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Absorption spectra of a system of atoms under cooperative conditions
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The problem of the energy absorption from a weak probe field by a system of atoms driven by a coherent

laser field is considered with special reference to the collective behavior of the atomic system. The changes in

the nature of the absorption spectra as the intensity of the coherent laser field is changed are examined

explicitly for a system of two atoms. Cooperative effects are shown to be important for weak laser fields. For
strong fields, it is shown that the absorption spectra under cooperative conditions differ from those without

cooperative conditions only by a scale factor.

I, INTRODUCTION

Saturation absorption spectroscopy is a power-
ful tool for measuring homogeneous linewidths,
relaxation times, level shifts, etc. , in gases. ' '
The absorbing medium is saturated by a strong
laser field and the absorption of electromagnetic
energy from a weak probe field, propagating either
in the same direction as or in an opposite direction
to the strong laser field, is measured. In theo-
retical calculations the interaction of an atom with
the weak probe field is treated perturbatively and
that with the strong pump field exactly.

Previously, Mollow and Haroche and Hartmann'
calculated the spectrum of the energy absorbed
from the probe field by a single two-level atom,
in a strong laser field. They found that the ab-
sorption spectrum changes di.astically with the in-
tensity of the pump field. For low pump intensities
peak absorption occurs when the probe is in reso-
nance with the atomic transition frequency. At
high-field intensities the absorption is negative in
a certain range of frequencies, indicating that
stimulated emission takes place, amplifying the
probe beam at the expense of the pump field. A

recent experiment' has confirmed some of these
predictions.

In all these calculations, however, it was as-
sumed that different atoms interact with the ex-
ternal field independently of each other. Such an
assumption may be expected to hold for high-field
intensities, when the field reradiated by the atom
is small in comparison to the pump field, so that
the atom-atom interaction is insignificant com-
pared to the atom-field interaction.

A study of the cooperative effects in reso-
nance fluorescence was undertaken by Agarwal-.
et al. ,' who studied the interaction of an external
electromagnetic fi.eld with one-, two-, and three-
atom systems. They found that as far as the first-
order correlation function (S'(t+ &)S (t)) is con-
cerned, the light scattered by a system of two-

level atoms driven by a laser field is strongly in-
fluenced by atom-atom interactions only at low-
field strengths. On the other hand, for high-field
intensities, the laser-atom interaction predomi-
nates. However, in the case of the second-order
correlation function (S'(t)S"(f+ 7')S (I + v)S (/)) the
collective effects play an important role both at
low- and high-field intensities.

It would be interesting then, to study the effect
of collective behavior of the atoms on the absorp-
tion spectrum of two-level atoms for various field
strengths.

We have studied the absorption spectrum of a
system of two two-level atoms, taking into account
the vacuum field-induced cooperative effects and
we have compared the results with the case where
collective effects are ignored. An outline of this
paper is as follows. In Sec. II we present the
mathematical formulation of the problem, and
show how the absorption spectra can be computed.
In Sec. III we present analytical but approximate
results for the absorption spectra in the limit of
intense laser fields (the probe field is always
taken to be weak). In this limit, we show that
there is scaling of the response functions. Final-
ly, we give the results of our numerical analysis.

II. MATHEMATICAL FORMULATION

We consider the system of two-level atoms in
a strong laser field that saturates the system. A

sneak probe beam is introduced after the system
has attained steady-state conditions. The time-
average rate of absorption of energy by the system
from the probe field is given by

d7'e '"'([S (r), S (0)j), , (2. I)

where co is the frequency of the probe field and E
is its amplitude; d is the dipole-moment matrix
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element; S"= Q, Sf are the collective dipole opera-
tors for the system in the Heisenberg picture.
The steady-state expectation values are defined a.s

tion of the atoms with the strong pump field. The
reduced density operator for the atomic system
can be shown to satisfy'

(S'(v)S (0))„=lim (S'(t+ w)S (t)) .
g ~(o

(2.2) —= 2y(S PS' ——' S'S p ——' PS'S )

The time-correlation functions are calculated in
the absence of probe field. The laser field, how-
ever, is always present.

