed. The fastest and most accurate
method that we have tested is based on the Numer-
ov algorithim with a logarithmic scaling variable. "
Taking x=lnx and letting X=r' '8, the radial.
equation takes the standard Numerov form

d'X
d+ =g(x)X,

where g(x) = 2e'"[V(x) —E] + (I + —,')'.
If we iet y, =y, .exp(-jk), where fi is the logarith-

mic step size, the Numerov algorithim is

121 24) 12
i+i Xi l gi-l ~ 2 ~+Xi 08i+f 2 ~ I2 A+l I

.
V4 ]

The matrix element of r is

-Z/2
= Q XiXiyi" v Q X,y'i Q Xi'yg

f f

The integration is executed in the inward direc-
tion because only the outer boundary condition is
known and because this procedure minimizes
cumulative numerical errors at large ~, where
the major contributions to the matrix elements
occur. The step size for all the calculations is
0.01. The starting point &, is determined by the
requirement that R(y, ) -=10 "R(y,), where y, is
the outer turning point. Typical values are &p

=2n' and y, .=2n(n+15). The initial slope of the
wave function is taken to be that of a decreasing
exponential. (The integration is insensitive to the
initial values because admixtures of the incorrect
solution damp out exponentially. )

The integration terminates at an inner value of
r which, for low / states, is taken to be the core
radius given by (polarizability)' '. (For hydrogen
the core radius is taken to be 0.05.) For higher
l states the integration is carried past the inner
turning point and terminated when the solution
starts to diverge.

To check the accuracy of the numerical integra-
tion we have compared the dipol. e-matrix elements
for hydrogen to the exact result (n, I ~y~n, l —1)
= an(n' —l')' '. The results are shown in Table Vi.

For low values of n the error is due primarily
to the inner cutoff at &=0.05. As n increases this
error rapidly decreases, but as the number of
nodes and grid points become large, numerical
integration errors start to grow and the error in
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TABLE Vf. integration error of (n, f I r I n, t —1& .

E Exact result (a.u. ) Fractional error

10
10 9
20 1
20 19
50 1
50 49

149.248
65.384

599.250
187.350

3749.250
746.241

2.6 x 10~
1.8 x 10
2.7 x 10~
1.6 x 10~
5.5 x 10+
7.6 x 10~

The energy matrices were diagonalized using
the Jacobi diagonalization method adapted for
digital computers by Von Neumann, "with a modi-
fied convergence test. Although faster and per-
haps more accurate methods exist for this type of
diagonalization, the Jacobi method had the advan-
tage of requiring a minimum of computer memory.

The Jacobi method is based on repeated diagon-
alization of the 2 x 2 submatrix which currently
has the largest off-diagonal. matrix element. The
diagonalization is terminated when all off-diagonal
matrix elements are less than a threshold. d value.
In our calculations the threshold was taken to be
0.05 cm '. The maximum eigenvalue error due to
incomplete diagonalization is ~s —1 times the
threshold value, where s is the number of states,
but a more realistic estimate of the error can be
obtained by treating the residual off-diagonal ma-
trix elements as a perturbation. (The residual
matrix elements are evaluated after the numerical
diagonalization is terminated. ) For an isolated
eigenstate the error is second order and varies
as the square of threshold. In our region of study
the maximum error for a well isolated eigenstate

the matrix elements increases. For a fixed value
of n the error decreases as l becomes larger due
to the shorter integration range and the smaller
number of nodes. It should be noted that the
logarithmic grid variable is not strictly correct,
For a fixed grid size the number of grids points
per outer node becomes smaller as n increases.
If there are less than a few points per node, the
error decreases. The numerical values used here
have been optimized for n=—15, the primary area
of interest in this paper, though the methods can
work well at much larger values of n.

APPENDIX B. DIAGONALIZATION PROCEDURE
AND ERRORS

is about 0.002 cm ', though in many cases it is
substantially less because of cancellations among
residual matrix elements for states above and be-
low the isolated eigenstate. If two eigenstates are
almost degenerate, as in the case of sharp anti-
crossings, the error is less than 0.05 cm '. The
error for hydrogen is found to be 5 & 10 ' cm '.
If all the eigenstates are degenerate and all the
off-diagonal matrix elements are at threshold,
then the worst case result described above could
be realized.

APPENDIX C. SOME COMPUTATIONAL CONSIDERATIONS

Our calculations were carried out on a PDP
11/34 minicomputer with floating-point hardware.
The average instruction time is 3 p, sec and the
"multiply" instruction time is 13 p, sec. The time
to calculate a single matrix element varies from
0.7 sec for (10, 9 ~r ~10, 8) to 1.3 sec for
(10,0~&~10, 1). At n=100, l=0 the time is 2, 1
sec. Approximately 11 min is required to calcu-
late all matrix elements in the range n = 13-20.
The diagonalization time for this basis is approxi-

mtaelyt =370sec && [E(kV/cm)] ' . Thetime varies
with the size of the basic set s roughly as s'. The
total. time to diagonalize all field points from 0 to
8 kV/cm in 100 V/cm steps is approximately 8 h.

There are a number of ways to speed the com-
putations. A faster computer or an array proces-
sor could decrease the time by factors up to se-
veral hundred. Time-efficient diagonalization
algorithms could further decrease the computation
time at the expense of memory. A substantial im-
provement could be realized by using the eigen-
vectors at a given field point to recalculate the
matrix el.ements for an adjacent field point. Thus,
instead of independently diagonalizing at each field
point, the results of each diagonalization are used
to start the next. Symbolically this can be written

. Wg = Ug [W, , +AF(U, ', ~ ~ ~ U, 'Z U, ~ ~ ~ U;,)]U;,
where Z is the perturbation matrix in the spheri-
cal basis and U is the unitary transformation
which diagonalizes the energy matrix 8'. This can
be reduced to the familiar result:

W; = U )
'

~ ~ ~ U, '(Wo+ Q n.FZ) U, ~ ~ ~ U )j
= U ' (II, + FZ) U.
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