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Single-mode dynamics of convective instabilities in a horizontal liquid layer
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A theoretical description of the single-mode dynamics of both the Rayleigh-Benard instability {RBI)and
the Soret-driven instability (SDI) is provided, starting from the general conservation equations and

exploiting a technique similar to that used for the laser instability. A system of nonlinear dynamic equations
is found to describe self-consistently both the RBI and the SDI. The single-mode steady-state solutions are
derived without making use of perturbation expansions. A quantitative theoretical explanation is found to
account for such recent experimental results as the saturation of the horizontally averaged concentration
gradient -at midheight in the SDI, the appearance of relaxation oscillations in RBI and SDI transients, and
the dependence of the oscillation period on the temperature difference between the plates. The analogy with

the laser suggests the possibility of observing giant pulses in the transient well above' threshold, and of
measuring pretransitional fluctuations of the mode which goes unstable. Connections with the Lorenz model

are also discussed.

I. INTRODUCTION

Convective phenomena have been actively studied
for a long time because of their importance in
many branches of applied research. The consid-
eration that the convective instability may be
viewed, near its threshold, as an example from the
large class of instabilities in open systems show-
ing a close analogy to phase transitions in thermo-
dynamic systems, has stimulated in the last few
years a considerable amount of experimental and
theoretical work. Many results, have been ob-
tained concerning the steady state, less is known
however about the transient behavior of convective
instabilities'. The aim of this paper is to provide a
theoretical description of the single-mode dynamics
of both the Rayleigh —Benard instability (RHI) and

the Soret-driven instability (SDI), starting from the
general conservation equations and exploiting a
technique similar to that used for the laser insta-
bility, '

The RBI arises in thin horizontal liquid layers
heated from below when the temperature differ-
ence 4T across the layer exceeds a critical value
4T~.' ' The less well-known SDI may occur in
two-component fluid layers, above a critical temp-
erature difference, when the direction of the heat
flux in the layer and the sign of the thermal diffu-
sion ratio k~ are such that the molecules of the
heavier component migrate upwards. ' ' The ther-
'mal diffusion ratio is defined through the relation'

grad c = -(kz. /T)grad T,
where c is the mass fraction of the heavier com-
ponent and T is the absolute temperature. More
commonly the heavier component migrates toward
the colder plate of the Soret cell, that is k~& 0.

Whereas the driving force of the HBI is due to

the density gradient created by the applied temp-
erature gradient, the driving force of the SDI
comes from that part only of the density gradient
which is due to the concentration gradient origina-
ted by thermal diffusion. As discussed in Ref. 7
this phenomenon arises because the relaxation
time for heat is much smaller than the correspond-
ing time for mass, in liquid mixtures. Only re-
cently experimental evidence of the SDI has been
presented xo

The treatment presented here is limited to the
region not too far above threshold where a single-
mode convection pattern sets in. The single-mode
treatment has the virtue of splitting the complica-
ted space-time-dependent problem into two sepa-
rate problems. The spatial structure is specified
by solving in the space domain a system of two
linear time-independent equations with boundary
conditions dictated by the geometry of the cell and

by the external constraints. The time evolution of
the single-mode amplitudes is given by a set of
space-independent equations. This approach, suc-
cessfully applied in the laser theory, "is of quite
general validity for the threshold region of insta-
bilities in open systems. '4 It should be noted that
the assumption of fixed spatial structure of the
convection pattern was first made in hydrodyna-
mics by Stuart, " and it is known indeed as the
"Stuart shape assumption. " However, this as-
sumption has never been exploited with the aim
to derive a self-consistent set of dynamic equa-
tions, as is done in this work.

The organization of the paper is as follows.
Considering first the RBI case, I derive in Sec. II
the nonlinear dynamic equations for the single-
mode amplitudes of the velocity and temperature
mode and for the horizontally averaged tempera-
ture gradient. The same set of equations is shown
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successively to apply also to the SDI variables
which are the single-mode amplitudes of the ve-
locity and concentration mode and the horizontally
averaged concentration gradient.

The steady-state solutions are derived in Sec.
III from the self-consistent equations without
making use of perturbation expansions. Besides
other results, it is found that the temperature
gradient (concentration gradient for the SDI) at the
midplane of the cell takes, above threshold, a
value independent of 4T and coincident with the
critical temperature (concentration) gradient.
This saturation effect is a new theoretical result,
and it has indeed been observed in the SDI experi-
ment of Ref. 11.

The transient evolution of the instability toward
the steady state starting from an arbitrary initial
condition at t= 0 is discussed in Sec. IV. The sys-
tem of three equations derived in Sec. II is simpli-
fied by an adiabatic elimination of the velocity
which is taken to be the variable evolving on the
fastest time scale. This approximation is valid
for the RBI in large-Prandtl-number fluids and is
generally valid for the SDI in liquid mixtures. The
obtained couple of "rate equations" is solved nu-
merically, and the solutions are compared with
the results of recent experiments on the dynamics
of the RBI"" and of the SDI."

