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Mean-spherical model for soft potentials: The hard core revealed as a perturbation
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The mean-spherical approximation for fluids is extended to treat the case of dense systems interacting via

soft potentials. The extension takes the form of a generalized statement concerning the behavior of the
direct-correlation function c(r) and the radial-distribution function g(r). From a detailed analysis that views

the hard-core portion of a potential as a perturbation on the whole, a specific model is proposed which

possesses analytic solutions for both Coulomb and Yukawa potentials, in addition to certain other
remarkable properties, A variational principle for the model leads to a relatively simple method for
obtaining numerical solutions.

I. INTRODUCTION

h(r)=c(r)+p /dr h((F —i'()c(''). (2)

Here g(r) is the radial-distribution function and

c(r) the direct-correlation function for which (2)
is the defining relation.

The mean-spherical approximation is not a sat-
isfactory model for low-density fluids, since it
normally fails to give the correct value for the
second virial coefficient. An exception to this,
however, is the system of hard spheres, in which
the MSA is equivalent to the Percus-Yevick (PY)
approximation. Another exception is the dense
Coulomb gas [u(r) -r l], in which the MSA gives
the known Debye-HGckel limit in a first-order
"inverse range" expansion: it also leads to re-
sults that satisfy the Stillinger-Lovett conditions.
The major interest in the model, however, can be
traced to the fact that it yields interesting ana-
lytic solutions for a fairly wide class of systems,
provided they possess in their interparticle po-
tentials the fundamental hard-core property rep-
resented in (la). On the other hand, the evident
disadvantage of the model has been an apparent
lack of any systematic basis for its extension to
non-hard-core potentials. The purpose of this
paper is to provide such a basis, which is being
proposed more for the qualitative insight it gives

The mean-spherical approximation (MSA) has
been applied' almost exclusively to dense liquids
whose intermolecular potentials u(r) possess a
hard co~e of range O'. For such potentials the MSA
is specified by the equations

g(r) = 1+h(r) =0, r & o,
c(r)+Pu(r) =0, r & o,

where P = I/k~T, together with the Ornstein-
Zernike (OZ) relation, which for a system of aver-
age density p is written

to the theory of liquid structure than for its quan-
titative numerical predictions. Though founded
on a more general statement of the MSA (to be
given in Sec. II), this basis has a practical real-
ization that is very similar. In particular, a ver-
sion applicable to soft potentials is introduced in
Sec. II. It is simply a particular limiting form of
the usual MSA. We refer to it here as the soft-
mean-spherical approximation and in Sec. III com-
pare it to the modified hypernetted-chain (HNC)
approach. ' Some thermodynamic results are con-
sidered in Sec. IV and a variational principle for
the model is given in Sec. V. Finally, applications
and attendant procedures are given in Sec. VI for
the one-component plasma (OCP), and some con-
clusions are drawn in Sec. VII.

II. SOFT-MEAN-SPHERICAL APPROXIMATION

Analysis of a large body of computer simulation
data compiled for a variety of liquids with dis-
parate but mainly soft interparticle potentials sug-
gests that the quantity

p drgx c x +Pux

is relatively small in the'dense-fluid regime.
More precisely, if p is the pressure satisfying

P — = 1 —p ) dl c('r)Pp

Bp
(3)

and U/N is the internal energy per particle given
by'

()())I&)= lv f&")).(~))) (~)"
then we have the exact relation

(4)

c(0)= —P —
~

+ 2 —— —p dry(r)[c(r) + Pu(r)] .Rp& pU

aq), iv
(5)

The evidences for dense fluids then suggests that
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p drgr cr + ur «cO (6)

and that from the, standpoint of its thermodynamic
consequences it is plausible to assume

p drgr t. r +Pur =O.

[Observe that for the one-component plasma, for
which (5) remains true, the presence of the neces-
sary compensating background requires us to re-
place c(x) in (8) by c(r)+ Pu(x) and g(r) in (4} by
h(r).]

