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Statistical mechanics of the double-quadratic chain: Exact results and ideal-gas
phenomenology for nonreflectionless solitary waves
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l

The ideal-gas phenomenology of Currie and co-workers is extended to systems which bear solitary-wave
excitations that are nontransparent to small oscillations. This extension enlarges the class of nonlinear
systems which may be viewed at low temperatures as ideal gases of kinks and phonons. The authors treat the
double-quadratic chain in detail, finding that the analysis can be carried quite far for this simple example
system.

I. INTRODUCTION

The subject of solitary-wave (soliton) phenomena
in condensed matter' is now enjoying a remark-
able boom period. A great deal is known about the
properties of solitary waves in a variety of phys-
ical situations, and the ease with which these prop-
erties can be studied is. surely one of the primary
ingredients of the soliton success story. In a
seemingly endless string of investigations, work-
ers in the area have been able to carry their stud-
ies quite far analytically. Moreover, the principal
themes' regarding solitons can be stated simply
and understood quite easily by the novice.

Leaving aside philosophical arguments concern-
ing the esthetic requirement that co~~ect physics
should be simple, one nevertheless can be quite
amazed by the beauty and simplicity of two exam-
ple systems which bear solitary-wave excitations,
namely, those governed by the sine-Gordon' (SG)
and the so-called "$'"nonlinear wave equations. '
These two equations have a great deal in common,
and many discussions of their solitary-wave or
"kink" solutions can be, and have been, ' ' based
on fundamental features which they share. For
example, analytic solutions' ' are known in both
cases for the kinks (and their antikinks); pertur-
bation theories for both types of kinks have a very
similar structure, "relying heavily on the exis-
tence of a kink "translation mode"; both types of
kink solutions can be quantized using the same
procedure. '

One of the fascinating features shared by SG and
Q' kinks is their transparency to linear extended-
waves solutions. The presence of a kink in the
system provides a localized "potential" seen by
the linear solutions ("phonons") in the sense that
small deviations from the kink waveform must
satisfy a Schrodinger-like equation' '"'" in which
the potential well is due to the presence of the
kink. Remarkably, the SG and P~ kink potentials
appearing in this one-dimensional Schrodinger

problem are completely ref lectionless"" since
the reflection coefficient" for the scattering (or
"continuum") states vanishes for all h values.

The fact that the SG and &f&' kinks are reflection-
less or transparent to small oscillations has en-
abled Currie et al.' to carry out an analytic in-
vestigation of the statistical mechanics of these
systems at low temperatures. By comparing with
exact results obtained via the transfer-operator
technique, these workers were able to justify the
use of a phenomenological approach which treats
the system as an. "ideal gas" of kinks and "pho-
nons" at low temperatures, based on the work of
Krumhansl and Schrieffer. ' One of the key points
in Ref. 7 is that care must be exercised in treat-
ing the effect of kinks on the phonon density of
states, since phonon degrees of freedom are taken
up by the kinks and this provides the mechanism
for free-energy sharing among the modes of these
nonlinear systems. The ref lectionless property
of SG and (t)4 kinks allows one to easily examine
the effect of kinks on the phonon density of states
in an analytic fashion and obtain closed-form ex-
pressions for various thermodynamic functions
via the phenomenological approach.

The purpose of the present paper is to extend
the ideal-gas phenomenology to systems bear-
ing kinks which are nonxeft ectionless. Such sys-
tems are very likely to be the rule rather than the
exception, since it is unlikely that a physical con-
densed system will be exactly described by either
of the special cases having ref lectionless kinks.
Since the general approach is discussed in Ref. 7,
we limit ourselves here to an illustration of the
methodology by considering a simple example
which can be examined analytically. , namely, the
double-quadratic (DQ) chain. This is a linear
chain of harmonically coupled point masses each
of which moves in a double-well potential similar
to the cb4 potential but different in analytic form.

In Sec. II we describe this example system in
detail and discuss the kink solutions to the equation
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of motion as well as small oscillations (phonons)
in the presence of a kink. The exact statistical
mechanics of the DQ chain is discussed in Sec.
III via the transfer-operator technique, and, an
explicit expression is given for the free energy at
low temperatures. In Sec. IV we construct the
ideal-gas phenomenology at low temperatures by
making use of the results of Sec. II to explicitly
account for the nonreflectionless nature of the
DQ kink. By comparing the phenomenological
free energy with that obtained in Sec. II we con-
clude that the ideal-gas concept of Krumhansl and
Schrieffer is valid for these more general sys-
tems as well. Finally, in Sec. V we give a brief
summary.

v(+)