Finally, Sec. V considers the connections with
the I,orenz model" and describes the analogy with
the laser. A posteriori, the analogy is not all
surprising if one takes into. account that the model
presented in this paper can be viewed upon as a
generalization of the I orenz model to a nonsin-
usoidal vertical dependence of the mode ampli-
tudes, and one further recalls the analogy between
the I.orenz model and the laser suggested in Ref.
21. Since the velocity is the variable analogous to
the electric field in the laser model, the adiabatic
elimination which produces the instability rate
equations is analogous to the approximation intro-
duced by Bonifacio and Schwendimann" to describe
superradiant pulses. The possibility of observing
in convective-instability experiments superradi-
ant pulsing phenomena will be discussed shortly.
The analogy with the laser suggests also that a
measurement of the statistical properties" of
convective instability transient could give infor-
mation on fluctuations near the instability thresh-
old.

II. SINGLE-MODE DYNAMIC EQUATIONS

The well-known conservation equations for a two-
component liquid mixture are'

Bc Bc 2 Dj'gg
+ vg =DV c+ —V T~Bt 'Bx,. T

Be-* + v,
' =g[1-n(r —1')+y(c-c)]X,.Bt, ~Bx

1 BP +PVe.
q

p Bx

BT BT—+ v =XV T,
Bx

(4)
/=1

where c is the mass fraction of the heavier compo-
nent, e, is the ith component of the velocity, T the
temperature, and p the pressure. The constant D
represents the isothermal diffusion coefficient, v

the kinematic viscosity, X the thermal diffusivity,
g the gravity acceleration, n= -(1/p)(sp/BT), and
y=(1/p)(&p/Bc), where p is the density. The sym-
bols T, c,p represent average quantities over the
layer. Taking the z axis (i = 3) coincident with the
vertical axis, X,.=0 for i =1,2, and Ã, =1. A dis-
cussion of the assumptions involved in the deriva-
tion of Eqs. (1)-(4) can be found, for instance, in
Ref. 7. The equations for a single-component sys-
tem are immediately obtained from Eqs. (1)-(4) by
putting c=c=0.

A. Rayleigh-Benard instability

The treatment is limited to the region not too
far above threshold where a single-mode convec-
tion pattern sets in. Following the single-mode
assumption, the vertical component of the velocity
v, and the temperature T are expressed as

v, = B(t)v(z)cos(k ' r), (5)

T = K+A(z, t)+ T(t)8(z)cos(k ~ r), (6)

where the origin of the coordinates system is put
in the center of the cell, r designates an horizon-
tal vector in the configuration space, and k is the
corresponding wave number. Equations (5) and
(6) differ from the positions made in classical li-
near-mode analysis because the time dependence
of velocity and temperature is not exponential, and
A(z, t) which represents the average over the hor-
izontal plane of the reduced temperature T-T is
not assumed a px~o~i to be a linear function of z.
In fact, when &T exceeds the critical value 4T„
a z-dependent convective heat flux is generated in
the liquid layer. Consequently, the temperature
gradient cannot stay constant over the cell height.

The dimensionless functions v(z) and 8(z) are
taken here as known functions. They are indeed
the solutions of the eigenvalue problem which de-
fines the neutral stability curve. To be precise,
v(z) satisfies the linear equation'

4, 1 d'k'a' „—,„,—1 v(z) = -Rv(z),
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where a is the gap between the horizontal plates
confining the fluid layer, and R =gab, Ta'/vX is the
Rayleigh number. An identical equation governs
8(z). If both bounding surfaces are rigid (this is
the only case considered in the present paper), the
appropriate boundary conditions are

dv 1—=v(z)=0 for z =+-,a.
dz

(8)

de—=0 for z=a —,'a.
dz

(10)

The two functions v(z) and 8(z) take their maxi-
mum value at the midplane z =0. I assume that
v(0) = 8(0) = 1, without loss of generality since the
dependence on the temperature difference 4T can
be included into the time-dependent amplitudes
B(t) and T(t).

By applying conditions (8) and (9), the minimum
of the marginal stability curve is attained at k,
= 3.117/a, where R, = 1708. The corresponding
solutions v(z) and 8(z) can be found, for instance,
on p.. 39 of Ref. 2.

Consistently with the single-mode approach,
A(z, t) can be written

A(z, f)= —(hT/a)z+A(t) f(z),
where the dimensionless func'tion f(z) is deter-
mined by considering that, at steady state,

Furthermore, if the two surfaces are maintained
at fixed temperatures,

8(z)=0 for z =+—,'a.
Another possible situation is that of fixed heat flux
through the layer. In this latter case, instead of
Eq. (9) the appropriate boundary condition is

dT ~AT df ~ ~d'8—8= I
—-A —IBv+XTI, -h'8 I .

dt k a dzl &dz'
(16)

(18)

where 4,= &T/a, and the dimensionless positive
constants h.„h„h, depend only on v(z), 8(z), and on
the product ka, and are expressed as

2 (df/dz), 0f' fdz

2 1 -al2(d fldz )dz.
fo fdz

(20)

(21)

It should be pointed out that the elimination of the
spatial dependence from the dynamic equations
presents some degree of arbitrariness. I have
chosen a local, evaluation of Eq. (16) instead of an
average over the interval (=za, 0) only because it
is the -most direct way to introduce the variable
b(t) which represents the temperature gradient,
averaged over the horizontal plane, at z = 0. '

