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Energy-transfer equations for a test particle in a fully ionized plasma are presented. The charged particles
interact via Lienard-Wiechert potentials and the dominant contribution to 'the scatterings are from small-
angle binary collisions. Asymptotic expansions of the energy rate equations are presented for all cases where
either the test or the field particles or both are relativistic. These asymptotic equations are then used to
derive equations determining rates of equipartition of energy, from which appropriate equipartition times are
deduced. This work represents a relativistic generalization of nonrelativistic binary-collision Coulomb
scattering.

I. INTRODUCTION

The study of the rate of energy loss resulting
from a successive series of binary collisions
between particles interacting via an inverse-
square-law force has a long and outstanding his-
tory. Landau' first calculated the rate of energy
loss of a. charged test particle in a. fully ionized
nonrelativistic plasma. Since then this result has
been reproduced by many authors, notably Spit-
zer, '. Longmire, ' along with Butler and Bucking-
ham. ' In all of these studies the Coulomb loga-
rithm factor lnA, arising from the predominantly
large number of small-angle scattering events
that occur in Coulomb scattering, was treated as
a, constant. One of us' studied in detail the re-
sulting-structure of the energy-loss equations
when the correct velocity dependence of the lnA
factor is taken into account. In the corresponding
gravitational case, Chandrasekar' derived the
same energy-transfer equations in his classic
studies of stellar dynamics with the only difference
in the results being that the Coulomb coupling
constant is replaced by the gravitational coupling
constant.

'fhe discussion of Coulomb binary collisions
presented in these studies was confined to a non-
relativistic treatment of the problem. This paper
presents the relativistic generalization of Coulomb
binary collisions in a fully ionized plasma. We
reformulate the entire problem in a relativistic
context. 'The rate of energy loss of a test particle
is calculated in the general ease where the test

particie and/or the field (plasma) particie are
relativistic. 'The exact expression for the rate of
energy loss is obtained. We then study various
physically interesting regions where the appro-
priate asymptotic expansions can be made.

The relativistic rate of energy transfer is of
importance for a, relativistic plasma for the rate
of binary-collision energy loss determines the
efficiency of heating the plasma. by means of elastic
scatterings. Furthermore, under relativistic
conditions all cha.raeteristic relaxation times a,nd
other important quantities that relate to energy
and momentum transfer must be calculated re-
lativi stic ally.

'The relativistic ealeulations presented here have
relevant physical applications for plasma. in the
laboratory as well as in astrophysics. In parti-
cular, for thermonuclea, r-plasma, where the
temperature T~ 10' K, the electrons must be
considered relativistic. Currently, in laboratory
plasmas very intense electron beams are being
employed' to heat a fully ionized plasma —hopefully
to thermonuclear temperatures. While the cou-
pling between such relativistic electron beams and
plasmas of thermonuclear interest via, binary
collisions is relatively weak compared to certain
collective interactions, there is nonetheless some
binary-collision heating. Also, the characteristic
energy relaxation times here must be obtained
from relativistic calculations such as those given
in this paper.

'There are also many problems in plasma astro-
physics where the charged-particle scatterings
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should be treated relativistically. Relativistic
charged particles and their interaction with a
plasma are important in explaining various phe-
nomena associated with galactic nuclei, ' radio
galaxies, ' quasars, ' and pulsars. " The pro-
pagation of cosmic rays in intergalactic space
along with the specific questions concerning the
detailed intrinsic structure of the cosmic rays
themselves are further examples of important
problems in relativistic plasma astrophysics. "

Besides the practical value for plasma physics,
the calculations given here are.of importance in
relativistic kinetic theory. In the nonrelativistic
case, Montgomery and 'Tidman" have shown how
the energy-rate equations can be obtained from the
Fokker-Planck equation and May" has shown how
these results follow directly from the Boltzmann
equation. In the sections that follow we will find
that virtually all of the quantities that were in-
variant in the nonrelativistic treatment cease to
be so in the relativistic formulation. Much care
wiQ be taken to show how the various physical
quantities that enter into the calculation transform.
'This work is therefore important for kinetic theory
since any calculation of the rate of energy transfer
using a relativistic kinetic equation must repro-
duce the result obtained in this paper. i

We present the calculations necessary to obtain
the energy-transfer equations as well as study
their properties in Secs. II-VII. In Sec. VIII we

give a discussion of our results and return to dis-
cuss briefly the present level of development of
appropriate relativistic kinetic equations for a
plasma.

