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Photon distributions of lasers with first-order phase-transition analogies
j
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The photon-number distributions for a laser with a saturable-absorber and a dye laser are obtained by
extensions of the Scully and Lamb optical-maser theory. The results are shown to be in correspondence with
those of Lugiato et al. for the saturable-absorber laser and with those of Schaefer and Willis for the dye
laser. Moreover, they are in a form which clearly shows the relation between the saturable-absorber laser
and the dye laser. The thermodynamic potentials for the first-order phase-transition analogy are calculated
and are found to be of the form predicted by Scott, Sargent, and Cantrell using semiclassical equations.

I. INTRODUCTION

Many systems exhibit transitions from disordered
to ordered (or vice versa) behavior. Some of these
are in thermal equilibrium; others are far from it
when the transition occurs." The laser falls in
the second category. It is well understood from
a microscopic viewpoint; its experimentally ob-
served properties have been explained in some
detail and predictions concerning its behav'ior have
been verified.

To view the laser as a non-thermal-equilibrium
system in the steady state, the pumping source
can be regarded as a high-temperature reservoir
and the laser's surroundings as a low-temperature
reservoir .(to which it loses energy). This analogy
has been discussed in Hefs. 2-4, and is displayed
in the table presented by Scully in Refs. 2(d) and
4

The laser model usually chosen for analysis"
is one which leads directly to the similarity with
a second-order phase transition in equilibrium
systems. In thermodynamic language a phase
transition is first order if the first derivatives
of the Gibbs potential change discontinuously from
one phase to the other. They are S =-(&Gj&T)I,
and V=(sG/sP) r, or their analogs in the case of
the laser. In a second-order transition these
quantities change continuously at the transition
temperature, but the second derivatives show dis-
continuous changes.

It has been known for some time now that there
are lasers which show first-order phase-transition
analogies. '-" Two such systems have been stud-
ied: (i) the laser with a saturable absorber and
(ii) the dye laser. The laser with an externally
injected signal2""'"' was also thought to be a
system displaying a first-order phase-transition
analogy, but the recent work of Lugiato" '"' shows
that this is not true.

Semiclassical analyses have been performed
for the laser with a saturable absorber"" (which
will be referred to as LSA in the future) as well
as the dye laser, ' which explain the hysteresis
effects observed in the former" and predict sim-
ilar effects for the dye laser. Quantum-mechani-
cal calculations or semiclassical calculations in
which Langevin noise sources are added have
also been carried out which predict the photon
statistics of the LSA"" and the dye laser." In
this paper we wish to examine the photon distribu-
tions for both these lasers using extensions of the
Scully-Lamb theory of the optical maser. For the
LSA we do not present the theory in detail since
the results can be obtained by simple generaliza-
tions of the theory given in Hefs. 1. The calcula-
tions on the dye laser are more detailed; this is
because intersystem crossing rates connect the
singlet and triplet states, resulting in a system
more complicated than the LSA. We obtain re-
sults in a form which clearly demonstrates the
similarity between the two and our results are
shown to be in correspondence to those of Lugiato
et al. for the LSA and of Schaefer and Willis for
the dye laser. The thermodynamic potentials are
calculated, and shown to be of just the form pre-
dicted by Scott et al.' on the basis of the phase-
transition analogy and the semiclassical equation
for the field.

II. LASER VfITH A SATURABLE ABSORBER

We give an outline of the experimental setup in
Fig. 1. The pressure and discharge current in
each tube can be independently controlled. This is
required for the laser to operate in the region of
interest —the bistable region. '" A theoretical
analysis will now be given, and we will find the
photon-number distribution for the laser.

The active medium and the absorber are both
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FIG. l. Gas laser with
a saturable absorber.
(The plasma tubes usually
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and the mirrors need not
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represented by homogeneously broadened two-
level atoms (Fig. 2). Here r„x„~„and r~ are
the rates at which atoms are introduced into lev-
els a, 5, c, and d, respectively. To produce gain
in the active medium, ~, is larger than x„but ~„
is greater- than x, in the absorber. The levels a,
b, c, and d decay to e, f, g, and h at the rates
y, y» y, and y&. The linear cavity losses are
simulated by another set of atoms with levels 1
and 2; only terms linear in the photon number are
retained.