205

2.0—

1.5—

1.0-

2t C-0 l

—3.0 -2.0 -1.0
) I

1.0 2.0 5.0
II. EQUATION OF MOTION AND SOLITARY-WAVE

SOLUTIONS

In this section we describe a simple example of
a solitary-wave-bearing system in which the sol-
itary waves (kinks) present a nonreflectionless po-
tential for scattering the linearized excitations
(phonons). The analysis can be carried quite far
in closed form, and we present explicit expres-
sions for the kink solutions, phonon solutions in
the presence of a kink, and the modification of
the phonon density of states by a kink. The results
in this section provide the basis for the pheno-
menological statistical mechanics discussed in
Sec. IV.

The system under consideration consists of a
one-dimensional chain of N harmonically coupled
oscillators governed by the Hamiltonian

(2.1)

where Q, is the "displacement" coordinate of the
ith oscillator, l the equilibrium spacing between
nearest neighbors, and V(Q) is an "on-site" po-
tential having the form of a double-quadratic (DQ)
well" (as shown in Fig. 1):

FIG. 1. Double-quadratic (DQ) potential. The lowest
two eigenvalues, ™&p=&0 —~p and & g= &

g
—+0 of Eq.

(3.9) are represented schematically by the horizontal
solid lines. These two eigenvalues are symmetrically
tunnel split (total splitting= 2 to) from the lowest level
Ep —Ep —Vo of an isolated harmonic well. The height of
Eo above zero and the magnitude of the splitting are
grossly exaggerated for clarity.

scale and has dimensions of energy && (length) '
x (time)'.

We restrict ourselves to the so-called displac-
ive limit when the coupling between sites is strong
enough to ensure that variations of Q from site to
site are quite small, at least at low temperatures.
In this limit we may replace the site index i by a
continuous position variable x so that (II) becomes
a continuous function of x and t, &f&(x, t). The rele-
vant length scale then becomes d-=c, /~, (d»l),
and it is in this limit that nonlinear kinks become
well-defined'4 elementary excitations with long
lifetimes, and as such behave' very much like
particles.

In the continuum (displacive) limit the Hamilton-
ian (2.1) is replaced by

The first term in Eq. (2.1) represents the kinetic
energy carried by the displacement field (a dot
denotes a time derivative) and the second term
represents harmonic coupling ("strain" energy)
between field values at neighboring lattice sites.
The constant c, is the characteristic velocity in
the system and represents the limiting velocity
of the kink (see below). The constant ~, is the
characteristic frequency of oscillation and repre-
sents the limiting frequency of long-wavelength
phonons. The overall constant A sets the energy

(2.3)

replaces the finite difference (())),„—5,)/I. We
shall have occasion to employ both forms [(2.1)
and (2.3)] of the Hamiltonian for the system. The
discrete form (2.1) is used in obtaining exact sta-
tistical-mechanical results via the transfer-oper-
ator formalism (Sec. III), whereupon the process
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of taking the continuum limit afterwards becomes
explicit. The continuum form (2.3) is used to
study the nature of the solitary-wave (kink) and
linear (phonon) excitations of the system; these
excitations are then introduced into the statistical
mechanics through an ideal-gas phenomenology
(Sec. W).

The excitations we are concerned with arise as
solutions of the Euler-Lagrange equation of mo-
tion following from Eq. (2.3):

I

-5.0
x-vt

l- V/C0)

5.0

j—c', &t „„+&d', ( ~

&t)
~

—1) sgn&t = 0 . (2.4) —l.o —.

The linear "phonon" solutions of Eq. (2.4) have the
form

+ 1 = $0 cos(kx —(d&, t) q

where the magnitude of P, must be less than

1, ( ~ $0 l(1), but is not required to be infinitesim-
ally small, since the individual potential wells
are perfectly harmonic for ~p, ~&l. The disper-
sion relation for these solutions is given by

FIG. 2. Waveform ft)~" of the traveling kink, viewed
in its rest frame. The antikink waveform is obtained by
reflection through the horizontal axis.

by boosting to velocity v:

y,'"'(x, t)

Q)~(L~o + CP k2 2 2 2 (2.6) x- vt ~x-~t~
j. —v2 c ~ d |52

which is the continuum limit of the discrete-lat-
tice dispersion relation,

&
' = ~' + 4(c,/1 )' sin'(l 0/2) . (2 7)

The solitary-wave (kink) solutions of Eq. (2.4)
evolve the field from one minimum of the DQ well
to the other minimum. Because of the covariance
of Eq. (2.4), we may solve first for the static-kink
waveform and then "boost" the solution to any
frame moving with velocity v (~v ~«,}. The static-
kink solution can be obtained quite easily by con-
sidering the regions x)0 and x&0 separately.
For the kink solution we impose the boundary con-
ditions &f&(+~) =1, P(0) =0, and P(-~) =-1, while
for the antikink solution the sign of P is reversed.
For the kink we have rf»0 for x &0, and Eq. (2.4)
in this region becomes

(2.13)

Qg A &Pep Mkco (2.14)

and the energy of a kink moving with velocity v is
simply

Ex&"' =A&doco(l —v'/c', )
' ' .