II. ENERGY CHANGE IN A RELATIVISTIC COLLISION

We calculate here the change in energy of a test
particle having momentum p with a field particle
having laboratory-system (l.s. ) momentum q be-
fore the col],ision. The calculation is most readily
carried out in the center-of-mass-system (c.m. s. )
and the appropriate quantities later transformed
back to the l.s. l.s. denotes the laboratory frame,
and c.m. s. the center-of-mass frame.

l.s. quantities are unprimed and c.m. s. quan-
tities are primed. Unsubscripted quantities refer
to values before collision and the subscript f in-
dicates final values.

Let V be the velocity of the c.m. ; then the trans-
formations from l.s. to c.m. s. are given by

E(p), i"tE(p')+ i'P.'1

V=
( ) ( ), E(p)=(p c +141 c )

(p + q)c'

where M is the rest mass of the test particle and
m will denote the rest mass of the field particle.

Conservation of momentum requires that both
V and p'+q' =0 are invariants. Conservation of
energy requires that both E(P') and E(q') are in-
v ariants.

The change of energy of the test particle is

« = E(pg) —E(P)

i&-Z

FIG. 1., Coordinate system for calculating the energy-
transfer expression (2.4).

(2.2)

(2 2)
y, = (l —v'/c') '~' y, = (l —w'/c') '~'

and similarly we have Eq. (2.3) again with all
quantities primed for the c.m. s. 'The subscript
1 will henceforth denote the test particle and the
subscript 2 the field particle. Thus, using Fig. 1
and Eq. (2.2), after a straightforward calculation
we find that

&E = -I' [2 s in28/2 (V ' P ') —sine c os&
~

V x p'
~ ] .
(2.4)

Since the scattering takes pl.ace in a plane in the
c.m. s. , we may relate all scattering angles to the
plane defined by the initial velocities v and w as
shown in Fig. 1. In Fig. 1 the z axis has been
taken as the direction of v' and the zx plane is the
plane determined by v and w. We note at this
point some simple definitions; for the l. s. ,

p=M&, v, q = m&w,
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Equation (2.4) is the exact relativistic gener-
alization of the comparable result for the nonre-
lativistic case. '4 The angles 8 and Q are c.m. s.
scattering angles. We do not transform them back
to l.s. values as we will average over them direct-
ly later. 'The test particle momentum p' can be
transformed back to the 1..s. value by the inverse
of the transformation given in Eq. (2.1).

III. KINEMATIC RESULTS

(1 V, V/ 2)-1/2 V rl my2 (3.1)

from the definition of V in Eq. (2.1),

V ' V 1+ (m/M)'+ 2(m/M)y, y, (1 —v ' w/c')
[y, + (m/M)y, ]'

V ' v 1+ (m/M )y,y, (l —v ' w/c')
c' y, [y, + (m/M)y, ]

(3.2)

V w 1+ (M/m)y, y, (l —v ' w/c')
y, [r, + (M/m)r, ]

We also note that conservation of momentum gives

My,'v' = my,'ge',

or, equivalently,

M'[(y )' 1]=m'[(y')'-1]
(3.3)

IV. RELATIVISTIC COULOMB CROSS SECTION

We will now calculate the relativistic Coulomb
scattering cross section. For this purpose the
tl ajectories of the charged particles must be cal-
culated and then, knowing these, the computation
of the cross section follows. This is readily done
using Newton's equations of motion in the nonre-
lativistic case and leads directly to the standard
Butherford cross section employed in Befs. 1-5.
For the relativistic case this calculation is much
more difficult.

Newton's equations of motion are quite difficult
to solve now. It turns out to be more advantageous
to calculate the traj ectories from the Hamilton-
Jacobi equation. Finally, the calculati. on is made
even harder because of the question of the nature
of the relativistic interaction (we shall return
again to this point in Sec. VIII). It is assumed

In much of the work to come we shall have to
transform c.m. s. values back to their l.s. values.
'The results needed to do this are readily obtained
from the velocity transformations and are as fol-
lows:

For the transformation of the Lorentz factors,

y,
' = (1-V v/c')I'r„y, ' = (1-V w/c')I'y, ,

that the relativistic interaction is characterized
by the Lienard-Wiechert potentials.

The Lienard-Wiechert potentials are appropriate
for charged particles traveling with uniform mo-
tion. As the dominant contribution to the scatter-
ings are from small. -angle binary collisions, we
expect the charged particles to be deflected slight-
ly, thus changing their directions but leaving their
speeds essentially unchanged. 'The Lienard-Wie-
chert fields are therefore a very good choice for
the appropriate relativistic interaction because of
their long- ranged, inverse- square-law nature.
They are the relativistic generalizations of the
Coulomb force field, suitable for use in the non-
relativistic case.