%e will not repeat, but merely outline, the steps
leading to the equation of motion for the matrix
elements of the radiation density matrix. These
are identical with those of Scully, Kim, and
Lamb, ' ~~' except that we have now introduced an
extra species of atom with levels c and d. The
Hamiltonian for the system is, in the notation of
Refs. 1(a) and 1(b),

H = vara+ (W,o~ro;+ W, (r, cr,")+(W,a2ra, + W~(r, a2t)

+g, (a'o, + aa,') +g, (a'a, + aa2r) . (2.1)

Here hvar is the field energy, v being the laser
frequency, while a~ and a are the creation and
annihilation operators for the single-mode electro-
magnetic field. The energies of the atomic levels
a, b, c, and d are SW„5W» kW„and 5W„. The
0's are raising and lowering operators for the
atomic states of the active medium (subscript 1)
and the absorber (subscript 2). The last two terms

I

describe the interaction between the field and the
atoms, where g, = ex„S/)) 21 (a frequency) and

g, = ex,~8/v 2h are the coupling constants. The x's
are dipole moments for the transitions.
=(I'0/LA&0)'r' has the dimensions of an electric
field, with 0 the free-field frequency, and L and
A are the length and cross sectional area of the
cavity.

Our aim is to obtain the equations of motion for
the elements of the radiation- density matrix p.
The procedure followed is straightforward; one
first finds the change produced in the reduced
(field) density-matrix elements by introducing an
atom in the atomic level a, b, c, or d. This is
found in terms of the decay rates of the levels,
the detuning of the laser frequency from the atomic
transition frequency and the numbers n and n' of
the Fock states of the radiation field for which the
matrix element is taken. An average, or coarse-
grained rate of change of the field- density-matrix
elements is then found by multiplying the change
due to a single atom introduced in a given state
by the rate of introduction of the atoms in that
state and adding all these terms. Cavity losses
are simulated by introducing an interaction with
another hypothetical set of atoms and retaining
only the terms linear in the photon number. This
entire process is detailed in Refs. 1(a} and 1(b).
Also, a similar process will be presented in some
detail in the section on the dye laser. Here we just
give the final coarse-grained equation of motion
for the elements p„„,of the radiation-field density
matrix. (The asterisks denote complex conjugate
quantities. )

p„„.=-[(n+ 1)R,„„.+ (n'+ 1)R,*„,„]p„„,(t)+ (R,„,, „, , +R,*„, , „,)(nn')'r'p„, „, ,(t)

+ (R,'„„,+RP, „)[(n+1)(n'+1)]'r'p„„»„(t)—(nR,'„, „., +n'RP, , „,)p„„,(t)

—[(n+1}R2„„,+ (n'+ 1)Rg„, „]p„„,(t)+ (R,„,„. , +Rg», „,)(nn')'~'p„, », (t)

—(nR,'„, , +n'R,'»+, „,)p„„,(t) + (R,'„» +R,'+ „)[(n+1)(n'+ 1)]'r'p„., „„,(t)
—~ C(n+n')p„»(t) + C[(n+ 1)(n'+ 1)]'r p„„„,„(t)—~z(n2/n, )C(n+ 1+ n'+ 1)p„„,(t)

+(n, /n, )C(nn')'r'p„, „, ,(t) . (2.2)

The quantities contained in Eq. (2.2) are defined below:
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y.(y., —ia, )+g', (n —n')
y y (y +P )+2y gn( +1+n'+1)+g (

' — )[g (n' —n)+iti (y —y )J) '

y,(y„+is,) +g', (n n—')
' y,y (y', n p', ) y gy', tn (n + 1 + n '+ 1)n ~ (n ' —n) [ n,'(n' —n) + in, (y, —y ) J)

'

yy (y +n, )+2y, g (n+1+n'+1)+g (n' —n)[g*,(n' —n)yttt (y, —y~)J)'

~

~

(2.4)

(2.5)

(2.6)

y, ~=2(y, +y&), y.4 2(y, +y&) ~ (2.8)

The terms with the constant C describe the linear
cavity losses,

C=—--
ri A&2

(2.9)

(2.7)

where v is the laser frequency and (d, and +, are
the frequencies of the atomic transitions a-b and
c-d. Also, -

Here,

n„=x~/y„, &=a, b, c,d,
A =2n,g', [y„/(y'„+ a22)],

& = 8n, ~[y,'[,/y. y J(y,'J, + &,')'],
G =2n g,'[y„/(y'„+ a2)],

&=8&g;[y', /y. y (y'. +&.')'].

(2.16)

(2.17)

(2.18)

All the terms in Eg. (2.10) have simple physical
interpretations. T, has two parts; the first is a
loss for the n photon state of the laser mode due
to spontaneous and stimulated emission and the
second is a gain due to absorption from an n+ 1

photon state. Both contributions are due to atoms
of the active medium, but the first is due to atoms
introduced in the upper lasing level, while the
second is due to atoms introduced in the lower
lasing level. Tzz is also due to the active atoms.
Tz zz is from the absorber atoms . The first part
describes absorption out of the n photon state of
the laser mode due to absorber atoms introduced
in the upper levels, while the next part shows an
enhancement of the n photon state probability due
to those introduced to level d. T« is similarly
interpreted. For the active medium to show gain,
n, )n„, and for the absorber to be an absorber,
n„)n, . Tv and Tv, represent linear cavity losses.