The system of Eqs. (17) and (18) is completed by
a third equation which is derived from Eq. (2) with
c=c=0, by eliminating the pressure P as follows:

By integrating both sides of Eq. (15) from z
= -z a to z = 0, by putting z = 0 in Eq. (16) and by in-
troducing the new variable

a(t) = A—(t)—
4T df
a dz&, 0&

Eqs. (15) and (16) become

[h,-/(2a') jBT (hP-/a')(a a-), (17)

T = ~-hg(h'T,

1 d(v8) d'f
a dz dz' ' (12)

8 evz ev„—k

and that f(z) = 0 for z = 0, + —,'a. The integration of
Eq. (12) yields

= —-k'v+ d,
,dv'

= -g+k'T8+ v& k'v-2k' ---+
dz~ dz4 j '

Equation (22) can be written

+= -A4pk

(22)

I'2z ' ve ' ve
f(z)= —

I

—+1 —dz+ —dz .
( 0 ~(2 8 ~r2 CE

(13)

B(t)dv—sinkx .
k dz

(14)

By substituting Eqs. (5), (6), (11), and (14) into
Eq. (3) and averaging over the horizontal plane,
the following two equations are obtained:

dA BT dv d8 d'
f+——8+ v ——=XA

dt 2 dz dz dz' ' (15)

I assume now that k is parallel to the x axis.
Clearly all variables become independent of y.
The horizontal velocity component v„, as derived
from Eqs. (5) and (6), reads

k dz' (24)

The coefficient of T on right-hand side of Eq. (23)
can be expressed in a different way by taking into
account the following relation, derived from Eqs.
(126) and (127) of Ref. 1;

2d'v 1 dvx B- gek28 pk4 v- —— + ——T
k2 dz2 k4 dz4

(23)
where
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4 2 d'v d4v
k2 y+2 y+4

1 d'8)
=g&&8v X 8-—

2 (25)

B. SoretMriven instability

The situation considered here is that of a liquid
mixture, having k~& 0, which is heated from be-
low. At small temperature differences 4T, a con-
stant vertical concentration gradient will arise,
according to the Soret effect, so that

c(z) = c+ (kr/T)(n. T/a)z .
Above the critical temperature difference &T„
the system goes unstable. The theoretical re-
sults"' indicate that no convective heat flux is or-
iginated by the Soret-driven instability if X»D, as
it happens usually in'liquid mixtures. It is there-
fore reasonable to assume that the temperature
distribution inside the cell is not modified by the
convective mass motion, and therefore, for any
value of &T

T = T (ST/a)z . - (27)

It is easy to verify with Eqs. (1)-(4) that this as-
sumption makes the SDI problem formally identi-
cal to the RBI problem, with the concentration c
playing the role of the temperature. The vertical
component of the velocity v, and the concentration
c are expressed in the single-mode approach as

v, = &(t)v'(z)cos(k r),
c = c+A'(z, t)+ C(t)w(z)cos(k ' r) .

(28)

(2S)

The dimensionless functions v'(z) and w(z) are dif-
ferent from v(z) and 8(z) because the appropriate
boundary condition for w is the analogous of Eq.
(10) instead of Eq. (9). Indeed the condition of
fixed temperatures of the plates implies, for the
Soret cell, a fixed concentration gradient at the
boundaries. I write A'(z, t) as

where b, = AT, /a. By inserting Eq. (25) into Eq.
(23), and putting z = 0, I obtain

(26)

The single-mode dynamics of the Rayleigh-
Benard instability is fully described by the set of
nonlinear equations (1V),(18), and (26) in the vari-
ables d(t), B(t), and T(t). The constants hz, with

j= 1, . . . , 4 have been computed by putting k = k,
= 3.11V/a, and using for v(z) and e(z) the solutions
reported in Ref. 2. The obtained values are h,
= 16.68, h, = 44.13,h, = 2.20, and h, = 2.61.

V Wf'(z) = dz .a (31)

Following the same procedure used for the RBI
case, I obtain from Eqs. (1),(2), and (4) the set of
equations

&' = (h /2a')BC -(h D/a')(rh, ' 6-') (32)

C = -&'B-h Dk2C, (33)

k= -h,vk'[B+ (h, Dk'/d' ) C] (34)

where

&'(t) ==—-A(t) —
I

df'l
T a dzj, o,

a,'=(k /7 )(aT/a),
6', = (k /T)(ALT, /a),

arid the constants hz's are defined as before by
Eqs. (19)—(21) and (24), with f, 8, and v replaced
by f', w, and v'. Note that Eqs. (32)—(34) are the
same as Eqs. (17),(18), and (26), with rV, C, and
D iristead of &, -T, and X. In the SDI case, as for
the RBI with boundary conditions given by Eqs. (8)
and (10), the minimum of the marginal-stability
curve occurs for k, = 0, and the actual value of k is
dependent on the finite width of the cell. Since the
behavior of v'(z) and w(z) ip influenced by k, one
should conclude that the coefficients h&'s have no
"universal" value, but depend on the actual geom-
etry of the experiment. It should be noted that
even in the RBI case discussed above, the inde-
pendence of the h&'s from the geometry is limited
probably to cells having large aspect ratios. An
approximate evaluation of the h&'s for the SDI can
be performed by choosing for v'(z) and w(z) the
lowest-order polymonial expression which satis-
fies the boundary conditions, that is

v'(z) = 1-8(z/a)'+ 16(z/a)4,

w(z) = 1. One finds h, = h2= 10.91, h3= 1. Further-
more, for small ka, k~=24/(ka).