The "rest mass" M~ of the kink is

(2.15)

In Fig. 2 we have plotted the waveform of the kink
in its rest frame.

The energy required to create a kink (or anti-
kink} can be obtained by substituting the static-
kink solution (2.12) into Eq. (2.3) and performing
the integration over x. The kink rest energy is
thus found to be

-c', &t „„+(u', (P —1)=0 (x & 0), (2.8) M» =-A/d . (2.16)

with the solution

(f&(x) =1 —exp(-x/d) (x &0) .
For x & 0, we have &t &'0, and

—e', P„„-&o', (&t + 1) =0 (x &0),

(2.9)

(2.10)

We now turn our attention to an examination of
small oscillations in the presence of a kink. %e
suppose that a kink is at rest at the origin (x =0).
The subsequent analysis can be made applicable
to a moving kink as well by simply transforming
to the kink rest frame. %e write

with the solution
&t (x, t) =

&t ~&"(x) + g(x, t), (2.17)

P(x) =-[1—exp(x/d)] (x&0) . (2.11)

Combining Eqs. (2.9) and (2.11), we have the full
static solution:

@~&" = a(sgnx) [1 —exp(-
I
x

I
/'d) ], (2.12)

where we have included the antikink case (-sign) .

as well. The traveling-kink solutions are obtained

where p &"(x) is the static-kink waveform (2.12}
and g(x, t) is assumed to be a small deviation. Us-
ing the fact that &t&~&" satisfies Eq. (2.4), we find
that $(x, t) is governed by

g(x, t) —cog„„(x,t) + ro,'V "[y~&"(x)] y(x, t) = 0 ~ (2.18)

By writing
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P(x, t) =f(x)e '"'

and making use of the relation

V "(Px(x)}=1 —2d5(x),

(2.19)

(2.20)

(d =0
b

and corresponding normalized eigenfunction

f,(x) =d' exp(- IX I/d) .

(2.22)

(2.23)

We note that this bound- state solution for small
oscillations about the kink simply corresponds to
the "translation mode"' ' of the kink and its
presence is required by Goldstone 's theorem.

We now turn our attention to the scattering or
continuum-state solutions of Eq. (2.21). First we
note that the 6-function potential is not reflection-,
less, in contrast to the potentials which arise in
the Q» and SG cases. ' This is easily seen by sup-
posing that a "particle" is incident from the left
so that the assumed solution of Eq. (2.21) takes
the form

f&(x) ei»x+» e-i»x

f,'(x) =7e"",
with

2 = ~2+ C2jP

(2.24a)

(2.24b)

(2.26)

The &()) signs refer to x&0()0). The coefficients
x and v are determined by the continuity condition

where 6(x) is the Dirac 5 function, Eq. (2.18) re-
duces to

-cof„„(x)—2d(@205(x)f(x) = ((u' —(u', ) f(x) . (2.21)

This equation has the form of Schrodinger's equa-
tion for a particle in the presence of a 5-function
potential well ~ There exists exactly one "bound
state" with eigenvalue

f, (x) =S»sin(kx), (2.30)

where the minus sign (-) denotes odd parity and S,
is a normalization constant. The states of even
parity may be written in the form

with the condition R + T = 1 being obviously satis-
fied.

In contrast to the usual quantum- mechanical
situation just described (e.g. , a particle incident
from one side), the physical situation we have in
mind is rather that we have a kink placed at x = 0
and want to determine the allowed "extended"
states of small oscillation about the kink. Thus,
there is no a pxi oui reason to assume an asym-
metric solution of the form (2.24). Indeed, it is
more convenient to consider continuum- state solu-
tions having definite parity. In the statistical-
mechanical calculations described below, we im-
pose (for convenience) periodic boundary condi-
tions on the field configurations of the chain of
length I- (L is taken to infinity only after the
calculation of partition functions, etc.). One way
to view the system is as a ring of large circum-
ference L . Imagine for the moment that there is
only one kink present on the ring. This violates
the periodic boundary condition (the ring becomes
a Mobius strip), but at low temperatures (kBT
«Ex"') the actual equilibrium kink density will be
very low and we may add the effects of an equal
number of essentially isolated kinks and antikinks
on the continuum density of states. By imposing
periodic boundary conditions on the small oscilla-
tions, we ensure the satisfaction of periodic boun-
dary conditions when equal numbers of kinks and
antikinks are present.