The fact that we have considered only single
photon processes and single atom interactions with
the electromagnetic field leads to the detailed

(2.10)~nn
= Tz+ Tzz+ Tzzr+ Tzv + Tv+ Tvz ~

where

(gtg)( ()(p..(t)- —'p...,...(t)], (2»)

-G(n+ 1) nd
1+(WG)(n. +1) "" n " ")'"'"

(Ht J: (P„,„,(t) -—"'P„„(t)),

2, = &(n+1) (p...,.„(t)——*p..(t)],n+1, n+1 + nn

(2.14)

(2.15)

where x, and r, are the rates of introduction of
damping atoms in levels 1 and 2, g is the coupling
constant, and y» = —,'(y, +y, ), where y, and y, are the
decay rates for levels 1 and 2 of the atoms. Q is
the cavity Q factor. Finally, n, =r, /y, and n,
=r, /y, .

Specializing to the diagonal elements, we obtain

~yc
FIG. 2. Energy levels

and decays of the active
medium and the saturable
absorber.

Active medium Absorber
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balance condition in the steady state. Thus, when
(t) „=0, the flow of probability from the n to the
n —1 photon state equals that from the n —1 to the
n photon state. A similar condition holds for the
n and n+1 photon states. The three-term recur-
sion relation simplifies to two identical two-term
relations. This relation is

A n„ G n~
1+(B/A)n n. 1+(H/G)n n,

n2 A G

(n(A/A)n 1+(H/C)n)
'

P(n)(—=p„„), the probability distribution for n photons
in the laser cavity, now takes the form:

( ll n, A/C G/C A/C n, G/C n~
n, 1+ (B/A)k 1+ (H/G)k 1+ (B/A)k n, 1+ (H/G)k n,

(2.20)

=P(n - 1)[L(n) —1]. (2.21)

Therefore,

1
P(n) = K, exp 1 —,, dn

L jnj

Using the given form for L(n), we obtain

A/C, G/C
1n (B )n /A' ' 1 ( / ) n11C')I ~

~ n~

I ~ n n ~
~ n

I ~ n n

A/C G/C d
1+B An 1+H G dn„

where X is a normalization constant.
Let us summarize the conditions under which

this result holds. The model considers an active
medium and an absorber which are both homogen-
eously broadened, stationary two-level atoms.
Atoms may be introduced into both upper and lower
levels of each type of atom, the lifetimes of which
are known. The possible detuning of the laser
mode from the atomic transitions has been re-
tained. Linear cavity losses have been considered.
We have finally calculated the diagonal elements
of the radiation density matrix in the steady state.

,Coefficients A and B are the ga.in and saturation
coefficients (of the usual Scully-Lamb theory) for
the active atoms; G and H are similar terms for
the absorber.

We now show the correspondence of (2.2) to the
steady-state distributi. on found by Lugiato et al."'"
An approximate form for P(n) can be found when
nis large by conve. rting Eq. (2.20) into an approxi-
mate differential equation. We have

P(n) =P(n) —P(n —1)+P(n —1) =P(n —1)L(n),

where L(n) is the quantity after the product sign in
Eq. (2.20). For large n

ment by Lugiato et al. in Ref. 10) we get, (i.e.,
assuming a zero-temperature field reservior in
conformity with Ref. 10)

A/C G/C
Cn — + /

(1 —n, /n, ) —
1 + /

(1 —n /n, ))

+
2 d P(~) =0. (2.23)

A+G d

This equation is of the same form as Eq. (4.12) of
Ref. 10(a), from which they find P(~), if we identi-
fy (A+ G)/2f with q. Note that Eq. (2.23) is derived
from (2.20) after several approximations. Equa-
tion (2.20) is the more exact expression, which is
valid for all n, and which also gives us the x-de-
pendent coefficient for the derivative term in Eq.
(2.23). For all practical purposes and for analytic
considerations, Eq. (2.23) and its solution are very
useful. A more complete analysis of the photon
statistics has been given by Lugiato et al. in Hefs.
10; we have only pointed out an alternative method
for obtaining some of their results.