As mentioned in the Introduction, the Soret-dri-
ven instability may also occur in a binary mixture
having k~&0, but heated from above, that is, with
a negative temperature difference 4T. It can be
immediately verified that Eqs. (32)-(36) describe
equally well this latter case.

IH. STEADY-STATE SOLUTIONS

A. Rayleigh-Benard instability

where the dimensionless function f'(z) must satis-
fy the boundary conditions f'(0) = 0 and df'/dz = 0 for
z=+ —,'a, and is given by

A'(z, t) = = z-A(t)f'(z),k& 4T
(30) The steady-state solutions &„T„and 8, of

Eqs. (1V),(18), and (26), as obtained by putting
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FIG. 1. Height dependence of the reduced horizontally
averaged steady-state temperature T (z) —T in a fluid
layer of thickness a, when the temperature difference
&T between the plates is twice the threshoM &T, for the
Hayleigh-Benard instability. Note that the temperature
gradient is equal to the critical temperature gradient
at. midheight, and is larger than &T/a at the boundary.

~ ~ ~

A=T =X=0, are

z, = Z, = aT,/a, (35)

( 2@
T =

~

' —'e' '=0.498T e' '

10.64
h a

1

(37)

~r ~T- ~T, f(z)
a a (df/dz), , ' (38)

The height dependence of T,(z) T for e = 1 is show—n

in Fig. 1.
Heat-transfer measurements on the RBI are us-

ually described iri terms of the dependence of the
Nusselt number on &T. The Nusselt number, de-
fined as

where e = (&0- 4,)/&, .
Expressions for T, and B, having the same struc-

ture as Eqs. (36) and (37) have already been de-
rived. by other authors, 4'" with numerical constants
about 10%%uo larger than those given in Eqs. (36) and

(37).
Equation (35) predicts that the horizontally av-

eraged temperature gradient at the midplane of the
cell takes, above threshold, a value independent of
&T Bnd coincident with the critical temperature
gradient. This saturation effect does not seem to
have been described in previous treatments of the
RBI steady state. Furthermore, by using Eqs.
(11),(13), and (35), the full vertical distribution
of the horizontally averaged steady-state temper-
ature T,(z) is derived, and reads

8, Soret-driven instability

The steady-state solutions &,', C„and &, of
Eqs. (32)—(34) are

S',= ~', = (u, /T)(ST, /a), (4o)

) 41
jPz ATc g(2
ka T (41)

= —1.41@a—6' 'D
a (42)

The expressions obtained in Sec. IV of Ref. 8 by a
perturbation analysis seem to be quite different
from Eqs. (41) and (42) apart from the expected
E' ' dependence of C, and 8,.

Since & is much smaller than X for liquid mix-
tures, direct measurements of B, are more dif-
ficult to perform in the SDI than in the RBI. How-
ever, the concentration modulation predicted by

Nu= (q,.„„+q,.„,)/q, .„,,

where Q,,„„and Q„„,are the convective and the
conductive heat flux, respectively, can be ex-
pressed as

Nu = a
i
d T/dz i, i,hT ',

and therefore one obtains from Eq. (38)

Nu- 1 = &(AT 4T,)-/hT

where

2H 0 vzv—dz .1 2H a/2a

The numerical computation gives H = 0.311 and n
= 1.65. This latter value is 15/0 larger than both
the theoretical" and the experimental" values re-
ported for the case of two-dimerisional rolls and
large Prandtl number.

Accurate measurements of the velocity field of
the RBI have been performed" by laser Doppler
velocimetry, using a high-Prandtl-number liquid
and a rectangular cell with a large aspect ratio.
In the range 0& & & 2, two-dimensional rolls show-
ing a sinusoidal dependence on the horizontal co-
ordinate are found. In the range 2& a& 10 higher-
order harmonics are necessary to describe the x
dependence of the velocity amplitude. The ampli-
tude of the fundamental mode is found to follow the
law c' ', with a numerical proportionality constant
slightly larger than that predicted by Eq. (37) and
in good agreement with the calculations of Refs. 4
and 27.



2198 VITTORIO DEGIORGIO 20

where

I

kT hT

2a T

c,(z)-c
l

kT AT

2a T

FIG. 2. Height dependence of the reduced horizontally
averaged steady-state concentration c,(z) —c in a binary
liquid layer of thickness a, when the temperature dif-
ference 4T between the plates is twice the threshold
b Tc for the Soret-driven instability. Note that the con-
centration gradient is equal to the critical concentration
gradient at midheight, and is not affected by the convec-
tive mass motion at the boundary,

hT hT~ f'(z )—
T df'/da I, o

(43)

The height dependence of c,(z)-c for c = 1 is shown
ln Flg. 2.