We have not attempted to derive the exact scat-
tering cross section for the potentials but give
here the derivation of the scattering cross section
in the impulse approximation, for particles moving
under the action of the Lienard-Wiechert potentials.
Owing to the long-range nature of this interaction,
virtually all of the energy-transfer results from a
very large number of very-small-angle scatter-
ings. It is just this situation for which the impulse
approximation is ideal. Thus the very nature of
the dominant contribution resulting from these
very-small-angle scattering events makes possible
both the choice of the Lienard-Wiechert potentials
as well as the use of the impulse approximation in
carrying out these relativistic calculations.

We will then compare this cross section with a
known exact cross section for relativistic charged
particles when both the test and field particles are
electrons. This cross section, the Mgller" cross
section, reduces to'the result we obtain from the
impulse approximation. Furthermore, since it is
defined for all scattering angles, we can then im-
mediately deduce the nature of the relativistic
Coulomb cross section for large angles.

'Thus we can use our approximate cross section
as confidently as if the exact result were known
for all scattering angles. We now give the de-
rivation in the impulse approximation and then
make the detailed comparison with the case of the
Mgller cross section.

The calculation is performed in the c.m. s. as
Eq. (2.4) is expressed directly in terms of c.m. s.
angles. As shown in Fig. 2, the scattering is in a
plane in the c.m. s.

'The impact parameter is b and r, is the radius
vector joining the test particle of charge Ze and
the field particle of charge ze. The unit vectors
i and j are vectors respectively parallel and per-
pendicul. ar to the direction of motion of the parti-
cles.

The fields produced by the test particle are given
by
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Zero v

v-B=—x E,
C

V

FIG. 2. Coordinate system
for calculating the scatteririg
cross section.

(4.1)

which will have to be transformed back to l.s.
values using the results in Sec. III. This differs
from the nonrelativistic value which is expressed
in terms of the nonrelativistic invariant g.

We now compare our final result (4.7) with a
known relativistic result, the Mpller cross section.
The MPller result is a relativistic quantum-me-
chanical calculation of electron-electron scatter-
ing which combines the Lienard-Wiechert poten-
tials with the quantum effects of exchange and spin.
The Mdller result expressed in terms of c.m. s.
values is

do R02A(8, g)
. dA (y')'(2P'y')' sin~2' 8 '

r = r, [1—(v')'/c' sin'g]'~'.

The force on the field particle is then

F = ze[E+ (w'/c) x B]
= ze[E(1+v'ur'/c') —(v'~v'/c')E„i ]. (4.2)

In the impulse approximation the only component
of force that enters the calculation is F, =-F 'j. We
therefore have

(Zz e') b [1 —(v')'/c'][1+ v'u '/c'].
[r2 b2(v/)2/c2]3/2

where sing = b/r, throughout. Also,

r,'= b'+ (~, —x2)2

= b'+ (v'+ w'}2f',

(4 3)

(4.4)

where xy:v t x2:-se't, and t is time. For the
total impulse produced by the force I'„

2(Zze2)(1+ v'w'/c') 1
V +A& b

(4 5)

'The c.m. s. scattering angle 8 is therefore

&p' 2( Zz e)(1 +v'~ /vc )c'21
p' E',v'(v'+ w') b

' (4.8)

where p' =v'E', /c2 and E,' =Mc'y', .
'The differential scattering cross section is then

do b db 2(Zze2)c'(1+ v'w'/c2) &t' 1
dA sin& de E,'v'(v'+ 2v') j 8' '

(4 7)

We note also, for later use, that in the nonre-
lativistic limit Eq. (4.7) reduces to

do 4(Zze')2 1
dQ p. 'g 8 '

where p. =mM/(M+m) and g = ~V —w~. This is
identical to the Rutherford result in the small-
angle approximation. We see from Eq. (4.7) that
the cross section is in terms of c.m. s. speeds,

A(8, P) = —,'{[2(y'}'-1]+(y')'[1+ (P')'cos8]' (4.8)

-2(y')'[1 —(P')' cos&]+ 2},
where A, is the classical radius of the electron
and P' = v'/c [remembering that in the c.m. s.
v' =w' for equal-mass particles as seen from Eq.
(3.3)). The cross section (4.8} is the Mgller result
without inclusion of the exchange-scattering con-
tribution, this having no classical counterpart.
The MPller cross section in Eq. (4.8) is thus given
only for direct scattering; in other words, we
include the scattering shown in Fig. 3 and omit
the exchange diagram.