To be able to see clearly the behavior of the
LSA, let us consider a simplified case, where the
active atoms are introduced in state a only, and
the absorber atoms in state d only. The damping
atoms are injected only in state 1. Then we get,
instead of Eq. (2.10),

-A(n+ 1) An
1)n 1 + (B/A)(n+ 1 ) nn 1 + (B/A)n n-l, n-j

G'(n+ 1) G'n
1+ (H'/G')(n+ 1) """" 1+ (H'/G')n

—Cnp (f) + C(n+ 1)p„„„„(t), (2.24)

where

G'=2n, g, [y„/(y', +/)', )],
(2.25)

If we let fr' =n, where y is the magnitude of the
complex amplitude of Lugiato et al. , and f a con-
stant quantity, then on neglecting the x dependence
of the coefficient of the derivative term (see com-

Detailed balance now gives us

A/c
"-'" ' [1+(B/A)n[1+(G /C)/(1+H n/G )]

(2.26)



20 PHOTON DISTRIBUTIONS OF LASERS WITH FIRST-ORDER. . . 2097

x.e.,
A/C

'~~ (1+kB/A)[1+ (G'/C)/(1+ kH'/O'Q

(2.2'7)

Using Eq. (2.22),

C G'~B
~ BC

P(n) =X,'exp n 1-A —A,H, -n'2A~

+, —,ln 1+, . 2.28

A =-ao', B =—her, C=aor, G'=—ao„G'/H'= I, , —

(2.30)

then, since C/A-1,

F(E)= -—,'a[(a —o r)E' —op, ln(1 +E'/I, )]

Recalling that the fluctuations in the magnitude E
of the complex scalar field amplitude are given
by P(E) =3Re ~ ~' s& where 3R is a normalization
constant, F(E) is the Gibbs potential for the laser
field, R~ is a constant characterizing spontaneous
emission by the atpms, and o is the zero-field
inversion, the Gibbs potential for a LSA is seen
to be

-(A —C)E~ BCE O' E'H'
F(E)= + ~ +2H, ln 1+

(2.29)

where we have taken E~-n and the terms
nGuB/AVI' and

(G aB/A H r ) ln(1+yzH'/G')

have been neglected since they are smaller than
the others by a factor B/A If we n.ow let

cule may participate during lasing. A molecule
introduced in the upper lasing level a may go to the
lower lasing level b by stimulated or spontaneous
emission into the laser mode of the electromag-
netic field. It may also decay radiatively not into
the laser mode, or nonradiatively to some other
sublevel ~n of the ground singlet state. Alterna-
tively, the molecule may go over to the lowest
triplet state T, by an intersystem crossing pro-
cess. Once in T, the molecule may act as an ab-
sorber for the laser mode of the radiation field,
in which case it goes to the upper triplet state
T„or it may decay to the ground singlet state
by what is called a triplet quenching process. The
various processes and rates are marked in Fig.
3. If the molecule reaches T, by absorption of
the laser radiation, it may be transferred to some
otherhigher triplet or singlet level, or it may drop
back into the lower triplet state. In the former
case, we say that the molecule is lost to the lasing
process, and denote this by the rate y& of decay to
a fictitious level'l. In the Schaefer-Willis model,
Pv~„describes the rate of decay of molecules
from the upper triplet to the lower triplet state
due to nonradiative processes or radiative proces-
ses not concerning the laser radiation mode. The
model presented here neglects this process, and
we assume the entire loss of molecules from the
lasing process to be due to the decay rate y&(=—vr„).
That is, if in the Schaefer-Willis model one as-
sumes that the entire rate v~„describes mole-
cules being lost to the lasing process and that
molecules transfer from level T, to level T, only
via radiative processes involving the laser mode,

T2

+ —,'boE4. (2.21)

This is identical to the result of Scott et al. in
Ref. 5. We now examine the dye-laser photon dis-
tribution.

III. DYE LASER

~jte apart from its extreme usefulness in pre-
sent day physics and chemistry, the dye laser is
an interesting system to study in its own right.
The energy-level structure of dye molecules with
singlet electronic states and the corresponding
triplets make the dye laser behave as if it had an
absorbing system built into each molecule. The
various processes which occur in a dye molecule
in solution have been discussed in detail in many
texts and papers, e.g. , Refs. 8 and 12-14.

We adopt the dye-laser model with energy-level
scheme shown in Fig. 3; a brief sketch is now giv-
en of the various processes in which a dye mole-

Sp

ro

S( rn

Absorption

effect(ve frequencies
of excitation.

FIG. 3. Energy levels of a dye molecule.
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then one puts P =0 in their model. The Schaefer-
Willis treatment of dye-laser action is based on
a laser theory developed by Willis in Ref. 8(c),
while our method of analysis follows that of Scully
and Lamb. ' '~

In the analysis to be given we will assume single-
' mode operation, and that molecules are introduced
only in the upper lasing level at a rate x, by an
unspecified pumping process. The decays y, yb,
y„y, and yf are introduced through interaction
of the molecule with fictitious reservoirs. Since

these decays do not produce any photons in the
laser mode, we trace over the reservoir variables
to obtain the relevant laser-radiation density-ma-
trix equation of motion. The fictitious frequencies
v„v„v„vf, and v (where the indices run over
large numbers of modes) belong to the decay-in-
ducing reservoirs.