Following the analogy with the RBI case, one can
define here the dimensionless quantity

a dCB c
dz g= 0 /2

where &c=c,(—,'a)-c, (=~a). Such a quantity repre-
sents the ratio between the true thermal diffusion
ratio and the apparent thermal diffusion ratio.
Since mass convection partially destroys the con-
centration gradient due to thermal diffusion, the
ratio defined above is larger than 1 above thresh-
old. From Eq. (43) the following expression is
derived:

dc
dz, ,~, 1 —o!'(1-d T,/hT) (44)

Eq. (41) is quite large, and certainly measurable
by the beam-deflection technique described in
Refs. 31 and 12.

Equation (40) predicts for the horizontally av-
eraged concentration gradient the same saturation
effect described above for the temperature gradi-
ent. Therefore all the considerations developed
with regard to Eq. (35) could be repeated here.
The vertical distribution of the horizontally aver-
aged concentration c,(z) reads

k, ~T k&c (z ) = c+ =- —z ——
T a a

v'sv=2 dz.a

By using the approximate expressions for v' and
sv given in Sec. IIB, I obtain n'=

yg 0 53.
The prediction, expressed by Eq. (40), that the

horizontally averaged concentration gradient at
midheight is locked, above threshold, to the criti-
cal value is in very good agreement with the mea-
surements performed by Giglio and Vendramini"
for the SDI in the mixture ethanol-toluene. The
results reported in Fig. 1 of their paper show in-
deed that &,= 4, above threshold. The measure-
ments performed by the same authors on the SDI in
a aqueous solution of polyvinylalcohol" show an in-
crease of the midheight concentration gradient with
&T. It should however be considered that the
beam-deflection technique averages the concen-
tration gradient over a vertical range which coin-
cides with the diameter d of the laser beam. In
the case of the experiment described in Ref. 12,
d is about 1 mm and is not negligible in compari-
son with a= 5 mm. It is easy to compute from
Eq. (44) the average of the concentration gradient
over the range (- —,',a, + —,',a). The result is

in very good agreement with the experimental data
shown in Fig. 1 of Ref. 12.

IV. TRANSIENT SOLUTIONS

Equations (17),(18), and (26) fully describe the
transient evolution of the RBI toward the steady
state starting from an arbitrary initial condition
at t=0. Similarly, Eqs. (32)-(34) describe SDI
transients. In many relevant cases the description
of the transient can be considerably simplified by
using the so-called adiabatic approximation which
is based upon the comparison of the different time
scales involved in the problem and the consequent
elimination of the faster variables. I discuss here
for simplicity only the case /X»v1 (large Prandtl
number) for the RBI and v/D» 1 for the SDI, since
these are the cases investigated in all the experi-
ments published so far about instability transients,
except for the experiment performed on liquid
helium. " Under these assumptions the fast vari-
able is B(B' for the SDI), and the variable showing
critical slowing down is T(C for the SDI). In the
region very close to threshold (c « I), also the
dynamics of 4 (or 4') is fast in comparison with
that of T (or C), and therefore both B (or B') and
6 (or 6') can be adiabatically eliminated by put-
ting B=4=0.

The resulting dynamic equation for T is
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FIG. 3. Time evolution of the normalized temperature
gradient &/&~ starting from the initial condition ~(0)= Do
for three distinct values of e=(&0 —4 )/4; a=3 (dot-
dashed line), a= 7 (dashed line), and a=15 (full line).
The normalized time t' is defined as t' = (heal(/a )t.
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FIG. 4. Time evolution of the normalized convective
flux I = (h&/2h2l(6$ I, starting from the initial condition
I'(0) =10 for the same three values of e used in Fig. 3.

h h 'Xk'
2h,

(45)

Equation (45) is a Van der Pol equation, such as
the equation describing the dynamics near thresh-
old of electronic and optical oscillators. " The
solution of Eq. (45) is well known" and it will not
be discussed here. I simply note that the time
constant ~ for the decay of small deviations form
the steady state, as derived from Eq. (45), is r
=r,e ', where T, =(h,xk') '=0.047 a, /l(. The ob-
tained 7, is in good agreement with the theoretical
and experimental results reported in Ref. 17 for
the same boundary conditions discussed in this
paper. ""

The dynamics near threshold of the SDI is des-
cribed by the same Eq. (45) where T is substituted

by C, and X by D. The constant v', is given by 7',
= a'/h, k'a'D As noted in. Sec. II, the actual value
of ka depends on the geometry of the experiment,
and therefore r, has no universal numerical value
for the SDI. The only available SDI experimental
data for v' are those of Ref. 12, where it is found

ra= 0a2'/m' DThe comparison of this relation
with the theoretical formula gives ka = 0.7.

Slightly above. threshold, when-v' cannot be con-
sidered much larger than the characteristic evolu-
tion time of the temperature gradient which is
(Xh, /aa) ', it is not possible to eliminate adiabat-
ically d. The single condition B=0 leads to the
following pair of equations:

4 = -(h, /a') I-(hP /a')(6- d,,),
I= (2hP, k'/b, )(h- d, )I,

(46)

(47)

x = P (x xa), --—
P =hP(x —1),

(48)

(49}

where h=(2h, /h) ka'. For the RBI, ha=3. 117,

where I= —,'BT represents the convective heat flux
at the midplane of the. liquid layer. Note that, un-
der the assumption B=0, I is proportional to T'
and to B';

Of course, the same Eqs. (46) and (47) hold for
the SDI, with the substitution of 4' and D, to b, and

X, and with I= —,'BC representing the convective
mass flux.