The continuum states of odd parity are unaffected
by the presence of the 5-function potential since
f(x) vanishes at x=0 if f(x) is odd. Thus

f', (0) =f'„(0) -=f,(0),
and by the relation

(2.26) f&,(x) = C„cos[kx- —' &,(k)] (2.31a)

(2.27)

r = -1/(1+ jdk) (2.28a)

[(f,'( )}.—(f;( )}„].=.=(2/d)f, (o),
which is obtained by integrating Eq. (2.21) over
an infinitesimal neighborhood of x =0. After s im-
ple algeb ra, one finds

f~» .(x) = C» cos[kx+ ,' 4,(k)], — (2.31b)

where C„ is a normalization constant and the func-
tion n, (k) allows for the discontinuity in slope at
x=0. Conditions (2.26) and (2.27) determine the
form of b..(k):

r = idk/(1+ idk), (2.28b)

~,(k) = 2 cot-'(dk),

or, equivalently,

. (2.32a)

ft = I~I' = 1/(1+ d'k') (2.29a)

I' I' = d'k'/(1+ d'k')- (2.29b)

so that the reflection and transmission coefficients,
R and T, are given by

&.(k) = &k/IkI- 2 tan '(dk) ~ (2.32b)

The function b,(k) may be interpreted as a k-de-
pendent phase shift of the cosine function (2.31).
For more general kink-bearing systems, the
states of odd parity may also be "phase shifted",
so that a function 4 (k) may be needed as well.
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However, b (k) =0 for the DQ case treated here.
We note that because of the pointlike nature of the
6 function, the phase shift 4,(k) occurs entirely
at the kink center, rather than developing gradually
as in the case"" of the Q and SG kinks.

The allowed k values for the continuum states
are determined by the periodicity conditions

k=2pn/L (n= 1, -2, . . .) for the odd states and
k=2~n/L (n=0, 1,2, . . .) for the even states. The
change in the density of states due to the presence
of a kink is thus

6p(k) = p(k) —p (k) = ——' 6(k) —8(k)d/v (1+d'k') .
(2.38)

The total change in the number of states is then
f„(x+L)=f, (x) (2.33a)

dkt p(k)= I, - (2.39)

f', (x+ L) =f„,(x) . (2.33b)

For the odd states, the allowed k values are
k=2nm/L (n=+1, +2, . . .). However, the states
at+k and -k are not physically distinct, as can be
seen from Eq. (2.30). We may choose either the
states with n & 0 or the states with n &0 as the phys-
ical states. For convenience we choose k = 2nv/L
(n= 1, 2, 3, ...) fortheoddstates. Fortheeven
states, k and -k also represent the same state,
and we choose the positive k states with k values
determined by

i.e. , the total number of continuum states is de-
creased by one. Note that this is consistent with
Levinson's theorem": &(0') = m times the number
of bound states. This trapping of a continuum state
by the kink is the mechanism by which degrees of
freedom are shared among the nonlinear "normal
modes" of the system. This feature plays a central
role in the phenomenological statistical mechanics
discussed in Sec. IV, but first we turn to an exact
calculation of the statistical mechanics in Sec. III.

III. EXACT STATISTICAL MECHANICS
kL + 6.(k) = 2nm (n = 1,2, . . .), (2.34)

= 8(k)[v- 2 tan-'(dk)], (2.35)

where 8(k) is the Heaviside step function defined
by 8(k) =0 for k &0 and e(k) = 1 for k - 0. Thus
b(k) =0 for k &0 and &(k) = b, ,(k) for k &0. The den-
sity of states in the presence of a kink is then
given by

p(k) = —= + — —5(k),
dn L 1 dA(k)
dk 2m. 2w dk

(2.36)

where the subtraction of the 6 function incorpor-
ates the loss of the k=0 state. Substitution of Eq.
(2.35) into Eq. (2.36) yields

p(k) = L/2 v —,
'

6(k) —e(k)d/~(1+ d'k') . (2.37)

The density of states in the absence of a kink has
the uniform value po(k) =L/2v, since in this case

which follows from substitution of (2.31) into
(2.33b). We see that the allowed k values for the
even states are shifted due to the presence of a
kink. Indeed, the k=0 even state is "lost" alto-
gether, becoming "trapped" by the kink to be-
come the kink's translation mode.