A. Hamiltonian

The dye-laser Hamiltonian is K=RH, with II
given by

H = vaja+ p v, ata, +g vb atab+g va",a, + gvfa~~af+ g v„a"a + g q»A»A»+g, (atA1bA, + aA~Ab)
IC= a,b,C,df, l, m

+ g2(a~A&Af + aAf&A,) +gg, (a&A tA, + a, At A, ) + ggb(atActAb+ abA&bAc) +Qg, (a",AtcA, + a, A",Ac)

+pgf(aftAtAf+afAftA, )+ gg (a" A&'A, +a AfA ),

H =H +H'+H'+H, '+H, +H, + V, + V, +g V'+g V'+ P V'+ P V + P V" .
e b C f m

The free laser field and molecule Hamiltonians are

AH0=hvafa+ff g e»A»'A».
E=gb bb Cb 4

f, l, m

The creation and annihilation operators for the
laser radiation are at and a. The A~~'s and A~'s
are the corresponding operators for the molecular
levels. hH0=—hp, v,a)a, etc. are the energies of
the reservoir excitations.

V, z&
=—g, @&(a~Atb &,&A, z&+ aAt ~&A. b &,&)

B. Equations of motion for the density-matrix elements

The procedure followed here is that of Scully
and Lamb. The total system density-matrix equa-
tion of motion in the interaction picture is

P

—i V'+ V + V'
» a b C

describes the interaction of the laser radiation with
the upper and lower lasing levels and the absorbing
triplet levels.

+ Vf+ V, p
f m

(8.2a)

ex,b( f)$ gQ
g y) ~ and

where ex,» ex,f are the dipole-moment matrix
elements.

g V' =gg, (a~At A, + a,A~A, ), etc. ,
C a

describe the interaction of the molecule with the
reservoirs, which introduce (in the Wigner-Weiss-
kopf approximation) phenomenological decay con-
stants into the problem.

The lasing transition and the triplet absorbing
transition frequencies are assumed to be the same.

The equations for the matrix elements relevant to
our problem are obtained after several approxima-
tion procedures, which are given in the Appendix.
After tracing over the unobserved or reservoir
variables we obtain the following set of equations
in the Schrodinger picture.

Pbn+1;bn'+1 I. 0+ Vl& pjbn+1;bn'+1 Ybpbn+1; bn'+1 1

pbn+1;an' L 0 V11 pjbn+1;an' Yabpbn+1;an' &

Pcn, cn' Yaoan;an' YcPcn; cn' L 0+ V2) P jcn, cn'1

pfn ll fn'-1 Yfpfn 1;f-n' 1t 0+ V2-1-Plfn 1;fn'-1t-
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~ rr
pfn lie-n' ref pfn 1;cn-' t 0+ ~2& P] &

t in li i-n' l-rfPfn lifn-' 1&-

pion+1; ttn'+1 y b pbn+1; bn'+1

pdn, ' dn' y cpcn, cn'

Going to the interaction picture for the radiation
density matrix onl.y, and replacing p„n, by
p„„z-""-"""and using the following notation,

ll anban' ~ ~33 ~fn-1; fn'-J. &

Ptt; tt ' y bPb; b '+ycPc, c '
12 an, bn'+1 & 34 fn-1; cn' &

pmn,.~n =ympan, an ~ 21 bn+1; an' & 43 cn,' fn'-1 &

I

(3.3h)r.b=2(r, +rb+r ), r„=2(r,+rf+r, )
'I

and y, yb, y, y, and yf are defined explicitly in
the Appendix. The equations for levels l, d, and
m can be integrated from t„ the time of introduc-
tion of the molecule to t, + T, where T is larger
than all the decay times involved, but small com-
pared to the times for growth or decay of the field.
Then,

22 ~bn+1; bn'+1 ~ 44 cn', cn' ~

where

and
+T p, (t') dt' = o',(t0+ T},

tp+T

p33,(t')dt'=o33. (t0+ T), p= 1,2, p'=l, 3

(3.5)

pi. '. in 1(to+ T) =y f
tp+ T

dt' pf„, f„.,(t'),.

tp+T
a=3 4 a'=3 4

pb l, b 1(t ) dt

pa„„tf(t + T. ) =y
t +T

p,„.,„,(t') dt',

p..„,;(t.+T) =yb

(3.3)
we obtain, on integration from tp to t, + T,
the equations:

p......(t.-) = (r, +r-)o„-i(lf„„.,„„o„

o„„„,(t, +T) =y.
p+T

p.„..„,(t ) dt,

Expanding out the commutators with tt0 (v = laser
mode frequency; &u=e, —@3=AD,

—&4),

p,„.,„.=-i[(n —n')v- i(y, +y )]p,„.,„,
~/
( "lan' bn+1 pbn+1 i an' pan; bn'+1 1btf+1; an'} t

pbn+1;bn+1 =-i[(n —n )V iyb]Pbn+1;bc+1

Tr
1bn+lianpan;bn +1 pbn+'1;an'~lan';bn'&1) &

p .= -3[(n —n') V —(0i —V} —lrab]Pbn+1 an

1( lbn+1; anPa'ni an' Pbn~l i bn'+1 1bn'+lian'} &

ti,„b„., =-i[(.n —n')v+ (01 —v) —iy.,]p,„,,„.„
/TT
( ~ lan' btt+1Pbn+1; bn'+1 Pan; an' lan'; bn'+1}