By introducing the dimensionless variables t'
=X.(h, /a' )t, x= 6/h„and I'=Ih, /(hPd, ,), Eqs. (46)
and (47}become
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FIG. 5. Time evolution of the normalized convective
flux I' = (h&/2h~y&g I, for e = 3, with the initial conditions
I'(0) = 10 (full line), I'(0) = 10 {dashed line).

h, = 44.13, h, = 2.20, and theref ore h = 0.97. For
the SDI, h depends on the experimental parame-
ters. If I take km=0. 7, h, =10.91, and h, =1, I
obtain h= 0.09.

The evolutions of 4 and I have been obtained by
numerical computation" of Eqs. (48) and (49) with
the initial conditions A(0) = b,o and I(0)=I, , where
I,. is a small value simulating the noise which trig-
gers the onset of the instability. Some evolutions,
obtained for three distinct values of &, and for h
= 1 (RBI case) are shown in Figs. 8 and 4. The
most interesting and new feature of the transients
is the damped oscillatory approach to steady state
shown for not too small &. 'The curves relative to
large values of E are particularly striking because
the gradient 6 goes through a negative peak and
the convective flux has an overshoot several times
larger than the steady-state value.

It should be noted that the choice of I, does not
influence the shape of the transient, as long as
I, is much smaller than the steady-state value I,.
Indeed it is easy to see from Eqs. (46) and (47)
that I grows exponentially for short times with a
time constant r2(2 Phk' )e' Aredu. ction of I, by a
factor y is therefore simply equivalent to introduc-
ing a delay of 2rlny in the transient. An illustra-
tion of this effect is reported in Fig. 5. It is inter-
esting to note that a measurement of the time delay
of the transient may allow to evaluate the thermal-
noise contribution to the convective mode in the
system before the switching-on operation.

Some information about the damped oscillating
behavior can be gained by a linearization of Eqs.
(46) and (47) around the steady state. The associ-
ated characteristic equation possesses two com-

plex-conjugate roots when && a, . The threshold
for the appearance of oscillations is e, = h, /8h, k'a',
the expression of the period of the oscillations is

e = (2a'k'h h /m') ' '(a'/X)(e —e ) ' '
and the damping time of the oscillations is TD
= 2(xh, / ')-'

Few experiments have been performed on the
transient behavior of the RBI. The verification of
the theoretical evolutions requires a fast-switch-
ing technique, mhich mould be analogous to the
well-known Q switching of lasers. Fast means
that the uniform temperature gradient 60 must be
applied to the fluid layer in a time interval much
shorter than the rise time 7 of the convective flux.
Since the time constant for heat diffusion across
the layer is about v'„ in the usual experimental
configurations the switching is fast only in the re-
gion slightly above threshold where 0& E & 1. An
interesting method for preparing the system with
a large temperature gradient (b,,» 6,) and no
convective motion is that used by Sawada" who op-
erates at t= 0 a sudden flip of configuration from
g & & grad T to g ) ~ grad T.

Damped oscillatory transients have been experi-
mentally observed by Berge and Dubois, "and by
Samada. ' All the qualitative features are correct-
ly predicted by Eqs. (46) and (47). The empirical law

= 200& 0'~ + '0
08C

proposed in Ref. 16 is in good agreement with the
expression for 7'„, written above, taking into ac-
count that e, = 0.2 for the RBI case and that P = v/X
= 130 for that experiment.

The only reported study on SDI transients is that
of Ref. 12, where also damped oscillatory trans-
ients have been observed not too close to thresh-
old. Preliminary measurements of 7„,for the
SDI in the range 2& E & 8 are in agreement with the
predic ted power -lam dependence. "

V. LORENZ MODEL AND ANALOGY WITH THE LASER

The reduction of the hydrodynamic conservation
equations for a single-component system to a
simple set of three time-dependent equations is a
result which can already be found in the so-called
I orenz model of the RBI.'o Equations (17),(18),
and (26) can indeed be considered as a generaliza-
tion of the I,orenz equations to the case of non-
sinusoidal vertical dependence of the horizontally
averaged temperature and velocity. In fact, by
introducing the dimensionless variables

~'= I,Xu't,

X = (-,'h, )'~'a/h, Xk'a,

1'= (—'h )'~2T/ah



20 SINGLE-MODE DYNAMICS OF CONVECTIVE INSTABILITIES. . . 2201

Z = (~,—~)/d...
and the new constants P = (h~/h, )P and 5 = h, /h, k a',
the three equations become

X= P(X-Y),-
Y = —XZ —Y+ (z+ 1)X,

(50)

(51)

g =XV- bZ . (52)

The only difference between Eqs. (50)-(52) and the
Lorenz equations lies in the expressions for P and

b which contain the coefficients h&. These coeffi-
cients, as shown in Sec. II, depend on turn upon
v(z) and 8(z). The assumption made in the Lorenz
model that v(z) and 8(z) are sinusoidal is not con-
sistent with the boundary conditions actually im-
posed in real experiments. The treatment pres-
ented in this paper shows that a generalized Lor-
enz model describes correctly the region of regu-
lar convection of the RBI and can be equally well
applied to the SDI.