Given (7), it appears that a more general state-
ment incorporating the spirit of the MSA can be
summarized by

g(r) = 1+h(r) =0, (r & v),

mately by the location of the leading edge of the
principal peak of g(x) [e.g. , g(&r,«) -5 «1]. Evi-
dently if u(r) is now augmented by a genuine hard
core whose diameter v is less that v,«, then there
can be little subsequent change either in the struc-
ture of the system or in its thermodynamics. An

example of this can be seen in Fig. 1, where the
result of introducing a hard core into a high-den-

0

-20

dr g(r)[c(r) + Pu(r)] =0, -60

c „(0)= —p(ap/aP), + 2(pu/X) (8}

must be reasonably well satisfied. We may com-
pare (8) with the condition governing the range of
applicability of the usual MSA, namely

these being regarded, however, simply as con-
straints that might aid in establishing a wider
class of models of the MSA type, By themselves
1(a}and 1(c) are, of course, insufficient to de-
termine c(r) andy(r), For this purpose additional
relationships are needed, one being, for example,
statement 1(b), which clearly satisfies 1(c). More
generally, however, it can be seen that within any
class of models satisfying 1(a) and 1(c) the struc-
tural property c(0) [and indeed c(x) for that small
range of x where g(r) is practically zero] is de-
termined almost entirely by thermodynamic func-
tions. These models will fall within a general-
ized-mean-spherical approximation (GMSA) for
which

-80

-IOO—

0-

g (r)

P(8P/8p), » 2(PUIN) . (9)

Condition (9) is known to be compatible with those
u(r)'s characterized beyond a hard core by either
a weak long-range potential or by a stronger po-
tential but with restricted range. For the former
the long-range part has only a minor effect on the
structure of the underlying hard-core system. The
application of the MSA is then very much along the
lines of thermodynamic perturbation theory.

What we are seeking, however, is an extension of
the MSA approach for non-hard-sphere systems
in which the potential is not weak and for which (9)
is not satisfied. Towards this end we first note
that at high densities such systems still behave as
if their pair potentials actually possess an effec-
tive hard core of diameter a,f f, defined approxi-

0
0 0.7 l.4 2.l

I

2.8 3.5
f' 0

FIG. 1. Pair-distribution function g(r) and direct-cor-
relation function c(r) for the OCP at I'= 70 via various
choices of the bridge function 5(r) as employed in the
modified HNC equation. Case 1 (dashed line) corresponds
to b(r) =0 (i.e., pure HNC); Case 2 (solid line) corre-
sponds to SMSA, Case 3 (dotted line) corresponds to
b (r & 1.4) =~, b (r &1.4) = 0, and Case 4 (dot-dashed line)
corresponds to b(r) =bHS(r; g=0.4) and actually repro-
duces quite weQ the Monte Carlo results for the OCP at
2=70. On the scale of this plot, c(r) for all cases con-
sidered above is indistinguishable from —1"/r for r &1.5.
Case 3 features a jump discontinuity of about 1 for g(r)

. and c(r), which is barely detectable on the scale of c(r).
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sity Coulomb system is displayed. Note in par-
ticular the small change in c(r}, an important point
when we realize (as emphasized above) that c(0)
reflects the thermodynamics. (To appreciate the
difference between this situation and the case in
which the tail of the potential serves as a pertur-
bation, see Fig. 29 of Ref. 1.) Thus even though
o may in practice be quite close to 0,«, we are
clearly approaching a physical picture in which
the addition of an "interior" hard core reveals it-
self only as a rather mild perturbation. With this
in mind we can now consider a possible extension
of the MSA for soft Potentials as follows:

The solutions to the MSA usua, lly lead to jump
discontinuities across r =o in both g(r) and c(r}
These depend on o, Pu, and p, but through a care-
ful choice of o, g(r) can in fact be forced to be
continuous (though not in its first derivative); that
is, there is a choice for which the solutions to the
MSA give

(10)

If this choice is now regarded as the effective hard-
sphere diameter discussed above, then by the ar-
gument just given, the addition of any further in-
terior hard core produces only minor corrections
to the g already obtained. Accordingly this g can
then be considered an acceptable solution to the
MSA for the soft potential. We therefore define
the soft-mean-spherical approximation (SMSA) as
a model in which c(r) = —Pu(r) and for which g(r)
is continuous. This is a limiting form of the usual
MSA, and as such the general statement (7) is
satisfied. To carry out the limiting process in
practice we need only expand c(r) around r =0 in
powers of x and ensure that the coefficients of the
term linear in r vanishes. For, as noted by Gil-
lan et al. , this coefficient is proportional to the
square of the jump discontinuity in g across the
hard core. As will become clear later, solutions
for g having this character are not guaranteed,
but if a solution for the SMSA does exist and yields
a physically acceptable 0', then this solution should
be very similar to results flowing from the HNC
approximation. In fact there are analytic solutions
of the one-component plasma and also for the
Yukawa potential, both of which can be extended
to the limit of low densities (o -0). An interesting
potential in the same general class4 is u(r) -erfc
(ar)/r, the study of which by simulation techniques
can be of some considerable benefit in assessing
Monte Carlo results for the OCP via the Ewald
image method. ' Analytic solution of the SMSA for
the same potential will also be particularly use-
ful.