Pcn cn. = 1[(n. n—') V - ir—c]Pcn;c. +r.Pan;an'

v, , )3 ~ 2cn, fn 1pfn-1; cn' pcn fN-1 2fn'-lp cn'

rh
Pfn 1'fn i i[( }V rf]pfn 1;fn' 1— -. -

12~1bn'&4;atf) &

0 =-[t(ro —v)+y.b]o»
/Tr

lani bn+1 22 11 lan ;bn'+1 }&'

0 = [-t(01—v)+y. b]o„

1"1bn+1;.an 11 22 1 bn'+1 i an'} &

TT
ybO22 3( lbn+1;an 12 21 lan'ibn'+1} &

'/TT
yf 33 ( 2-fri 1;cn 43 34l'2-cn', fn' 1)t-

o=- [- ( — )+y.,l;.

(3.6)

'/Tr1"2cn;fn 133 44~2cn-', fn'-1) &

0 = —[3(00—v) +y,f]o„
2fn 1;cn 44 33.~2-fn' 1;cn'}&-

TT
Yc 44 yaOll ( 2cn', fn 1O34 43 2fn' -1;cn'}'-

The initial condition that the molecule is injected
in level a gives us the condition

'/TT3'\" 2fn 1;cnPcn; ftt' 1Pfn-lien' 2. cn'-if n' 1--p„. (t.) = p,„,,&(t.) . (3.7)

p,„f„,, =-i[(n —n'). v —(01 —v)- y, l]p,f„,f~,, Also,

p„„,(t, + T) = p,„.~(t0+ T) + pb„.b~(t0+ T)

+ p,„.,„.(t, + T)+ p,„.„„,(t, +T)

pfn ftf( 0 } pin'ln'( 0+

+ p „. „,(t0 + T) .

p:, =-i[(n —n'}v —(01- v) —iy„]pf„, ,„,
/TT( ~ 2ftt 1' cnPcn' cn' Pf n 1;f-0'-1~2fn' 1;cn'}--

(3.4)

(y p . p . ,y—3(V2cn; fn 1r ft& 1 [fttb lcn; cn' -2cn', ftf-1)&-
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At time t, +T all elements except p~„~„,(t,. +T),
p, „.,„,(t, + T), and p „. „,(t, + T) are negligibly small,
since T is taken to be larger than all molecular

'decay times involved (and smaller than any decay
or growth time of the laser mode).

Using Eq. (3.3) and Eq. (3.5), we obtain

P«(to+T)= r&obb + ybo» +rbo«+r o» (3 6)
(.":".".) 4":." 'b)

In matrix form, Eqs. (3.6) are [with n. —= (+ —b)]

~ / +y ((() ~l bn'+1; gn'

0 V1~;b.+1

0

0 0 0

V1bn+1; an

0

0

1bn+1; an 1 an'e bn'+1

-Vb ~ 1 ~ ~ 0 0

0

0 0

0 ~22

0 0 ZP f -V2~; f"-1 V2f 0

0 0 0 Zy cf 0 2fn-1q cn

0 2cn, fn-1 0 -~ - »cf -V2c~-fn 1

Zy 0 0 0 2 cn, fn-1 2fn'-1; cn' ZPC &44

—iP„„,(tb)

0

0

0

0
(3.9)

0

(3.10)

where

The first four equations are not coupled to the last four; they form a closed set (though the solution from
these for o'» is required for the last four). The solutions are those of Scully and Lamb:

I

(y, + y )o„=p„„.(t, ) —[(n + 1)$. ,+ (n ' + 1)6t„*,„]p„„,(t,),

~(b(y.b+ ia) +g', (n' n)—
(y, +y )y b(y, b+ & ) +g,y, b(y, + y b+ y )(n + 1 + n '+ 1)+ g~ (n —n ') [g~(n —n ') + id. (y, +yb +y )]

(3.11)

and

y,o„= (6t„„,+8,„*.„)[(n+ 1)(n ' + 1)]'"p„„,(t, ) .
The solution simplifies considerably when we wish to look at the diagonal, on-resonance case; then,

(3.12)

~.+~. ""q 4 +r hp' ,+ dl(~.+()R.(~.+~., ~~.h.,) (3.13)

r b4bglpn -1 .n -12n

..'.» (r, +r

gaby.