Interest in the Lorenz model has been so far due
to the fact that Lorenz equations seem to give a
randomly fluctuating time response when v' is lar-
ger than a threshold value a«. Such a behavior is
thought to be connected with the problem of turbu-
lence." The expression of E« is derived by li-
nearization of Eqs. (50)-(52) around the steady-
state solutions X= Y = + Vb&, Z = E. The resulting
characteristic equation possesses one real nega-
tive root and two complex-conjugate roots which
are pure imaginary if c = c«, where

e«=P(P+k+3)(P-5-1) '-1. (53}

Note that, if P is much larger than 1, g« =P.
Several RBI experiments performed in high-
Prandtl-number fluids have indeed shown the flow

begins to oscillate in time as z is increased above
a threhold value. ""The reported thresholds are
close to P. Such an agreement may be fortuitous
because the approximations used to derive Eqs.
(50}—(52} limit the validity of the treatment to e
smaller than P.

As noted by Haken, "the Lorenz equations are
identical to the Maxwell-Bloch equations which
describe the dynamics of a single-mode laser for
a resonant-field-atom interaction. The dimen-
sionless velocity X plays the role of the electric
field amplitude, F represents the atomic polari-
zation, and Z the population inversion. Analogies
among different instabilities-in the region very
close to threshold are now well established. '4 The
interesting feature of the analogy between the
Lorenz model of the RBI and the single-mode laser

'model is that it holds for arbitrary values of the

pump parameter, and not only for c «1.

The most common situation in real lasers is
that the relaxation time T, of the polarization is
much shorter than both the relaxation time T, of
the population inversion and the field decay time

Using the notation of Eqs. (50)—(52), this
means both P and b much smaller than 1.'4 In
such a case, it is usual to eliminate adiabatically
the polarization. Also the case v,'«T„T, has re-
ceived considerable attention in quantum op-
tics."'" The adiabatic elimination of the "fast"
variable X allows to derive the equations describ-
ing superradiant pulses. The approximation
B= 0 used to obtain Eqs. (46) and (47) clearly cor-
responds to the superradiant case. The analogy
suggests the possibility of observing giant pulses
in the transient regime of convective instabilities
by performing the experiment with a single-com-
ponent fluid having a large Prandtl number, or a
two-component liquid having a large v/D ratio.
When e is much larger than 1 (but still smaller
than P), the "superradiant" pulse in the convec-
tive flux has a temporal width r = (h,Xk'e) ', and a
peak value

I =h e'/2Xk'a'6 .
An other suggestion stemming from the analogy

with the laser is the possibility of studying pre-
transitional phenomena in the homogeneous reg-
ime preceding the convective transition. In analo-
gy to phase transitions in thermal equilibrium,
theory predicts an increase in the magnitude of
thermally excited fluctuations of the unstable
modes. " In principle, the experiment should run
as follows. The liquid layer is first prepared at
the state near threshold (e slightly below to zero)
whose fluctuations one wants to measure. At t = 0'
the temperature difference across the layer is
suddenly brought to a value 4T well above thresh-
old (e& 1). The system evolves toward the new

steady state with a transient whose shape depends
only on 4T. The time lag of the transient depends,
however, on' the fluctuation present at t = 0, as
discussed in Sec. IV and shown in Fig. 5. The pro-
posed experiment is of course a statistical exper-
iment. " For each initial position, the observation
of the transient should be repeated a sufficient
number of times to obtain a significant average.

VI. CONCLUDING REMARKS

I have discussed in this paper the steady state
and the dynamics of both the Rayleigh-Benard and

'

the Soret-driven instabilities. The main assump-
tions used to derive the basic equations are (i) the
usual Boussinesq-Oberbeck model, (ii) two-di-
mensional rolls with sinusoidal horizontal depen-
dence and with a wavelength independent of rh, T,
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and (iii) X/D» 1 for the SDI. The numerical co-
stants are calculated by assuming rigid-rigid
boundary and fixed-plate temperatures.

A quantitative theoretical explanation is found
to recent experimental results, such as the sat-
uration of the horizontally averaged concentration
gradient at@ = 0 in the SDI, the appearance of re-
laxation oscillations in RBI and SDI transients and
the dependence of the oscillation period on 4T.
Several other features of the theoretical results
need an experimental verification.

Some experiment is suggested by the analogy
with the laser. In particular, the statistical mea-
surement of the time jitter of the convective-in-
stability transient appears as the only practical

way to obtain information on pretransitional fluc-
tuations of the unstable mode. The main difficulty
in such an experiment is probably to get rid of all
the external disturbances which might obscure the
small intrinsic fluctuations one wishes to observe.

ACKNOWLEDGMENTS

Thanks are due to M. Giglio for many illuminat-
ing discussions, and to the Centro Informazioni
Studi Esperienze Computer Center for help in the
numerical computations with the GOSPEL program.

This work was supported by Consiglio Nazionale
delle Ricerche-Centro Informazioni Studi Esper-
ienze Contract No. 78.00901.02.

*Researcher from the Italian National Research Council
{CNR).