The reason for our seemingly arbitrary choice
of labeling odd states by negative k values and
even states by positive k values is that we may
now define a density of states p(k) for all k values
running from - to +. To this end, we note that
the positive k values are'shifted [due to h,(k)] while
the negative k values are unshifted. We thus find
it convenient to define a generalized phase-shift
function

~(k) = 8(k)~,(k)

Z ZZ (3 1)

with

Z; = (2~At/Ph2P ~2 (3.2)

Z = Q exp(- PA(ooLg„), (3.3)

where p -=(ksT) ', h is Planck's constant, and
J =Nl is the total length of the system of N parti-
cles with periodic boundary conditions:
The quantities &„ appearing in Eq. (3.3) for the
"configurational" partition function Z~ are the
eigenvalues of the transfer-integral operator de-
fined" by

d, exp — lA&~,.„, , 4„

=e~[ PIA~', ~„]e„(y,.„},(3.4}

In this section we discuss an exact calculation
of the classical partition function for the discrete
DQ system governed by the Hamiltonian given in
Eq. (2.1) above. We shall be particularly inte-
rested in the low-temperature free-energy corre-
lation functions, etc. , in the continuum limit (as
l/d-0). It is in these limits that we expect to be
able to identify kink and "phonon" contributions
separately.

The exact statistical mechanics can be investi-
gated using a transfer-integral operator technique
which has been well documented. ~ "" The classi-
cal partition function factors as
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where

f(4 &„,4;) =- k(d '/1')(4;. , —0;)'+ 2 [I'(4;)+ I'(4;„)].
(3.s)

The eigenfunctions (4„] constitute a complete
orthonormal set on the interval (-~,+~).

In the thermodynamic limit (N-~, L -~,L/N = I
= constant), Z~ is dominated by the lowest eigen-
value e, so that the configurational (i.e. , potential
energy) contribution to the free-energy density
becomes

F /L=-(k~T/L) lnZ~ / „= Au)oqo. (3 6)
I

Other equilibrium properties can be calculated
with the same technique. For instance, the static-
correlation functions for the field and the squared
field are given by"

C,(x) = (sy(x) sy(0)&

rn in one dimension, moving in the double-quad-
ratic potential well [Eq. (2.2)]. We note that V,
acts as a temperature-dependent ", energy" zero
which is important for free energy, entropy, etc. ,
but not for correlation functions. No real quantum
mechanics is involved in Eq. (3.9) (k is replaced
essentially by temperature) but intuition from the
familiar quantum problem is very helpful.

Physical interpretations of thermodynamic func-
tions following from Z are possible at both high"
and low temperatures. Here we shall concentrate
on the low-temperature region, specifically PEra'
» 1, where kink excitations are well defined and
play a prominent role even though their density
is low. In this regime m*» 1 and the eigenspec-
trum of Eq. (3.9) will be "tunnel split" to remove
degeneracy from the eigenstates of the individual
wells in the DQ potential. Referring to Fig. 1, if
Ep is the lowest level in a single isolated harmonic
well, then

=Q (&n(6@(0& ('exp[- pA(o', (g„-g,)x] &p=&p- ~p (3.12)

C,(x) = (sy'(x) sy'(0)&

(3.7)
where t, is the tunneling component. At low T
(m*» 1), Eo is given by the lowest harmonic-oscil-
lator level:

(3.13)

O&l' exp[-PA~', (&„—&,}x],

(3.6}

respectively, where 5$(x}—= P(x) —(P& and 5P'(x)
= P'(x) —($'&. At large distances C,(x) and C, (x)
are dominated by the state with the smallest eigen-
value for which the corresponding matrix elements
(between 4„= ~n& states) are nonvanishing (exclud-
ing the n = 0 terms).

In the displacive limit (l/d«1) the Fredholm
integral equation (3.4}for C (P} can be replaced"
by the following differential eigenvalue equation
[valid to O(l/d)] for a related eigenfunction

Dt ( 21/2 gl/4) 0

for the even states, and

D- ( 2'/2 *~/') = 0

(3.14a)

(3.14b)

for the odd states, where D„(z) is the parabolic-
cylinder function. " When m*» 1, the asymptotic
expansions" of D„(z) may be used to obtain the
splitting between the two lowest levels, with the
result that tp is given by

The tunneling component t, can be obtained ap-
proximately by the WEB method or by a more
accurate technqiue based on Goldstein's method. ""
The eigensolutions of Eq. (3.9) may be obtained
by recognizing" that on either side of $ =0, Eq.
(3.9) is the parabolic-cylinder equation. " The
eigenvalues q = q„—Vp are determined by the trans-
cendental equations"

where

m*=A'sic'P'=(E' /k T)

(3 9)

(3.10)

t = 7/ '"m, * "'exp(-an*'")-
or, using Eq. (3.10), we have

l = v-' '(k T/E"')' 'exp(-E"'/k T).