b+2a, nr.b(r. +rb+r )
Kn'" n'-1 &

The solution of the triplet equations is

(3.14)
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2iy~y, ~ g, (nn'}2/'(-iy, cr„)
yGyz(yB&+h~)+ &B(n'+n}r,z(y, +yi)+g, (n' —n)[g', (n' —n)+id. (y&

—y, )]

r.( ir—o'„)[ir (~'+y', )+g:n'(&+ir„) —g'. n(& —ir„)l

r,y~(y'~+ a'}+g',y ~(n'+n)(y +y~) +g', (n' —n) [g,'(n'- n)+ ib (y~ - y )]
which for the on-diagonal, on-resonance matrix elements gives

2rlr By+a(n+ }p .2. +1 'r 2(n+ 2)r,y,+
y,yyy, ynn y,y(y, +yy)2(n+1) y, +y . (y +y )y,y', +2(n+2)/n(y, ny +y )y, ) '

i n'- n'+Z I

Ypp ++2 2Yp f+ 7 (y 2(n+1)y,y.g',
y y"'"lyln2lnny( .yn)yl. ynyl( (y. +y )gy'. , n22( nn)(( y ny, .ny)y. ,) '

Using the coarse-graining approximation, "we obtain

p„„=r.[p„„(i,+ T) —p„„(i,)]

If we include the loss terms for the cavity and use E(ls. (3.8) and (3.19), then with the notation

A=-2a;r. /(y. +r )r.2

4g",r.(r-. +r, +.y.)/(r. +y.)'r r'„,
G =-2g', r, /y, y„,
H = 4g',r.(r-.+r,)/r, r',r'„,

we obtain on performing some algebra, ,

An ( y ( A(n+ 1}/r
1 (fl /A}( 1

(3.15)

(3.16)

(3.17)

(3.18)

(3.18)

(3.20)

Gn ( y. (, A(n+1)/r.
""1+(B/G)nl(y+y„( (+(B/y(){n+())

y„ i 1 A(n+1)/r G(n+ 1) y, A(n+2)/r,
"" ' y +y. /I 1+(B/B)(nn+( "' '"' 1+(B/G)(n+1) y +y . (n(B/B)(n+2))

—Cnp„„+ C(n+1)p„„„„.
After some more algebra, we obtain

An A(n+ 1) Gn (I A(n+ I}/r, ( y,.

pnn pn l, n-l I+ (II/A)n BB I+ (fi/A)(n+ 1) nn I+ (jj/G)n I( 1+(&/A)(n+ 1) l(y +y

G(n+1) A(n+2)/r, ( y,
P"+' ~ "+' 1+ (H/G)(n+ 1) 1+(8/A)(n+ 2) i

I
P"" P""'"n'

&&a+&m]
(3.21)

which can be written as

~no = Tx + ~xx+ Txxx+ Txv+ Tv- + Tvx ~

In the steady state, detailed balance prevails, giving a one-step recursion relation:

1 Gn A(n+ 1)/r, y
1+(B ) /B"n'" "" 1+(ll/G)n. (n(B/B)(nn() y +y )

i.e., with P(n)= p„„,

A G/C y, A(n+ 1)/r,"G "( "'" "1 (B/G)
' '

1 (B/B)( '()I ' (3.22)
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This is the recursion relation which gives us the
dye-laser photon statistics.

Equation (3.21) has a very direct physical inter-
pretation. The first term represents the flow of
probability into the n photon state from the n —1
photon state, by stimulated and spontaneous emis-
sion. This flow is given by the rate of injection of
atoms into the upper lasing level times the prob-
ability of emission by n —1 photons times the prob-
ability of n —1 photons. The second term repre-
sents the flow of probability away from the n
photon state due to emission. The third and fourth
terms do not occur in the usual laser theory.
They represent the flow of probability out of and
into the n photon state due to absorption in the
triplet states. The third term can be interpreted
as being the rate of injection of atoms into state
a times the probability of not going to level b

through emission times the probability of not de-
caying to some nonlasing level in S, times the
probability of absorption in the triplets times the
probability of having n photons. The fifth and sixth
terms have the usual interpretation for decay
terms. 4 Each term thus has a simple interpreta-
tion, which allows us to see clearly the processes
going on in the dye laser.

If the term in the braces in the denominator of
the right-hand side of Eq. (3.22) is replaced by 1,
then we obtain the same photon statistics for the
dye laser as we did for the laser with a saturable
absorber in the approximate expression Eq. (2.27).
The similarity between these kinds of lasers shows
up clearly in the photon-number distributions.