~V. Degiorgio, Phys. Rev. Lett. 41, 1293 {1978).
2S. Chandrasekhar, Hydrodynamic and Hydromagneti c

Stability (Oxford University, London, 1961), Chap. II.
3E. L. Koschmieder, Adv. Chem. Phys. 26, 177 (1974).
4C. Normand, Y. Pomeau, and M. G. Velarde, Rev. Mod.

Phys. 49, 581 (1977).
5F. H. Busse, Rep. Prog. Phys, 41, 1929 (1978).
6G. Z. Gershuni and E. M. Zhukhovitskii, Prikl. Mat.

Mech. (U.S.S.H.) 27, 1197 (1963); D. T. J. Hurle and
E. Jakeman, J. Fluid. Mech. 47 667 (1971).

R. S. Schechter, I. Prigogine, and R. Hamm, Phys.
Fluids 15, 379 (1972).

M. G. Velarde and R. S. Schechter, Phys. Fluids 15,
1707 (1972).

S. R. De Groot and P. Mazur, Non-Equilibrium Thermo-
dynamics (North-Holland, Amsterdam, 1962), Chaps.
7, 8, 11.
A. Sparasci and J. H. V. Tyrrell, J. Chem. Soc. Fara-
day I, vl, 42 (1975).
M. Giglio and A. Vendramini, Opt. Commun. 20, 438
(19vv).
M. Giglio and Vendramini, Phys. Rev. Lett. 39, 1014
(19vv).
W. R. Lamb, Phys. Rev. 134, A1429 (1964); see also
H. Haken and H. Sauermann, Z. Phys. 176, 47 (1963),

~ H. Haken, Synergetics (Springer-Verlag, Berlin, 1978).
~5J. T. Stuart, J. Fluid Mech. 4, 1 (1958).
6P. Berge and M. Dubois, Opt. Commun. 19, 129 (1976).
J.Wesfreid, Y. Pomeau, M. Dubois, C. Normand, and
P. Berge, J. Phys. (Paris) 39, 725 (1978).
B.B.Behringer and G. Ahlers, Phys. Lett. 62A, 329
(19vv).

~~Y. Sawada, Phys. Lett. 65A, 5 (1978).
oE. N. Lorenz, J. Atmos. Sci. 20, 130 (1963); J. B. Mc-
Laughlin and P. V, Martin, Phys. Rev. A 12, 186
(19V5).
H. Haken, Phys. Lett. 53A, 77 (1977).
R.. Bonifacio and P. Schwendimann, Lett. Nuovo Ci-
ment 3, 509 (19V0).
Statistical measurements on single-mode laser trans-
ients are reported by F. T. Arecchi, V. Degiorgio,
and B.Querzola fPhys. Rev. Lett. 19, 1168 (1967)] and

F. T. Arecchi and V. Degiorgio t. Phys. Rev. A 3, 1108
(19V1)].

24A. Schliiter, D. Lortz, and F. H. Busse, J. Fluid
Mech. 23, 129 (1965).
E; L. Koschmieder and S. G. Pallas, Int. J.Heat Mass
Transfer 17, 991 (1974).
M. Dubois and P. Berge, J. Fluid Mech. 85, 641 (1978).
F. H. Busse, J. Math. Phys. 46, 140 (1967).
Alaserlike approach to the RBI, limited to e «1,
which leads to Eq. (45) and allows a thorough discus-
sion of fluctuations is discussed by H. Graham, in
fluctuations, Instabilities, and Phase Transitions, edi-
ted by T. Riste (Plenum, New York, 1975), p. 215.

~~A measurements of 7' in the pretransitional region has
been recently reported by C. Allain, H. Z. Cummins,
and P. Lallemand [J. Phys. Lett. (Paris) 39, L4V3
(19V8)].
The time constant 70 relative to the free-free boundary
condition is calculated for the RBI by B. Graham (see
Ref. 28) and by H. N. W. Lekkerkerker and J. P. Boon
[Phys. Rev. A 10, 1355 (1974)]; for the SDI, see
H. N. W. Lekkerkerker and W. G. Laidlaw, J. Phys.
(Paris) 38, 1 (1977).
A new interactive program, GoseEI. , developed by the
Centro Informazioni Studi Esperienze computer center,
was used. See A. Brini, R Ferrari, T. Montagna,
M. Montagni, G. Perna, and J. Szanto, in International
Computing Symposium 1977, edited by E. Morlet and
D. Ribbens (North-Holland, Amsterdam, 1977) p. 271.
M. Giglio and A. Vendramini (private communication).

33G. E. Willis and J.W. Deardorff, J. Fluid Mech. 44,
661 (1970); F. H. Busse and J. A. Whitehead, ibid.
66, 6V (19V4).

34Note that b cannot be larger than 1 for the laser mo-
del.
See, for instance, R. Bonifacio, M. Gronchi, L. A.
Lugiato, and A. M. Ricca, in Coherence and Quantum
Optics IV, edited by L. Mandel and E. Wolf (Plenum,
New York, 1978), p. 939, and references quoted there-
in; V, Degiorgio, Opt. Commun. 2, 362 (1971).

6V. M. Zaitsev and M. I.. Shliomis, Sov. Phys. JETP
32, 866 (1971); see also the papers mentioned in Refs.
28 and 29.


