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Radial integrals for electron pair production in a point-Coulomb potential
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A theoretical formalism is given for the calculation of electron pair production in a point-Coulomb potential
using the method developed by Sud, %right, and Onley for expressing the radial integrals over the product
of Dirac-Coulomb functions in terms of a matrix generalization of the I' function. A partial differential
equation in lepton energy satisfied by the I function is obtained. This partial differential equation can be
integrated numerically to obtain the positron spectrum for high-energy photons.

INTRODUCTION

Calculations of the pair-production cross section
in the point-Coulomb field of the nucleus, in the
plane-wave Born approximation (PWBA), have been
performed by Heitler and Sauter' and Bethe and
Heitler. ' The P%BA calculations are valid for
light elements but the results are about 10% high
for heavy elements. Many calculations have been
performed by using Sommerfeld-Maue wave func-
tions' for leptons, which are not valid for all val-
ues of Z in the intermediate-energy range (e.g. ,
Maximon and Bethe, ' Bethe and Maximon, ' and
Davies et at. '). Even for low energies it is well
known from experiments that large deviations
from Bethe-Heitler results are expected owing
to the distortion of the lepton wave functions in
the Coulomb field. These calculations are valid
for high-energy photons. These difficulties can be
overcome by doing an exact calculation. For exact
calculations [the distorted-wave Born approxima-
tion (DWBA)] the matrix elements are obtained by
using electron (positron) wave functions which are
obtained by solving the Dirac equation in the static
nuclear Coulomb field. A number of DWBA cal-
culations for pair production are available in the
literature, e.g. , Jaeger and Hulme', @verbd et
gl. ,

' Dugne and Proriol, ' and Tseng and Prait. "
It has been possible so far to compute the pair-
production cross section only for low-energy pho-
tons. The major difficulty in extending the D%BA
calculations to intermediate- and high-energy pho-
tons lies in the computation of a large number of
Appell's hypergeometric functions I", for the radial
elements. Recently a new method has been devel-
oped to handle the radial integrals involving Dirac-
Coulomb functions. (For details see Sud et al. ,

"
Wright et al. ,

"and Sud and Sud.") In this method
the radial matrix elements for the pair-produc-
tion process are obtained from the elements of
the matrix I" function. This matrix Z' function has
many useful properties, including a recursion re-
lation similar to that of the I' function. This prop-

erty will be used to reduce the number of Appell
hypergeometric functions F, to a minimum, thus
reducing the computational work. In the calcula-
tions hitherto performed one repeats the complete
calculation at many values of the electron or posi-
tron energy in order to generate the positron spec-
trum. Thus one has to compute the Appell hyper-
geometric function I', afresh at every energy. The
matrix I" function satisfies a partial differential
matrix equation in energy. " Given the matrix I'
function at some energy of the electron (or posi-
tron), this equation can be integrated to evaluate
the radial matrix elements as a function of energy.
This technique has been used by Soto Vargas to
compute the spectrum of the virtual photons
emitted in an electron-nucleus scattering. In
Sec. II we briefly describe the technique and ob-
tain the partial differential equation used to propa-
gate the radial integrals as a function of energy.
An expression for the pair-production cross sec-
tion is given in Sec. I.

I. PAIR-PRODUCTION CROSS SECTION

The differential cross section for pair produc-
tion is given as

do=(2m) '(r', /~)k 'p,E,p E dE,dQ, ,dQ ~H ~',

where r, = e'/mc', a = e'/Sc, 0 is the photon ener-
gy, and E, and p, are the energy and momentum of
the positron (+) and electron (-). The matrix ele-
ment II~ is given by

H~= d'xg (y e) e p(xik r)g, .

The functions P and P, are the wave functions for
the electron and positron. Their asymptotic
forms contain a plane wave plus incoming spheri-
cal waves. These functions are solutions of the
Dirac equation with a Coulomb potential. " The
wave function for the electron is given as
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with

Z/2
=4 SC i'"C l, ~ j„; p„—m, m Y", -. " p2E P„

m K

(g(~) x„" &

(,if(~) x"„I '

The radial functions g„and f„are given by

e" 'lr(y+ay) I y . )(„,iy, ),)2;„
pg2 ( )

Im ((y+ iy)e 8' M (2ipt )}'
E —1 '~' e"~'lr +i

where M is the Whittaker function;