The time-average rate of absorption per unit .

flux of the incident field is

(":&.,=-:::]~ ]

X He dTe '"'([ S'( r), S(0)])„,
0

(2.3)
since the dipole moment d is usually randomly ori-
ented and hence the average value of

I
d ~ E ~'/

is 1/S~d~'. Since we are considering the absorp-
tion in the vicinity of the atomic transition fre-
quency, co varies slowly so that the time-average
rate of absorption of energy per unit Qux of the in-
ci*dent field varies according to the function

/

Rf l-=tef)(edee ' '([S'(e), S (0)])„, (2, 4)

and hence in what follows we only calculate B(~).
We start with the master equation for the re-

duced density operator for the system, taking into
account the radiative decay of the atoms into the
va, cuum state of the radiation field and the interac-

td-S'+ s i Pl in -(S')P l,
where &= ((d, —&u~), &u, being the atomic transition
frequency and ~~ is the pump-field frequency; 2&

is the Einstein A coefficient for the single atom;
g=-d ~ E« isthe coupling constant with the coher-
ent laser field, Eo& being the a,mplitude of the
pump field, E=2Eoz coscozt, and d is the atomic
dipole-moment matrix element; S'= Q, S( gives
the difference in the population of the two levels.
In deriving Eq. (2. 5) the interaction of the system
with the laser field has been treated exactly.
However, in treating the interaction with the
va. cuum of the field, Born, Markoff, and rotating-
wave approximations have been made. These ap-
proximations are justified as this interaction is
relatively weak and the vacuum is a continuum of
modes. The reduced-density operator p evolves
in a, frame rotating with the frequency of the pump
field ~~. The time-correlation functions can be
calculated using the solution of (2.5).

Projecting Eq. (2. 5) into the Hilbert space of
energy eigenvalues ~j, m) withj 1,.=m=0, +1, we

get the equations of motion for the matrix ele-
ments p„,„(t)of the atomic density operator as

j.A

( 1/2 + 1/2 1/2 1/2
m' P 1,mm m' 1Pm'+1+, m m 1P ,+mlm em 'P ', ml)mt (2. 6)

where' =2yt, v„=(j+m)(j—m+1), so that v, =v0=2;v, =0. Equation (2. 6) differs from that in Paper I
by the presence of the detuning term. It should be noted that j=1 corresponds to a cooperative pair of two
two-level (j= —,

') atoms.
Writing the elements p, (t) of the density matrix as elements 4', (t) of a column vector 4', the equations

can be cast into a matrix force

—=ZC +I
dr

where 2 is an 8 x 8 matrix defined by

2 0

(2. 7)

ip/2 -ipt 2 -(2+i&/2y)

-ip)t 2 ipv 2

iP)t 2 2iPv 2

-i~2 -2iPv 2

-(2 —i&/2y)

-~pf2

(1+2i~/2y)

0

0

-(1 —2in, /2y)

(1 + i~/2y)

(1 i~/2y)
(2.6)
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where P=g/2y, and 4 is the column vector

Pl, 1

Po, o

~V

Pl, o

t~.(~ —~g) = [(M«+M ..)((,(")—0,( ))

+(M,.+M.,)(q.(-) -y, (-))
+ (M4, + M.,)((~,,(~) —q, ( ))

+ (M„+M88)(2q,(~)+ y, (~) 1)

Po, 1

Pl)-1

P-1) 1

and I=
+ (M~7+M87)p, (~) —(M4, +M )(,(e))

—(M43+M„)P,( )]~. . .„„)+c.c.
(2. 16)

Po, -l

P-1
~ 0

(2. 9)

The Laplace transform of Eq. (2. 7) is

4(z)=M%(0)+z 'MI, (2. iO)