To complete this section we note that the line of
argument being pursued here is not unlike that
which led Percus and Yevick" to the MSA. Their
Eq. (3.14) in Ref. 11 is a global statement similar
to Eq. (7) above. On the other hand, their goal
was to calculate the structure of a system (whose
pair interaction contained a hard-core pa, rt) by
an approximation method suitable for a sneak' long-
ranged tail. In contrast to this, we are. concerned
with the problem of calculating the structure of
soft-potential systems. As we shall see in Sec. III,
the purpose in introducing the hard core at all is
ultimately just a device for selecting the physical-
ly relevant solutions of the SMSA.

III. MEAN-SPHERICAL AND HYPERNETTED-CHAIN

APPROACHES

If we take the view that we have a system with a
hard core, but that the physical conditions are
such that the hard core is not playing a major role,
then we lack the important support of the random-
phase argument so essential to the usual applica-
tion of the MSA. It necessarily follows that any
approximations of the mean-spherical character
must be established by a rather different approach.
To this end we consider the familiar expansion of
the total correlation function h(r), given by the
diagrammatic method':

g(r) = exp[ —Pu(r) + 8(r) —b(r)],
where

(12)

and b(r) (the bridge function) is the negative of the
sum of all elementary diagrams. The hypernetted-
chain approximation takes b(r) =-0, so that (11),
(12), and (2) (the OZ relation) together provide an
integral equation that can be iteratively solved for
a given potential u(r). To. make a. comparison with
the MSA, we observe that (11), (12}, and (1) also
imply a specific choice for the bridge function,
namely

(13)

Now, in the SMSA limit Eqs. 1(a,}, 1(c), and (10)
can still be satisfied by a choice of b(r) of the form
(13). For later use, however, we find it conven-
ient to replace (13) by the single statement

bsuss =@(r) lng(r) ~

which formally continues the definition of b into
the region where g(r) vanishes. (This extension
is possible because solutions with the SMSA char-
acter possess a region where 1ng(r) diverges neg-
atively. ) The utility of (14) lies in the following:
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Any statement on the behavior of the bridge func-
tion is entirely equivalent to the specification of
an effective interparticle potential for use in a
hypernetted-chain approach. We may refer to
this type of presentation of the problem as a mod-
ified HNC scheme. It is apparent that the SMSA
introduced above can therefore be cast into a well-
defined integral equation method. For soft poten-
tials possessing Fourier transforms (the OCP pro-
vides a clear example) this integral equation has
the interesting feature that it can display takeo

classes of solutions that branch from the low-den-
sity limit. One is the "Debye-Huckel" class char-
acterized by c(r) = —pu(r) for all r and g(r) & 0 for
small x. The other has the desired high-density
behavior in g(r), namely a range where g(r) =—0
which is made self-consistently possible by virtue
of.the corresponding behavior in b(r). For these
solutions (14) is satisfied. A numerical method
for finding the desired solution will be based on a
variational principle of the SMSA (see Sec. V).

For numerical treatment the SMSA [Eq. (14)]
should still be viewed in the context of the limit
g(r =c') =0 imposed on the modified HNC equation
with the bridge function of Eq. (13). One purpose
of introducing a hard core is that it mill guarantee
the selection of the correct branch. Otherwise the
hard core is simply an intermediary and, once the
branch is selected, can be dispensed with. Ob-
serve also that the Percus-Yevick equation is
characterized within the modified HNC scheme by
the choice

b~r(r) =g(r) —1 —Ir[g(r) —[c(r) + pu(r)],

and as is known can be cast into a well-defined
diagrammatic expansion. The non- Debye- Huckel
branch of the SMSA [Eq. (14)] cannot however be
cast into a diagrammatic expansion.