The denominator of Eq. (4.8) has the standard
Coulomb form and the numerator A(&, y') includes
the effects of both relativity and spin. We expect
that in the forward-angle (small-angle) region the
spin contribution should disappear and that Eq.
(4.8) should reduce to our classical result (4.7).
'This is indeed the case. Because the relativistic
factors in the denominator of Eqs. (4.8) and (4.7)
are identical and those in the numerator are ident-
ical in the small-angle region, where the spin
contribution is no longer present, we surmise that
Eq. (4.7) would be the exact classical relativistic

p
f

FIG. 3. Direct scattering diagram for electron-elec-
tron scattering contribution to the Miler cross section.
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result if 84 in Eq. (4.7) were replaced by (2 sin-,'8) .
An exact calculation is of course desirable, but
this comparison of Eq. (4.7) with Eq. (4.8) indi-
cates that the impulse approximation has included
the relativistic factors exactly and simply given
the small-angle approximation for the factor
(2 sin-', 8)4. We note further that the replacement
of 8' by (2 sin-, 8)' in the nonrelativistic limit of
Eq. (4.7) produces the exact Rutherford result.

discussed in Sec. IV. Thus we find Eqs. (5.2) and

(5.3) for our final result.
To obtain the total rate of energy loss we must

now integrate over all collisions and thus need the
relativistic form of dv, the collision frequency.
Following Landau and Lifshitz, "we find for dv
the number of collisions between a test particle
and a field particle with momentum between q and

q+dq in the volume dV in the time dt in the l.s. ,

d~ = o~
I
v —w

I pip. f(q)dq di'df . (5.4)
V. RATE OF ENERGY LOSS

We are now ready to calculate the total rate of
energy loss of a test particle to a plasma. The
procedure is the same as that in Refs. 1-5; we
first calculate the average change of energy in a
single collision and then integrate over all the
collisions the test particle has with the field parti-
cles of the plasma.

We use Eqs. (2.4) and (4.7) to calculate the aver-
age energy change on a single collision,

&E- —dQ,
1 do.

cr,
' . dQ

(5.1)

where o,' is the total scattering cross section in the
c.m. s. ; since Eq. (4.7) is a small-angle-approxi-
mation result, we must make the same small-
angle approximation to Eq. (2.4), so obtaining for
Eq. (5.1)

-4v(Zze')'c'(1+ v'go'/c')'(V ' p')I' d8

o,'(&,')'[v'(v'+ u ')]'

The integration over 8 diverges at the small-
angle end (just as in the nonrelativistic case} and

must be terminated at a cutoff angle 6), corre-
sponding to a maximum impact parameter b,„.
Equation (4.6) gives the relationship between 8,

max'

We now write for the 8 integral in Eq. (5.2)

"d& 2—= ln —=—lnA,
0 6),

(5.3)

where Eq. (4.6) gives the detailed expression for
6),. We have adopted the argument of the logarithm
in Eq. (5.3) for the following reasons. The Mfjiier
cross section has been used in Eq. (5.1) and gives
Eq. (5.2) exactly with ln(sin-', 8, )

' = ln(2/8, ) =—In A in

place of the 8 integral. There is also an additional
term not proportional to lnA and small everywhere
(from the nonrelativistic to the extreme relativistic
limit). This term can be traced to the effect of

spin [included in Eq. (4.6)) and would not appear
classically. We have calculated Eq. (5.1) with

Eq. (4.7) and 8' replaced by [2 sin —', 8]' and obtained
exactly Eq. (5.2) with in(2/8o) appearing in place
of integration. All these results are understand-
able in the light of the cross-section comparison

x [(v —w)'- (v && w)'/c']"'f(q)dq. (5.7)

Equation (5.7) still has many of its factors in terms
of the c.m. s. To complete the ca.lcula. tion we
transform all the remaining c.m. s. quantities to
their l.s. values. The transformation inverse to
Eq. (2.1}and all the transformations and identities
given in Sec. III are used for this purpose. After
a great deal of transformation one fi:nds for the
total rate of energy loss for a test particle in a
plasma, with all quantities given in terms of their
l.s. values,

While dv given in Eq. (5.4) is an invariant, not
each of the quantities that make it up is. This is
in contrast to the nonrelativistic situation, where
dv and all its factors are invariant quantities. The
density of field particles in the l.s. is denoted by
p, and the density of test particles in the l.s. by
p, . The total l. s. cross section is o, and f(q) is the
field-particle distribution function given explicitly
in terms of the field particl. e's l.s. momentum.
While the distribution function f(q) is not an invar-
iant, the quantity f(q)dq is and must be normalized
so that ff(q)dq= 1. [Note that f(w) dw is not a rel-
ativistic invariant. ]

Equation (5.2) contains &r,
' and relativistically

o', co', . We must therefore transform Eq. (5.4) so
that it contains 0,' and gives all other quantities in
terms of their l.s. values. Using the Pauli in-
va, riant as given by Landau and Lifshitz, '

&r,
I
v —w

I
/(1 —v ' w/c') = invariant, (5.5)

we readily find for Eq. (5.4)

dv = o",[(v —w)' —(v x w) /c']'~2p, p, f(q)dq dV dt.
(5.6)

Since we are dealing with only one test particle,
we have J p, dV= 1. If we were dealing with N test
particles in the l.s. , then fp, dV= N. We drop
the subscript 2 in p, in the future and write it
simply as p, the density af field particles in the
1.s.