X~ = Q C(l, p, j; p. —m, m) Yg "(r)X
m

are the spin-angle functions with

for j= $-z
-l —1 for j=l+& '

where l and j are the orbital angular momentum
and the total angular momentum, and p. is the
eigenvalue of jx. Some other constants in Eg. (3)
are

s„=exp l i&„l,
with

5„=g ——,'wy —argl'(y+ iy) + ,'(l+-1)v,

in which

y = [» —(Za)']'~', y = c(ZE/p,

and where g is defined by

exp(2iq) = -(» —iy/E)/(y+iy) .
The function (I(, is chosen according to the rules
given by Rose." By using the wave function as
given in (3), the positron spectrum is given as'

do 22
~,~ ul

Kgb N

in which

L (L+ pg) I 1 n r((2)=f W ( 1) ~ ~mi((~('
((+(( f((+(( ~ ~ &l(I yg) I 2Q (b+ p + p )a

~ ~m~n

where

x [(E +1)(E +1)]'~' '
l

V(1 I l'M)R'

»+M»+M—((E—1)(E —1}]', *( '
( ( V(V I(MIR, '

(2p,)"+' '(2p )"=' 'e""+"-' 'ir(y, +iy,) I Ir(y +iy ) I

K+K« r(2y, +1)r(2y +1)

V(l Ll,'M) =(2L+ 1)[(2l + 1)/(2l', + 1)]C(l,L, l,';0, 0, 0)C(l, L, l,';M, M, 0),
R'„„=&m(exp[-i(7('/2)(y, + y -L —1)] [K,K F,(a, b„b;c„c;x., x ) +X,X*F,(a, b„b —1;c„c;x„x)

vK,*X F2(a, b, —1,b; c„c;x„x ) —%*K',*F2(a, b, —1, b —1;c„c;x„x ) ]},
y, = Zc(E,/P„
y, = [»', (zc.)']"'-,

(6)

and The values of some parameters are

l~=
K &0 K, —1, K,&0

EI—K~ —1y K~~0 ~
—K~~ K~+0

. a=y, +y -n, b, =y, +iy, +1, 0,=2y, +l. ,

If,= (y, +iy,)e'"~,



20 RADIAL INTEGRALS FOR ELECTRON PAIR PRODUCTION IN. . . 2031

where x, and q are defined by

C(l, L, l,';M, M, O) is the Clebsch-Gordan coeffi-
cient and F, is the Appell hypergeometric func-
tion. " The positron spectrum is obtained by nu-
merical evaluation of Eq. (5). One computes the Ap-
pell hypergeometric functions F, in the radial inte-
gralsR„', „ for a particular value of the positron
energy; it has then to be reevaluated for each
value of the parameter a(a = y, + y —n for n = 0 to
L). In Sec. II we.describe a method which will
facilitate the computation of the R„'

W(A, B;r) = U (k,r) S U,(k,r)(e'~"/r). (12)

The integrand W satisfies a 4 x4 matrix differen-
tial. equation of the type (8). The A and B ma-
trices for this particular case are given as

A=A t3I,+I, 3A, —I4,

( iy, y, —iy, ) ( i-0)
I, B=!

i),y, +iy, -iy, ) ' k 0

where the+(-) corresponds to the positron (elec-
tron) and B,=p, B'. To evaluate R„' „we form the
integrand of the direct product of the radial func-
tions U„which is given as

II. ENERGY DEPENDENCE OF THE RADIAL
INTEGRALS

B=B I + I (3B,—ikI . (13)

If we take the nucleus to be a point charge,
the radial Dirac-Coulomb functions for a lepton
of energy E and mass m satisfy the first-order
matrix differential equation

dU(r) A
)! ( )dr r J

where the constant 2 x 2 matrices A and B corre-
sponding to the standard form of this equation are
given by

ctZ ) ( 0 -(E+ 1) i

(-&Z ~ j'" &E-I 0 j '

where z is the eigenvalue of the Dirac operator
K= p(o'L+1). The normalized solution for this
particular choice of A and B can be written as

(v"(r) v'(r) )
«'(r) U'(r) &

'

where the labels R (I) designate the regular (ir-
regular) solutions of Eq. (8), and are given expli-
citly in terms of the Whittaker function (compare
Eq 4).

exp(my/2) I I"(y+ iy) iv" r =
p~(2p ) 'y+ Rel y+iy

xexp[-2i(y+ —,'))i] exp(ii))M, &. ..„(2ipr)j,

and the recursion relation satisfied by the matrix
I' function

AI'(A, B)= BI'(A+ 1,B) . (15)

Thus we compute the I' matrix for n = 0 and solve
for other values of n by using Eq. (15). It has
been shown by Wright et aL."that the matrix I"
function satisfies two first-order partial differ-
ential equations in the momentum:

In these equations I is a unit matrix of the dimen-
sion of the subscript level. The integral of such
an integrand (Eq. 12) is defined as a matrix I'
function (for details see Ref. 11),

A)+ 1, ))=)f ))(A, );)v) dr,
(o)

where it is assumed that the integral is conver-
gent at the upper limit and the (0) indicates that
any simple poles present at the origin have been
removed. The four F, functions required for
R'„„are obtained from the first column of the 4
x 4 matrix 1" function. The radial integrals
R'„„have to be computed for every value of a
(a=y, +y -n, n=0, L) in Eq. (6). We will calcu-
late R'„„by computing the 1" matrix for only one
value of yg. This is made possible by using the
following properties of the integrand:

r'e ~"W(A, B;r) = W(A+ aI, B+ bI; r),

8$'
= T,I' (i= 1, 2; k, = p,. k, = p,), (16)

E —I)!' ' exp(my/2) I I'(y+ iy) i

E+1& Pq(2p ) (2 +1) ™
x exp[-—,'i(y+ -,')i) ] exp(ii))M, &, ,„„(2ipr)].

The solutions of Eq. (8) can also be written in a
representation in which B is diagonal. The ma-
trices A and B corresponding to these solutions
with B in diagonal form are

where the matrices T, for our case are given in
terms of A, and B'.

T, =(A SI,)/p —(B'SI,)B (A+ I4),

T,=(I,SA,)/p, -(I,SB')B '(A+ I4),
where A and B are as defined in Eq. (13). To gen-
erate the positron spectrum we will require R'„
at various positron energies. This is done by
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computing the matrix I' function as a function of
E,. Thus we have

(18)

III. CONCLUSIONS

In the derivation of Eq. (18) we have made the
implicit assumption that the matrices A, and B'

B|." BP Bp BI' Bp„
BE, BP, BE, Bp BE, '

sl (E. E
8E, Ip, '

p
=( —'T, -=T, [r.

Equation (I8) is straightforwardly solved by nu-
merical integration given the initial value of I',
thereby evaluating the matrix elements over a
complete range, including regions where direct
evaluation of I' may not be feasible.

are independent of the lepton momenta. How-
ever, the 4, matrices are dependent on the mo-
mentum variables through the parameters y,
= ~ZE,/p, . In the calculation of the positron spec-
trum from a high-energy photon in the field of the
nucleus, for positron energy E,» m (mass of the
positron), we can write y, =o,Z(1. + m'/2p', ). We
intend to use the technique in the energy range
E,» m where this approximation is valid. For the
low-energy end of the spectrum, where the ap-
proximation is not valid, the matrix 1 function will
be calculated directly. The method results in a'

considerable saving of computational time and
therefore it is possible to perform the calcula-
tion for high-energy photons. The calculation of
the positron spectrum is in progress and will be
published later.

W. Heitler and F. Sauter, Nature 132, 892 (1933).
H. A. Bethe and W. Heitler, Proc. R. Soc. London 146,
83 (1934).

A. Sommerfeld and A. W. Maue, Ann. Phys. (Leipzig)
22, 629 (1935).

L. C. Maximon and H. A. Bethe, Phys. Rev. 87, 156
(1952).

H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768
(1954).

H. Davies, H. A. Bethe, and L. C. Maximon, Phys. Rev.
93, 788 (&954).
J. C. Jaeger and H. R. Hulme, Proc. R. Soc. Lond. 153,
443 (1936).

I. gverbgf, K. J. Mork, and H. A. Olsen, Phys. Rev.
175, 1978 (1968).

~J. J. Dugne and J. Proriol, Phys. Rev. A 13, 1793

(1976).
H. K. Yseng and R. H. Pratt, Phys. Rev. A 4, 1835
(1971).
K. K. Sud, L. E. Wright, and D. S. Onley, J. Math.
Phys. (N.Y.) 17, 2175 (1976).
L. E. Wright, D. S. Onley, and C. W. Soto Vargas, J.
Phys. A 10, L53 (1977).

~3K. K. Sud and A. R. Sud, J. Phys. A 11, L39 (1978).
C. W. Soto Vargas, Ph.D. dissertation (Ohio University,
1977) (unpublished).
M. E. Rose, Rel~ti~istic FEectron Theory (Wiley,
New York, 1961).
P. Appell and J. Kampd de FOriet, I'"onctions hype~-
I.eometxiques et hyperspheriques (Gauthier-Villars,
Paris, 1926).