4'(~) = 4'(t) = limz4'(z) = (-Z) ' I .
t «~ z~o

(2. 11)

%e now proceed to calculate the function

where M= (z —g) '. The steady-state solutions
are given by

Since we would like to examine the influence of
collective behavior on the absorption, we compare
the absorption when collective effects are included,
which is given by Eq. (2.16), with the correspond
ing absorption when collective effects are ignored.
If the atoms absorb energy independently of each
other, then the total energy absorbed by N atoms
isN times the energy absorbed by one atom. The
energy absorbed by a single atom from the probe
field is a well established result and is given by

R~(4) —cup) = [&S*(~))/P(z)] f(z + 2y)(z +y+ i6) + 2g

—2g'(z + y+ i a)/(y + is)] ~, ,„„)+ c.c. ,

(2. 1V)

where

R(~) = Re dq-e '"'lim & [S'(t+~),S (t)]& . &S'(-)) = ——', [1+2g'/(y'+ ~')] ' {2. .18)

&A(t)& = Q f„(t,t')&A„(t')&, (2. 12)

where f„(t,t') is a c-number function and t & t',
then the two-time expectation values can be written

(2. 12)

%e use the quantum regression theorem'"" to
evaluate the two-time commutator in Eq. (2. 12).
The theorem states that for a quantum-mechanical
system, which is Markovian, if the one -time ex-
pectation values ca,n be written

P(z )= 4g (z + y) + (z + 2y) (z + y) + a (z + 2y) .
(2. i9)

I

I

3 -I
I

I

1

I

I

&&(t)&(t')&= g f.(t, t')&&.(t')~(t')&. 2

In this case, the one-time expectation values of
& S'(t)) are obtained in terms of 4', 's as

&S'{t))= Tr[p(t)S'] =e' ~'Tr {p(t)S')

=W2(C, (t) + e, (t))e*"~' . (2. iS)

To Eq. (2. 15) we now apply the quantum regression
theorem to evaluate the correlations (S'(t+ T)S (t))
and (S (t)S'(t + 7')& and obtain the following expres-
sion for the energy absorbed by the cooperative
system of two atoms:

2.5
(~ -~L)/2g—

FIG. l. Behavior of A& (solid curve) and 2 Al (dashed
curve) as a function of ~ for P=0.1 and D=o.
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FIG. 3. Same as in Fig. 1 but with P =5.0, 4=0.

~ ~ -~V2u
FIG 2. Same as in Fig. 1 but with larger pump field

P =0.5, ~=0.

In Sec. III we present the results of our numerical
analysis for R, (&u —~i) and its comparison with
2R&((d —co| ).

Since the spectrum of energy absorbed depends
strongly on the steady-state inversion, we also
study the effects produced by the collective be-
havior on the power broadening. In the two-atom
case, we have

(S'(~))= Tr (p(~)S*j=2P, (~) + g, (~) —1. (2. 20)

As the detuning & is increased, (S (~)) decreases
and the half-width at half the maximum height of
the plot of (S'(~)) vs b, gives the power broaden-
ing. " For the single atom, from Eq. (2. 18), we
readily obtain the power broadening 5~ as

5~=y(1+2g'/y')'~'-~g for g)) y.
Thus 5~ is proportional to g and hence to the in-
tensity of the pump field.