Using Eqs. (5.2), (5.3), and (5.6) we now have
for the total rate of energy loss in the l.s.

dE 4m Zze' 'c' 1+v'w' c' ' V p' I'plnA
df J (E,')'[v'(v'+ zv')]'
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dE -4l/(Zee2)2p InA[y, y, (1 -v w/c2)]2](m/M)(y, —y,)+ y,y, (l —v w/c')[y, —(m/M}y, ]].
dt mc' [1 —y, y', (1 -v w/c')']'

x [(v —w)' —(v x w)'/c']'/'f(q)dq, (5.8)

with y, and y, given by Eq. (2.3).
Upon taking the nonrelativistic limit, we readily

obtain the exact result given in Hefs. 1-4. Fur-
thermore, using Eq. (4.6), we now find that 2/80
= tlg2t/, „/Zee2, which is the precise value given
for the nonrelativistic cutoff in Ref. 5. The maxi-
mum impact parameter introduced in the nonre-
lativistic treatment was the Debye length ~D. We
do not specify a value for b,„ in the relativistic
treatment but simply note that, owing to the long-
range nature of the Coulomb potential, even in the
relativistic study a cutoff 8, is required. We dis-
cuss this point again in Sec. &III.

We now proceed to perform the integration over
the orientation angle between the test and field
particles in Eq. (5.8) using v 'w= vw cosa and

v & w = use sin8. The plasma distribution function
is taken to be the isotropic relativistic Max-
wellian, so that now dq= 2mq'sin8d8dq. It is at
this stage that we make the approximation lnA a
constant. This approximation is justified for the
following reasons. Firstly, we are certainly not
formally overlooking the velocity dependence of
eo as given by Eq. (4.6). Upon transforming Eq.
(4.6) back into l.s. va, lues we get a quantity which
dependes strongly upon the orientation angle bet-
ween v and w. When this quantity is inserted into
lnA, noting that the rest of the integrand depends
on 8 in a nontrivial fashion, the integration over
the orientation angle 8 is even more formidable.
We have not succeeded in doing this integration.
The less formidable integration over 8, with lnA

taken as a suitably chosen constant, can be done.
Secondly, this is the first detailed study of the
problem and it is reasonable to obtain results and
study them in the constant lnA approximation. Qf
course, dominant and nondominant terms would
arise from keeping the correct velocity dependence
of 8„ the precise value being given by Eq. (4.6)
appropriately transformed, just as dominant and
nogdominant terms resulted in the nonrelativistic
study when the correct velocity dependence of
lnA was used. '

Now, to perform the integration over orientation
angles, we make the change of variable

t=y, y,(1 —v w/c'),

dt = y,y,(vw/c') sined8. (5.9)

The entire integration over orientation angles can
now be done using the indefinite integrals

(t2 I )3/2 (t2 1)l/2

t'dt t' —2
(t2 1)3/2 (t2 I)l/2 '

The final result for Eq. (5.8), the total rate of
energy loss, is

dE 8w2c2(Zee2)2plnA " E(v, W)
dt mc vw(y, y, )' '

(5.10)

where

m -y,y,(l+ vw/c') y,y, (1 —vw/c')
M ' ' ([y,y,(l+ vw/c')]' —1}'/' Qy, y, (1 —vw/c')]' —I}'/'

y ,y, (1+vw/c')+ f[y,y,(l+ vw/c')]' —1}'/' m.