(3.is)

(3.16)

and

I/'~ = (2P (oo/A)
' ln(Aco P/27/l) . (3.ii)

The tunneling part of the free-energy density is
thus given by

F /L = —7/' 'A(u'(PE") ' 'exp(-PE„"'). (3.17)

We are thus faced with a pseudo-Schrodinger equa-
tion for a single particle of dimensionless mass

The appearance of the kink rest energy in the
tunneling free energy leads us naturally to the
question of whether the kink and phonon excitations
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—, kaT[l ' ln(I&u, Pd/l)+ (2d) ']
= A(L)oEo A,'& TL ln Z& . (3.19)

This appealing identification of E„ leads us to
speculate that t, corresponds to the free energy of
a gas of independent kinks. However, we see from
Eq. (3.19) that all of the "dynamical" free energy
(F ) is apparently taken up by the phonon modes.
We shall see in Sec. IV. that this is remedied by
the subtle sharing of degrees of freedom hinted
at in Sec. II.

appear as elementary excitations in the formal
statistical mechanics, and in particular, to what
extent the excitations may be treated as a com-
position of "noninteracting gases". Following the
qualitative suggestions of Krumhansl and Schrief-
fer4 (KS) in the Q' example, it is not difficult to
demonstrate that the component E, of q„ taken
together with all of L ' F~ [from Eq. (3.2)], corre-
sponds exactly to the free-energy density L 'F,
of a set of o6e-dimensional classical harmonic
phonons —calculated to O(l/d) to be consistent
with Eq. (3.9). It is essential that the discrete
dispersion relation (2.7) be used in order to be
consistent with the transfer-operator technique.
We find

T m/)
L 'F, = s dk 1n(Ph(u„)2m, / r

= l 'ksT(ln(h&uoP) + in( —,
' [I+(1+4d'/I')' ']))

(3.18)

we may add the change due to each kink indepen-
dently, since the kink density will be low. We
shall find it convenient to regard the kink modifi-
cation of the phonon free energy as a kink "self-
energy" as explained below. In Sec. II we saw that
a kink traps a phonon mode and this is precisely
the mechanism by which the kink can divert two
degrees of freedom from the phonons to provide
for its creation and translational motion (recall
the k =0 state becomes the translation mode of the
kink).

We are now in a position to calculate the change
I 'bE in the phonon free-energy density due to
the presence of a kink moving at very low velocity
v«c, (there will be very few kinks traveling with
high velocity when ksT«Ero'). The velocity of the
kink may then be neglected to zeroth order. We
then have

ff/ t

L 'b, F= s dk 4p(k) ln(Ph&u, ),I (4.1)

or, using Eq. (2.37),

k~T n/S
L 'SF = s In(Ph(u, ) dk ap(k)I -~/ r

L 'r F= — a ln(Ph(oo)L

+ ~ dk&p k ln 1+4 — sin2—

(4.2)

In the limit as I- 0, this becomes [using Eq. (2.38)]

IV. IDEAL-GAS PHENOMENOLOGY + ~

disap

k ln 1+d'k'

In this section we describe a phenomenologieal
approach to the statistical mechanics of the double-
quadratic chain in which kinks and phonons serve
as elementary excitations which share degrees of
-freedom. The key to understanding the role of
kink-phonon interactions lies in recognizing that
at low temperatures, k~T «E„"', the kink density
will be very low, and as a consequence, the be-
havior of small oscillations (phonons) of the field
in regions beAeeen the kinks will be very similar
to the behavior of such oscillations in the kink-
free system as a whole. This observationprompted
KS to negleet4 kink-phonon interactions altogether.
However, we shall see that itispossibleto include
these interactions explicitly in the phenomenologi-
cal statistical mechanics, and by so doing, extend
the results of Currie et al. ' to reflecting kinks
(e.g. , DQ kinks) as well as ref lectionless kinks
(e.g. , Q' and SG kinks).