The correspondence of these results to the re-
sults of Schaefer and Willis are apparent if one
puts y =k», yb=v„, y =v,„, y, =v~„y&=
and P =0. This is the notation usually used in dye-
laser work. Then, letting

1

SNv, S'(vs, + vsU+ksT)Nv,

su ~ST ( SU+ ST) Sl

T T'(v T, + v T„)Nv,Pfv„
V ~) V~)V~„

where these terms are all defined in the first of
Ref. 8, we obtain a form for P(n) identical with
their form for R(n), the photon-number distribu-
tion. We refer the reader to Refs. 8 and 9 for de-
tailed discussions of hysteresis and bistability in
dye lasers. Graphs of the second factorial moment
of the photon number vs the pumping parameter
were presented in Ref. 15.
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APPENDIX: DERIVATION OF EQS. {3.2) FROM THE
HAMILTONIAN {3.1)

The states we wish to consider are (for n',
n'+1, and n'- 1 we put primes on the Greek let-
ters):

(a, n, 0„0 ) =o,
(b, n+1, 06) =P,

(m, n, 1.}=T,
(c,n, 1„0,) =y,

(d, n+1, 1,) =66,

(f,n —1, 1„0&=/,
(l, n —1,1„ly) =X,

(d, n, 1„1,) = r„

(Al)

where the quantities refer to molecular, field,
and reservoir states, respectively. Then, using
Eq. (3.2a}, we obtain

p„,=-z[V„p], , zg(—V'„p„,, —p „,V'„...)
S

—i P (V„p, ,—p, ,V.. .),

P88' LV1&p&88' Z &V866P668' P86~&" 6'8'}
b

P~, =-i(V„P)pots-i ~ Vg~ P~
b

b

VV ~~ rr
a ill

(A2)

t ~~, =-i(V~6P6v- p)„6,V8~,) i
f

—i(Vy~p~e, +QVy6 p6 6, -Qpy~. V(.6,)

P6, 6;
= -'(V6,ypy6,

—P6,, V,' 6;»
(TI'C T1'&

P6 6' &' 6 ypy6' P6 'y'" y'6'}

p„„=- ( i;V. .p; p,.V'. —;}
ig(V~y6 P6 y' Py6'V6'y'} ~VS P~ry'

C

t.; ~ly, o].; ~g (yl,o„oyl), ., ,-.

The author is grateful to Professor L. Mandel
for introducing him to the problem and for con-
tinued guidance and encouragement. He would like

p„,=-i(V, p, .—p, ,V „,).
Here, p is the total system density matrix. Now
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we write the following equations; these elements
are required in Eqs. (A2):

p„,= i(V-'„,p, P„—„V~ .) —zV;, p, ,+ip„,V,,„,,

p e=-S
yat

t

p6 g' " g Bpbn+j. 'bn'+j. &

0

Pe P —z(Ve ePee' Peeee eee') i

pe„,=-z(Veeepee„, —pe,V'w) —i(-pe, , V, ,„,),
ntp6, = -z(V~ 48~, —~6 y,Vy,o,) + zpq ~.V~, „

py6' ~& r6 p6 6' pyy'" y'6'~ —~'""y0 po. ~c c c c

Pre' z(" xePee' Pat'" ve') ~

pe, e =-z("e, Pe . pe-, '"'ve )

P„,, = z(V-„' P; P,—e V'e e) —z(V:ePe,v»
fp ~,=-s(V,p„~,—p „,V~, ~, g -iV,p, ~, ,

P,„,=-i(V„P,—P„,V.. .) .

(As)

pgy. = z

p e= —2bbe

t
V6+Pbn+1 an' &

t
~t pcn-, cn Vy'~'

tp

t
r fdt V)~pyn-, .

y

0
t

6 4.—— v 6cypcne fn' j.
0

t
dt V ypcn, fn'-i

(A4)

These equations are solved by a decoupling ap-
proximation, e.g. ,

t

p, ,=-i dt'V, p,n. ,„,.
tp

for both a, and m reservoirs. Therefore,

Similarly,

pyy' pcnl eg cn'l+ pcn, cn'pl~ la 0

p, , (t') = p, , (te) =0

Therefore p„~(t)=0, in the first of Eqs. (A3). When

pyy has to be evaluated in the fifth of these equa-
tions, however, we take p» (t') =1, since the
molecule has made a transition to the triplets.
Making similar approximations for the other terms,
we get

Substituting these equations in Eq. (A3) and fol-
lowing the same procedure as in Scully and Lamb
(Ref. 1) of making the Wigner-Weisskopf approxi-
mation and tracing over the reservoir variables,
we obtain the Eqs. (3.2b) with

y, = 2mW(ur(ac))
I Vu, ci I'

~

ye =2vW(cu(bd))
I

Vee

y, = 2m W((u(cd))
I V;e „I

',
27fW(cd(fl))

I Vfe a

y =2~W(~(a~zz))
I V.o

'y, e= e(y, +ye+y~) ~

yey = e(ye+yy+y, ) ~

Here the W's are the corresponding phase-space
mode densities for the a-c, b-d, c-d, f-l, and
a -m transitions. '
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