[y,y, (1+vw/c')]' —2 [y,y, (l —vw/c')]' —2

([y,y2(i+ vw/c')]' —1}'/' ([y,y,(l —vw/c')]' —1}l/2 ) (5.11)

It remains to specify the distribution function.
As stated earlier, this will be the isotropic re-
lativisti. c Maxwellian distribution

f(q)q'dq =, exp{-a[1+q'/(mc)']'/2]q2dq,

(5.12)

where a=mc2//2T, T is the plasma temperature,
K2(a) is the modified Bessel function of the second
kind of order 2, and the distribution is normalized
such that ff(q)dq= 1, as required. It is useful to
express Eq. (5.12}explicitly in terms of the field
particles' speed rather than the momentum, since
all quantities except the distribution are so given



2126 N. E. FRANKEL, K. C. HINES, . AND R. L. DEWAR 20

in Eq. (5.10). We find, using Eq. (2.3), that Eq.
(5.12) now becomes

f(q)q'dq =,
)

e '"2w'(y, )'dw. (5.13)

VI. ASYMPTOTIC LIMITS

When either the test particle or the field parti-
cles are relativistic, we have, to second order
in v/c and w/c,

It is a simple matter, using the asymptotic ex-
pansion of X,(a), to see that Eq. (5.13) reduces to
the nonrelativistic distribution used in Refs. 1-5.

Equations (5.10), (5.11), and (5.13) give the
total rate of energy loss of a test particle in a
plasma. It is straightforward to show that it re-
duces to the correct result in the nonrelativistic
limit. ' 4 It is a general result for any plasma,
whether or not the test particle and/or the field
particles are relativistic.

We remark, in closing this section, that the
complexity of the result gives an indication of how
hard it would be to include the correct velocity
dependence of 1nA. In general, the final integra-
tion over w in Eq. (5.10) has to be done numeri-
cally. 'There are some asymptotic regions that are
amenable to study and we look at these in the next
section.

is such that not only is E,» Mc'(y, » 1) but also
E,» 2kT, then the total energy loss saturates at
the value

dE, 4a'(Zz e')'plnA
dt ABC

(6 3)

8v(zze')'pkTInA
dt mcus, (6.4)

Equation (6.4) implies that, even though the test
particle is ultrarelativistic, it gains (not loses)
energy from the field particles. This is the case
of an ultrarelativistic electron whose energy is
still much below 2kT, which is itself much below
the rest-mass energy of an ion (e.g. , m/M» 1).

We note at this point that the energy appears in
the form of a 1/E, factor in Eq. (6.2). This fact
will be of importance in the discussion of equi-
partition rates presented in the following section.

For a nonrelativisitic test particle (y, = 1
+ v'/2c') in an ultrarelativistic plasma (a« I, so
tha, t y, » 1), we find

Equation (6.3}is identical in form to the asym-
ptotic value given in the nonrelativistic case' with
the exception that c, the speed of light, now ap-
pears in the denominator rather than the test
particle's speed v. This is the relativistic satura-
tion value for v, as might have been expected.
Equation (6.2} also shows us that, even though the
test particle is ultrarelativistic, if the energies
are also ordered as Mc'«E, «kT «mc', then

(6.1) dE, 2w(Zze')'palnA &2 v' 2 m
dt mc (3c' aM (6.5)

We shall now use Eq. (6.1) in Eq. (5.10) and study
the two physically interesting cases for which Eq.
(6.1) is an accurate approximation to F(v, w). We
note that all terms to order (w/c)' or (v/c)' inside
the square brackets in Eq. (6.1) must be retained.
This ensures that the correct nonrelativistic limit
for either the test particle or the field particle is
obtained.

For an ultrarelativistic test particle (y, » 1) in
a nonrelativistic plasma. (a» 1, so that y, = 1
+ w'/2c') the nonrelativistic limit of Eq. (5.13) is
required and we find

dE, 4m(Zz e')plnA 2k T
dt mc . E, (6.2)

We have dropped all terms of order 1/a and small-
er and E,=Mc'y, . Equation (6.2) gives a zero
total rate of energy loss when E,= 2kT. 'This ener-
gy has an interesting physical interpretation. It
is the harmonic mean between 2kT and 3kT, the
two characteristic average thermal energies per
particle for the nonrelativistic and ultrarelativistic
cases, respectively. When the test particle energy

or equivalently (remembering that a = mc'/kT)

dE, 8w(Zze')'pinA
df 3Mc(kT }

(6.5a)

dE, 8w(Zze')'plnA
dt 3MckT (6.6)

This situation (m/M«1) requires that the plasma

In Eq. (6.5a), the test-particle energy is now
specifically given by E,= —2M''. The rest masses
have cancelled out in the derivation.

Equation (6.5a) gives a zero total rate of energy
loss for a nonrelativistic test particle in an ultra-
relativistic plasma when E,= —,'Mv'= &kT. This is
the physically acceptable result for this case.
There are now two special limits to Eq. (6.5} or
equivalently (6.5a). These can be seen most read-
ily from Eq. (6.5) initially and then from the
equivalent result (6.5a) in the end.