As with all the integral equations introduced so
far, it is not possible to say~+~iori whether any

physically acceptable solution mull in fact emerge
for an arbitrary potential. But in contrast to other
methods, we can show that the SMSA solution (pro-
vided of course it exists) has very interesting phys-
ical features for the class of potentials u(r) whose
Fourier transforms also exist.

system can be written'3

f OO

pp. '"=
p I

dX Jt drg(r, z)pu(r) .
40 0

(15)

Let y(r, X) be the difference between pyu(r) (the
potential) and the potential of mean force for scal-
ing g. Then

g(r, X) = exp[ —pyu(r) +y(r, y)]

and according to the diagrammatic expansion

y(r, x) =h(r, x) —c(r, x) —b(r, g),

(16)

where again b(r, y) is the negative of the sum of
all elementary graphs. In these equations we have
g(r, A = 0) = 1, h(r, d[ = 0) = 0, c(r, X = 0) = 0, and

b(r, x =0)=0. It is also understood. that g(r, y= I)
=g(r), h(r, x = 1)= h(r), and so on.

We now differentiate (16) with respect to X and
obtain

a a
pu(r)g(r, z) = g(r,—X—) +g(r, X)—y(r, z), (18)

which we insert into (15). With the aid of (17) we
then find that

1

dp= —p ,
"c(r')dr+ p dh fdrh(r, h)

0

x—[h(r, x) —c(r, x)]
~X

a—p dX drg(r, y) —b(r, y),
0

(19)

which is a simple generalization of

which in turn is a well-known' ' expression for
the excess chemical potential in HNC. We can
therefore repeat the standard manipulations' ' ' on
the first three terms of (19) to arrive at

dp"= -p c(r)dr+-,'p fdrh(r)[h(r) —c(r)]

dc" =:
—pf c(r)dr + p dI fdrh(r, h)

0

8
&&—[h(r, z) —c(r, x)],

IV. THERMODYNAMIC FUNCTIONS IN SOFT-MEAN-
SPHERICAL APPROXIMATION

a—p dx I drg(r) —b(r, x). (20)

We consider a system of particles interacting
via a pair potential that is regular (i.e. , lacks a
hard core). If the potential for one additional par-
ticle is scaled by X (0 & X & 1) and g(r, X) = 1+h(r, X)

is the pair-distribution function relative to this
particular particle when the potential is thus

scaled, then the excess chemical potential for the

In the HNC approximation (b = 0) the chemical po-
tential can be calculated directly; it is not neces-
sary to integrate the energy equation of state.
Notice that for any approximation expression (20)
will be equivalent to the energy equation of state.

We now write (20) in a form that is slightly more
general and will later permit us to make an appli-
cation to the OCP. We use (3) and (4) (or their
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equivalents for the OCP) and find after a little
manipulation that

is the Wigner-Seitz radius for the plasma and

I'=(Ze} P/a (27)

Pp'*= —P — —I +—-- g(r)[c(r)+ Pu(r)]dr
PU p"'=2

ap ~ N 2J is the standard plasma parameter, then in terms
of I

r — d (r)dr-p dz jdrd(r, z)—)(r, z),
0 (PF'"/N) . (28)

(21)

which so far remains exact. We next consider the
consequences in (21) of the approximations flowing
from statement (14) of the SMSA. [It must be noted
that in. any approximate theroy P(BP/Bp) r and (PU/N)
in (21) should be taken from the compressibility
and energy equations of state, respectively. ]

For the SMSA we take (14) (basically the Debye-
Hiickel statement, but applied to the dense branch).
In a scaled form it reads

Equations (8), (25), and (28) then constitute a
compact and relatively simple set of equations
connecting the four quantities (PU/N), (PF'"/N),
P((}P/(}P)r, and c(0), and are useful, notwithstand-
ing the relative simplicity of the analytic expres-
sions for the OCP.

V. VARIATIONAL APPROACH TO SMSA

We start with the usual coupling-constant ex-
pression for the excess free energy":

b~«„(r, x) =h(r, X) —1n)I) (r, y), (22}

which is compatible with (7). We insert this into
(21) and, using (7), we obtain

~P P~
p

ex
pSMSA (23)

a relation which holds, however, only for potentials
that possess Fourier transforms. ' One such is
the Coulomb interaction [u(r) -r '], for which, as
is well known,

pF'*/N =-,'p
~~ dr g(r, X)pu(r),

where g(r, X) is the radial-distribution function for
isochoric systems of particles in which the pair
potential is Xu(r). Following the procedure of
Morita and Hiroike'l and using Eq. (14) (the SMSA
statement on the bridge function), we obtain