The presence of kinks in the system leads to a
modification in the phonon density of states as dis-
cussed in Sec. II. At sufficiently low temperatures

ln(v2 ph&u, ) .k~T
I (4.3)

as a kink self-energy.
At low temperatures the kink density will be

small and we associate Z„(T) with each of the
(slowly moving) kinks and antikinks. The large
average separation of kinks also allows us to ne-
glect kink-kink interactions to an excellent ap-

We see that at low temperatures &F will be nega-
tive, i.e., thephonon free energy is reduced by
the presence of a kink, as expected from the re-
duction in the number of allowed phonon states.
We shall interpret this change in the phonon free
energy as a kink "self-energy". This viewpoint is
similar in spirit to that adopted by Dashen, Hass-
lacher, and Neveu'4 in their calculations of the
quantum renormalization of the kink mass due to
its effect on the zero-point energy of the vacuum.
Thus we define

(4.4)
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proximation. Such interactions will only appear
at higher order in a virial expansion involving the
kink density. We note that for periodic boundary
conditions on Q(x), the number of kinks will equal
the number of antikinks so that

&K=&K = ~ &K' ~ (4.5)

where K denotes an antikink, and NKt" is the total
number of kinks plus antikinks.

We are now ready to construct the phenomeno-
logical free-energy density based on the above con-
siderations. Our approach involves the grand par-
tition function = for the system. Since the phonon
excitations are perturbed by the presence of
kinks, = cannot be rigorously factored into pho-
non and kink pieces. However, note that the
change in the phonon free-energy density is pro-

portional to the number of kinks {for low kink
densities). This prompts us to write = as

~ (0)~
K~K p (4.6)

'" "Z„(N„). (4.8)
NK&

In Eq. (4.8), Z»(N») is the classical partition func-
tion for an idea, l gas of N~ indistinguishable relati-
vistic pa. rticles (kinks) with self-energy Z» [Eq.
(4 4}]

where =~(0' is the free phonon grand-canonical par-
tition function,

(4.7}

with F, given by Eq. (3.19), and =„==„- is the kink
(antikink) pa, rtition function,

L + CO NK

«00
(4.9)

In Eq. (4.9), the dimensionless constant B is a
temperature- independent phase- space reduction
factor which can only be determined at a later
stage by comparing the phenomenological results
with those obtained using the transfer-operator
approach. As we shall see, the constant 8 possi-
bly has a very interesting interpretation.

Since we have already explicitly accounted for the
kink self-energy, Z» in Eq. (4.9), we shall even-
tually set the kink "chemical potential" pK equal to
zero, since there is no external constraint on the
kink number; the average kink density is deter-
mined solely by the temperature& It is convenient,
however, to retain p, K until we have obtained an
explicit formula for the average kink density.

The integration over p» in Eq. (4.9) can be per-
formed exactly with the result being expressible
in terms of the modified Bessel function K, (PE»"').
The asymptotic form of K, (x) for large x then
yields

g (0& 2 ~ &/2 —NE

(PE,"'»1). (4.io)

The summation over N» in Eq. (4.9) may now be
performed exactly to give

The grand-canonical potential density 0 is given
by

0= —(RENT/L) ln=,

or, using Eqs. (4.6) and (4.11),

2@(0) 2 ~ 1/2
F0 - ~BT Bh pE(0)

&& e0'»exp[ P(E»('+ 1—'»)].

The average total kink number density

" =(N +N-)/L =N"'/L,

is then given by

&tot BQ
K

I K T, I

{4.i2)

(4.18)
/

(4.14)

We set p. K
= 0 after performing the derivative in

Eq. (4.14) to obtain

By substituting Eq. (4.4) into Eq. (4.15), the kink
density may be rewritten

tot (2/~p)(I/Bd)(pz ( ))l/20+M»» (4.16)

The free-energy density is given by L 'F= 0 (with
ll»=0), or,

I E(o) I = L I 0 —k~Tyg~ (4.17)

(4.11}
The phase-space reduction factor B is now de-

termined by equating the phenomenological ex-
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pression (4.17) for L 'F with the exact transfer-
operator result from Sec. III:

I 'F = L 'Fp+L 'F

where

L F]= —A Q7()tp ~

(4.18)

(4.19)

Comparing Eq. (4.18) with Eq. (4.17), we obtain

k, Tn~" =A~ptp. (4.20)

and n~" then -becomes

n"'= (1/v 7rd)(PE"')' 'e ~e» (4.22)