III. SCALING OF THE RESPONSE FUNCTIONS IN THE
LIMIT OF STRONG COHERENT DRIVING FIELD

Here we analytically calculate the form of the
absorption spectra. in the limit when the driving
field is very strong. We show that the absorption
spectra is identical to that of a single two-level
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FIG. 4. Same as in Fig. ].
but with detuning ~=y0&
P =0.&,

R(~)
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FIG. 5. Same as in Fig. 4
but with P =2, A=lop.

atom except for a scale factor. Ne restrict our
analysis to the ca,se when the driving field is ex-
a.ctly on resonance with the atomic frequency.
%e use the method of secular perturbations well
known in the theory of nonlinear oscillations" and
which has been applied' "to the problem of the
absorption spectra of a single two-level atom and
to the master equation (2. 5). If we introduce the
new angular momentum operators defined by

P'=iS' ' z(S' S-), Z'=
—,
' (S'+S ),

(3. I)

—(S') (g,e '"'+g,*e"")j, (3.4)

then in the limit of very strong fields g» y one can
show that

(~'& = (--,' r+2 g)«'),

ln deriving Eqs. (3.2) the rapidly oscillating
terms (the oscillating frequency is now 2g) have
been ignored. The above conclusion is valid for
the single-atom situation as well as the two-atom
situation. The interaction with the externa, l field
(probe field with frequency co) has the form

a,„,=g,S'e '"'+ H. 'c., n.= &u —(u, , (3.3)

since the density matrix is taken in a frame rotat-
ing with frequency w~ of the laser field. It can
now be shown that Eqs. (3.2) are modified to

«'&=(--;r -2 g}(~'&

+(g,e '"'(S') -g,*e'"' (S )

«*)=- -r«*&

+ (
-ioi wei()()(Ss& (3.5)

(g+& -iot ( &(0) ( & (0)
~ y+2 g n

( S ) (, ) + ( S')
(() )

gl 3 r+ 2ig+iQ (3.6)

The linear response of (S') to g, can be obtained
by substituting expressions like (3.6) into

( S'(t)) = (8'(t)& + —' i(A'(t)) + —,
' i (tt (t)) . (3.7)

It is clear from the above analysis that the linear
response of a single two-level atom and the two
two-level atoms can differ only by a scale factor
and it is this scale factor that is determined by
the equilibrium values of (S'), (S*). From the
results of the Appendix A of Paper I, it follows
that

(S'& —-4r/»g+ 0((r/g)'), (S'& -O((r/g)').

(3.8)

The steady-state linear response of (R'), (A*& to
the probe field, g, can be obtained from Eqs. (3.4)
and (3. 5) by replacing (S'), (S') in curly brackets
by their steady-state values in the absence of the
probe field. For example
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FIG. 6. Same as in Fig. 4
but with intense pump field
P=S, a=10y.
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The corresponding result of the single-atom case
is

&~') —-rl»g+ o((rig)'), &3') - o((rig)').
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FIG 7. Steady-state inversion as a function of de-
tuning 4=(~0-~1,) for P =0.25.

(3.9}

A comparison of Eqs. (3.6)—(3.9) gives the linear

response of two two-level atoms to be -', of the
linear response of a single two-level atom. This
in turn implies that the energy absorbed per atom
by a system of two atoms under cooperative con-
ditions is —, of the energy absorbed when coopera-
tive effects are ignored.

The behavior of the absorption spectra with and
without cooperative conditions for a system of two
two-level atoms is shown in Figs. 1-6. The
solid (dotted) lines in Figs. 1-6 denote the spectra
under (without) cooperative conditions. It is seen
from Figs. 1 and 2 that the cooperative effects
play a dominant role for weak driving fields. As
the laser intensity is increased, the two spectra
acquire the same character (Fig. 3 and 4). We
have checked with the actual numerical values for
Fig. 3, the scaling obtained above. Figures 4-6
describe the behavior of the absorption spectra in
the presence of detuning as the laser field strength
is changed from very low to very high values. The
peaks in Fig. 6 occur near +[(2g)'+ 6']'~'. Figure
5 also shows a power-dependent shift. Figure 7
describes the behavior of the steady-state inver-
sion as a function of detuning parameter. It is
seen that the cooperative effects compete with the
power-dependent broadening effects. We have
also checked that for strong fields (say P= 10) the
steady-state inversion does not depend to a good
approximation on the presence of cooperative ef-
fects.
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