(PF /N)s«d gp ) t c(r) d 1 +
J 2p (2v}3

PP/p —1 = ,P U/N . — (24)
dk J(pc(k) + in[1 —pc(k)]}, (30)

Thus for the OCP, (23} can be rewritten in terms
of the Helmholtz free energy:

a = (3/4')'/' (26)

This last expression demonstrates a unique pro-
perty of the model: The energy equation of state.
and the compressibility equation of state are each
completely given in terms of the other. It is not
necessary to know any structural details of the
solution. Further, if

an approximate form for the free energy equivalent
to that obtained by integrating the energy equation
of state. In (30), c(k) is the Fourier transform of
the direct correlation function c(r). From (29) we
can determine the excess entropy:

(S"/))d ) = dF "/N + —Jdrd—(r)dr(r)dr . ($1)

But notice that the basic assumption of the gen-
eralized-mean-spherical approximation [Eq. (8)]
allows us to write an approximate form for the
excess entropy:

(S'*/Nks)s«„——--,'p
~t dr h(r)c(r) ——

3 Jtdk(pc(k) + in[1 -pc(k)]}
2p (2v)

,
[dk ph(k) pc(k) + t dk(pc(k) + in[1 —pc(k)] }(

.1 1

2p (2v) )

(32)

%e now observe that a functional derivative,

8(S'"/Nk, )
f)c(k)

on the right-hand side of (32) will vanish, provided

f

h and c are connected by

ph(k) =pc(k)/[1 —pc(k)] .
But (33) is precisely the Fourier transform of the
Ornstein-Zernike relation [Eq. (2)]. It therefore
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follows that, though intrinsically approximate, the
entropy functional (32) provides an expression for
the excess entropy of the system (via the energy
equation) that is exact for the SMSA model. The
exact solution for the corresponding c(r) is that
direct-correlation function maximizing the entropy
functional under the restrictions of the model.

There are two possibilities for utilizing a vari-.
ational procedure in order to solve the SMSA. The
first is based on the fact that S'* given by Eq. (32)
is variational with respect to c at fixed h, and the
method of solution is valid for any choice of c
for r & o (for exa'mple, c satisfying dc(r)/dr
= —Pg(r)du(r)/dr, as in Ref. 18). It proceeds as
follows": (i) Choose a value for o and start with
an assumed form for c(r), for example

c(r) = c)(r) = —Pu(r), (r & o },
c(r) =c&(r) =a+ao(1 —r/o')

+(I -r/o) Q a+„(2r/o —1), (r & o),
n=1

core. ' Accordingly the coefficients a„appearing
in (30} can be determined by the condition

plex

BQ„
—0, n —0, 1)2, .. . . (38)

Observe that since the function c&(r) is expected
to be a smooth function (and one that is not far
from being linear), we can expect that in a prac-
tical case a modest set of (a„}(say five) will be
quite sufficient. The existence of an analytic so-
lution of the MSA for the Coulomb potential offers
an opportunity to check both the validity of these
numerical procedures and their utility.

VI. APPLICATION TO THE ONE-COMPONENT PLASMA

The analytic solution of the MSA for the Coulomb
potential (i.e., a system of charged hard spheres
in a neutralizing background) is given paramet-
rically in terms of the packing function g =, -'7t po',
where o is the hard-core diameter. To obtain the
SMSA limit it is only necessary to set to zero the
coefficient of the term linear in x in the xpansion
of c(r) for r & o. Accordingly if we define

where the (a„}are all variational parameters and

the P„are Legendre polynomials. The parameter
a is fixed by requiring c(r) to be continuous at r
=o. (ii) Calculate the Fourier transform c(k) of
(34) and use the Ornstein-Zernike relation to cal-
culate the corresponding h(k). Substitute c(k) and

h(k) into Eq. (32) and determine the new values of

a„ from the condition
and

(1+2R)' (I +-,'R}24']
~2(I -n)' (I+2n)' &

~t(1+-', q)
& (I n)'-

o. = K'/24@,

(40)

(41}
plex

Ba„
Oy n=0, 1, o ~ ~ (35)

aoith h(k) held fixed. With the new set of coeffi
cients, a new h(k) is determined and (35) is solved
again. The procedure is iterated until self-con-
sistency is attained. Experience gained with, for
example, the HNC equation has shown that the
iteration will require-a "mixing" procedure in or-
der to ensure convergence. Thus at the Eth iter-
ation

h,"(k) =yh,",
,(k) + (1 -y)h;"i(k), (0 ( y & 1), (36)

(iii) Now change the value of o and repeat the steps
above until

g(r) = 0, r & o,
g(r) =0, r =v+0,
g(r) & 0, r &, o

to the desired numerical accuracy.
The second method takes advantage of the fact

that the SMSA is a limiting form of the MSA and
thus F'" of Eq. (30) is stationary with respect to
small changes of c(r) for r confined within the

then in terms of these we have the SMSA solution
for the corresponding equivalent plasma param-
eter,

r = 2~q'~3.