We emphasize that the only temperature depen-
dence appearing in n~' occurs through the ratio
E»to'/keT = PE»e). This temperature dependence is
the same a.s that which appears in the P' and SG
cases', the only differences are in the numerical
prefactors. It is intriguing that the phase-space
reduction factor B should turn out to be such a
simple number as 2 [Eq. (4.21)] in the DQ case,
particularly in view of the fact thai B= 1 for the
SG case' and B =4 for the )t)' case. ' The fact that
B=1 for the SG system means that no phase-space
reduction for the kinks is necessary in this case.
One possible interpretation of why no reduction
is necessary is that the SG kinks are not forced
to be sandwiched by antikinks; a kink can be fol-
lowed by another kink. The DQ kink, however,
is forced by the topology of the potential to be
preceded and followed by an antikink along the
chain. It is interesting to note that if one re-
places the DQ potential by a periodic array of
truncated parabolas (multiquadratic potential},
the tunnel-splitting t, is reduced by a factor of
2,"leading to B=1. For such a potential, a kink
can be followed by another kink, just as in SG.

Now that we have determined the free-energy
density given by Eqs. (4.17), (4.22), and (3.19),
the other thermodynamic functions can be readily
obtained. For example, the internal-energy den-
sity

»(PF)Q= —=—
L L BP

becomes

u= l 'usT+ (E»'--', keT)n»".

(4.23)

(4.24)

This can be rewritten in the more suggestive
form

(4.26)

or

Substitution of Eq. (4.16) into Eq. (4.20) and the
use of Eqs. (2.14) and (3.16}then yields

(4.21)

U=Lu= (I /l —Nt»t)keT+Nt»t(E»t)+ 2 ksT) ~ (4.26)

Ee)) 1 ' 1
cl, =k~l '+k

B
(4.28)

All of the thermodynamic functions (F, U, S, C~)
are, of course, dominated by phonon contributions,
since the kink density is exponentially small at low

temperatures (PE»to)» 1). However, the density of
kinks is quite important information for several
features which are insensitive to phonons; for ex-
ample, the DC conductivity" in charge-density-
wave condensates. Another place where the kinks
dominate is in the low-temperature correlation
length for the field )l). From Eq. (3.7) we see that
the behavior of the correlation function C,(x) at
large x is given by

C,(x) -exp[- PA td20(q, —q,)x], (4.29)

where qp and q, are the two lowest eigenvalues of
Eq. (3.9). Equation (4.29) can be. rewritten as

C,(x) -e~( x/()

where the correlation length $ is given by

k = [PAtt)()(&t —&o) ]

(4.30)

(4.31)

At low temperatures &, and &p are separated by the
exponentially small tunnel splitting 2tp. From Eq.
(4.20) 2t, is simply

2t, =2(Atd2O) tksTnt»t,

so that

(2nto t}-t

(4.32)

(4.33}

or, using Eq. (4.22),
t ~&d ( PE (0)) -t I 2 et)z» (4.34)

I

Thus the correlation length is proportional to the

average separation between neighboring kinks,
which is the distance over which the field remains
correlated. Note that $ grows exponentially with

decreasing temperature, becoming infinite at T = 0

when no kinks remain in the system.

This is simply the internal energy of a system
with (L/l —Nt»") classical phonon modes and N»'
"nonrelativistic particles" of rest energy E~',
each having —,

' k~T translational energy. Thus the
kinks obtain their necessary degrees of freedom
at the expense of precisely the correct number of
degrees of freedom in the phonon modes.

The entropy S is easily found to have the form

S L l E (0)

1 ———in(PK~ d/l) +1V'" » +
k~ l 2d k~T 2

(4.27)

and the specific heat e~ = (Bu/BT)~ has the form
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V. SUMMARY AND DISCUSSION

In this paper we have extended the phenomeno-
logical method of Currie et al. ' for treating the
statistical mechanics of systems bearing reflec-
tionless kinks (e.g. , &f&' and SG} to those systems
of a more general nature in which the kinks are
not transparent to the small oscillations. In par-
ticular, we have examined the double-quadratic
chain system in detail and developed an ideal-gas
phenomenology which explicitly incorporates the
effect of kinks on the phonons, thereby accounting
for the sharing of degrees of freedom among these
nonlinear normal modes of the system. We have
found that the ref lectionless property of the Q' and
SG kinks is not a requirement for the existence
of a straightforward phenomenology. Indeed, by
carefully considering the nature of small oscilla-

tions in the presence of nontransparent kinks (such
as DQ}, one can develop a phenomenology in these
cases with equal ease, and we find that the thermo-
dynamic functi. ons have the same functional de-
pendence on E~@'/k~T as was found' for the P' and
SG cases.

The double-quadratic chain in particular affords
us an opportunity to extend the above results to
higher temperatures, since the small oscillations
are linear up to large amplitudes, and this should
help in isolating higher-order temperature correc-
tions. We hope to deal with this extension in a
future paper.
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