When the energy ratio a satisfies the inequality
m/M«a« 1 (e.g. , mc2«kT«Mc'), then the test
particle loses energy to the plasma at a rate pro-
portional to E„



20 ENERGY LOSS DUE TO BINARY COLLISIONS IN A. . . 2127

field particle be an electron and the test particle
be an ion.

When the energy ratio a satisfies the inequal-
ities aSm/M and a«1 (e.g. , kT»mc' and kT
&Me'}, then it is impossible for the test particle
to lose energy to the field particles. The test
particle will gain energy from the plasma at a
constant rate given by

dE, 4v(Zze')'plnA
dt Mc

(6.7)

+(v, w)=2rv, , (y, -My,)— (6 8)

is an excellent approximation for E(v, w). Now,
using Eq. (6.8) with Eq. (5.13), we have for the
total rate of energy loss-

Equation (6.V) is identical in form to Eq. (6.3),
with m replaced by M and the minus sign replaced
by a plus sign.

We note that, when either the test particle or the
field particle is relativistic, it is always the rest
mass of the nonrelativistic species which appears
in the rate equations [e.g. , Eqs. (6.3) and (6.7)].
This is understandable, for an ultrarelativistic
particle behaves essentially as a zero-rest-mass
particle. Thus its mass should not appear ex-
plicitly.

To see this point even more clearly we give the
total rate of energy loss of an ultrarelativistic
test particle (y, » 1) in an ultrarelativistic plasma
(a«1, so that y, »1). For this case,

dence on M or m; we also notice the characteristic
I/E, term, which always appears for the case of
an ultrarelativistic test particle. Equation (6.14)
shows that the test particle loses or gains energy
from the plasma depending on whether E,& 2kT or
E

y
~ 2k T . In particular, the test partic le loses

energy at the constant rate

dE, 2v(Zze')'pclnA
dt ar (6.15)

when E,» 2kT.
The case of a nonrelativistic test particle in a

nonrelativistic plasma was, of course, the sub-
ject of the studies in Refs. 1-5. This completes
the study of all four appropriate asymptotic limits.
There is still a wealth of information contained in
our final result (5.10). It is always possible, in
principle, to obtain expansions up to any power in
(zo/c)' or (v/c)'. These results can generally be
written in terms of a series of Bessel functions
which can then be appropriately expanded in the
various asymptotic limits.

VII. RATE OF EQVIPARTITION OF ENERGY

If the test particle is taken to be an ion and the
field particles are electrons, then the rate of
equipartition of energy between the two species in
a plasma can be obtained. We study this rate for
the asymptotic cases given in the previous section.

For relativistic ions and nonrelativistic elec-
trons we find, using Eq. (6.2),

1 1

EE
' = -4v(Zz e')'pclnA~ (6.9) dh, 4v(Zze')'plnA T !

dt me T]' (V.l)

where

f(q)4vq'—dq .1 "1
(6.10)

where the subscripts i and e refer to ion and elec-
tron. The ion energy 8,. is given by

(1/E,) = (1/mc')K, (a)/K, (a) . (6.11)

The integral in Eq. (6.10) can be done exactly using
Eq. (5.13), with the result

(7.2)

The integral in Eq. (7.2) can be done exactly with
the result

For a«1, we readily find, using the asymptotic
expansion for the modified Bessel functions

kT, ),K,(a, ) -K,(a,}
8 ' K,(a,)

(V.3)

K„(x)-z(v —I)!/(zx)", (x«1, v&0),

K,(x)- -inn, (~«1),
that Eq. (6,11) becomes

(1/EQ = 1/2k T .

(6.12)

(6.13)

dE. .. ( 1' = -4~(Zze')'pclnA
~

As stated above, there is now no explicit depen-

(6.14)

Thus the final result for Eq. (6.9) can be written
as

8,.= 3ur, (7.4)

Equation (7.4) is the expected result for a zero-
rest-mass particle. Equation (V.l) can now be
integrated for the case T, & T, and the tempera-
ture T,. is found to decay exponentially to the value

T, with the characteristic equipartition relaxation
time

r = 3mckT, /4v (Zz e')'plnA . (7.5)

where a, =Mc'/kT, . Using Eq. (6.12), we then have
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For nonrelativistic ions and relativistic elec-
trons we find immediately from Eq. (6.5a)

dS, 4w(Zze')*phut T; T,)—
dt Mc T. (7 6)

where now 8,= zkT, Equation (7.6) can be inte-
grated. The ion temperature T; is now found to
decay exponentially to T, with a characteristic
equipartition relaxation time given by

r = 3MckT, /8m(Zz e')2plnA . (7.7)

For ultrarelativistic ions and electrons, we find
directly from Eq. (6.14)

d8,. 2n(Zze')'pclnA 1 1
dt k T, T,

(7.8)

where 8, = 3kT, and we have used Eqs. (6.13) and
(7.4). Equation '7.8) can be readily integrated for
T.& T,. The ion temperature T. decays in this
case to the electron temperature T, with the char-
acteristic equipartition relaxation time

7 = 3(kT, )'/2w(Zze')'pclnA. (7 8)

VIII. DISCUSSION

The formulation in this paper of the relativistic
energy loss has been given in such a manner as to
display as clearly as possible the major differences
between a relativistic and nonrelativistic treat-
ment. There were several problems that arose
in our study which we now discuss.