Further

(42)

N
= —HI+ n Sn')a —(1—+ ,'n)'"~~j— (43)

(1+ 2q)' Q' (1+q)QK (5+ r)')K'
(1 —r])' 4(1 —q)' 12' 60q

Finally

8(sp/sp), = 2(SU/N) —c(0) .

(44)

(45)

The energies given by (43} can be represented
exceedingly well by the interpolation"

PU/'N = -0.9005I'+ 0.299Vr'"+ 0.000V (46)

which for I'&1 has an accuracy of better than
0.1/p. For large I, on the other hand, the asymp-
totic form of the analytic solution gives
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PU/N=al + bl"'~'+ c, (48)

then the solutions of (8), (25), and (28) are readily
obtained:

pF'*/N= aI'+ 2bI'~'+ c lnI" + d, (49)

c(0) = —,aI' ——'bI'~' —2clnI'+ (—", c —2d ——,'), (50)

PU/X= 0.9r+-,'v3r'" —".,

which, although only a two-term result, is actually
in remarkable agreement with the results of the
complete expansion for I' values as low as I -1.
It follows that if we take the energy to have the
form

an effective potential, we then may expect that so
long as two different theories diverge from each
other only in a statement governing the lorg xarge-
nature of b(r), the consequent differences between
their respective results must be quite small. It
follows that the emphasis will focus rather natu-
ra. lly on the short-range nature of b(r), especia. lly
its behavior in the region of x corresponding to the
first peak of g(r). But it is in just this region that
we find in the SMSA a rather weak "potential"
[i.e. , b(r), since the hard core is playing no role]
that indeed shifts the HNC [b(r) =—0] results in the
right directions, as we expect (see Fig. 1).

VII. CONCLUSION

p — = —'aI" +-'bl '~'+ 2c lnI'+ (-&4c+ 2d+ —').8

Qp
3 3 Y 3

T

(51)

The values of a and b corresponding to (47) then
give in particular

c(0) = 1.2r--,'vSr'~'+ (52)

p(ap/sp), = -0.8r +'43 r'" —.. . . (53)

In general the Ocp energies given by the SMSA-
are in good agreement with the Monte Carlo (MC)
results. But from (25) we then see that the re-
quirements of thermodynamic consistency must be
badly violated [since we expect for large I' that
p(BP/sp) r- —0.4I']. . It is a unique property of the
SMSA model that knowledge of its equation of state
alone enables us to draw such a conclusion. It is
not necessary to appeal to any details of the solu-
tion.

Finally it is instructive to compare the SMSA and
HNC results" for the OCP, particularly at I «1.
As a rule, the two solutions give nearly identical
results for nearly all quantities of interest, but
particularly for (pU/N), p(sp/a p) ~, and c(0). In
comparison with HNC, however, the SMSA results
are slightly shifted tozvaxd the Mc data. This ob-
servation suggests an interesting possibility for
constructing a crucial test of a general point made~

in the context of the modified HNC scheme: It has
been stated that since b(r) enters this scheme as

A common approach in the theory of classical
fluids has been to apply perturbation theory from a
hard sjhere-reference system for all potentials
that possess a hard-core part. It is clear from
the discussion in the present paper that the phys-
ical role of the hard-core part of the potential has
not always been interpreted correctly. It is true
that the gross structure of dense fluids is deter-
mined by excluded volume effects and, for that
matter, that all g(r)' s of dense fluids look very
much the same. (The proper context of incorpora-
ting this first-order universality of g(r) is, how-
ever, provided by the statement of universality of
the bridge functions. 4) But this need not imply that
the hard-core part of the potential will always
serve as a good reference system. To paraphrase
the statement made at the end of Ref. 6, a suc-
cessful perturbation theory in the presence of
strong Coulomb interactions can be obtained only
if the hard-core part will serve as a perturbation.
We see here a systematic approach to this situa-
tion.
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