'The minimum cutoff angle corresponding to a
maximum impact parameter presents some pro-
blems. The precise nature of the screening cloud
about a relativistic particle is obscure. Thus the
choise of b,„as the Debye length requires the
appropriate relativistic generalization. This is an
open problem which requires investigation. We
leave b,„unspecified at present. "

The correct velocity dependence of 8„ the cutoff
angle, creates formidable analytic problems. We
note that our Eq. (4.6) gives the required velocity
dependence when transformed back into l.s. vari-
ables. The averaging over orientation angles bet-
ween w and v is very difficult when the correct lnA

dependence is included. We have not been able to
solve this problem and have treated lnA as a con-
stant; even the choice of an appropriate approxi-
mation to A is difficult. In Ref. 5 it was a simple
matter to give the average values of ~v —w ~', but
here the velocity dependence of A is so complicat-
ed that even an appropriate average value of A has
so far not been realized. In certain of the asym-
ptotic limits discussed in Sec. VI, a reasonable
guess at the appropriate velocity dependence in 'A

can occasionally be made. "" The entire question
and detailed study of the corresponding dominant

and nondominant terms' resulting from the use of
the full velocity dependence of 1nA is open and we
hope to return to this problem in the future.

The nature of the relativistic interaction in a
plasma needs a great deal of study. In our de-
rivation of the cross section it was assumed that
the particles, moving with effectively constant
velocity in the c.m.s. , interact via the Lienard-
Wiechert potentials. It was expedient, however,
to calculate the cross section in the impulse ap-
proximation. We made plausible the nature of the
correct angle dependence of the cross section bv
comparing our result with a few known limiting
cases. The choice of a different cross section is
now intimately tied up with the solution of the in-
teraction problem.

Once we leave the Lienard-Wiechert approxima-
tion we enter the subject of fully covariant rela-
tivistic dynamics of interacting particles. This
subject is notoriously difficult and is one of the
unsolved problems of modern physics. Since re-
lativistic statistical mechanics relies entirely on
relativistic dynamics, the entire subject of rela-
tivistic statistical mechanics becomes even more
difficult to formulate, most of all to solve. Ex-
cellent review articles on these subjects have been
'presented by Havas" and by Prigogine. "

In addition to these questions, and by analogy to
the nonrelativistic case, there is the problem of
a justification for the binary-collision approxima-
tion to relativistic Coulomb scattering. This re-
quires, by direct analogy to Refs. 11 and 12, a
detailed knowledge of the relativistic Boltzmann
and Fokker-Planck equations. Israel" has for-
mulated a general relativistic Boltzmann equation.
The relativistic Fokker-Planck equation for a
plasma in the Lienard-Wiechert approximation has
been given by Beliaev and Budker. ' This rela-
tivistic kinetic equation has also been derived from
the standpoint of the Prigogine" formalism by
Mangeney. " The relativistic Boltzmann equation
for a Coulomb plasma has been given by Akama. "
Because of the presence of a lnA factor in the
relativistic Coulomb problem, it would appear
that the same sort of stochastic analysis and justi-
fication should occur here as in the nonrelativistic
situation. However, as far as we know, no such
detailed analysis has been forthcoming.

In the papers of Beliaev and Budker' and of
Akama, 22 their relativistic kinetic equations are
used to solve for the rate of energy loss in certain
special situations. Where possible, it appears that
agreement with our results is obtained. A detailed
study of the relativistic Fokker-Planck equation
for a test particle in a relativistic plasma should
agree with the precise results obtained in this
paper. Such a study, along with a calculation of
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the appropriate Fokker-Planck coefficients, would
be most valuable. " It would help to clarify many
of the similar questions to those which have been
aired and partially resolved (e.g. , Ref. 11) in the
nonrelativistic context.

As in the nonrelativistic case, there is also an
additional energy-loss mechanism beside that
studied in this paper. This is the loss due to
collective effects. A detailed study of the rate of

energy loss in exciting collective oscillations in a
relativistic plasma has been given by Prentice. '4
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