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Shape of the R and P lines in the fundamental band of gaseous HD
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Within the classical path impact formalism, theoretical expressions are derived for the line shape and
intensity of the R and P lines of the fundamental band of gaseous HD. These reflect the interplay between
the allowed dipole moment and the dipole moments induced during binary collisions. The interference
between the allowed and the induced dipoles and between the dipoles induced in different collisions lead to a
line shape which is a superposition of a Lorentzian and an anomalous dispersion profile in agreement with
experiment.

I. INTRODUCTION

The fundamental absorption band of gaseous HD
was first observed by Durie and Herzberg. ' More
recently, this band has been studied by McKellar, "
Bejar and Gush, and Prasad and Red'. ' The
shapes as well as the intensities of the R and P
lines were investigated by McKellar as a function
of the density at 77 K.' He found that the experi-
mental profiles could be well represented at a given
density by a Pano profile; that is, by the sum of
a Lorentzian and an anomalous dispersion line
shape.

The theoretical shape of the R and P lines,
which is the subject of the present paper, results
from a subtle interplay between the weak per-
manent dipole moment, p.", of an absorbing mole-
cule and the dipole moment, p~, induced during
binary collisions. By itself, the permanent dipole
moment gives rise to pressure-broadened R and P
lines with widths, I", and intensities proportional
to the density, z. The majority of the absorption
arising from the induced dipole moments appears
as very broad asymmetric features proportional
to n'. Their breadth is due to the fact that the in-
duced absorption takes place only during collisions
and not in between. Therefore, the ratio of the
width of a pure allowed to that of a pure induced
line is quite small and of order v~l, where v.„de-
notes the duration of a collision and I is the width
in angular frequency units. We will not concern
ourselves with these broad features in the present
paper, as they have been discussed extensively in
the literature'; furthermore, in high resolution
these lines would appear as a broad background
on which the shar'p lines sit.

When permanent and induced dipoles are both

present, interference between these can take
place. ' ' This interference is proportional to the
product of the matrix elements p, ",-& and p, «, and
varies quadratically with the density. The impor-
tance of the interference as compared to the allowed
intensity, depends on the ratio p«f/Pf&, here 'P is
a dimensionless parameter given by g =no' =v, /r„
where 0 is the molecular diameter, and v, denotes
the time between collisions. In contrast to most
polar molecules for which the transition dipoles
are relatively large, HD has an unusually small
fundamental allowed dipole matrix element (=5
x10 ' D). Because the corresponding induced
transition moments are typically of order 10 ' D,
the interference in HD is important for densities
yg& 10 amagat. Also, because the interference is
proportional to the allowed matrix element, the
corresponding contribution to the absorption spec-
trum is sharp, and it modifies both the spectral
line shape and intensity. The modification of the
intensity of the HD lines was considered previous-
ly under the assumption of uncoupled internal and
translational motions. ' It was found that, in quali-
tative agreement with experiment, the intensity
decreased linearly at approximately 1%/amagat.
In addition to the interference discussed above,
there is another interference of consequence at
high densities due to the correlation between pure
induced dipoles in subsequent binary collisions. '
This effect, which varies as n, also modifies both
the line shape and intensity of the shape lines.
(This was referred to as "constructive intercolli-
sional interference" in Ref. 9.)

In the present paper we shall discuss the shape
of the fundamental R and P lines using the classi-
cal path and the impact approximations. " In Sec.
II we first introduce the appropriate dipole cor-

20 2006 1979 The American Physical Society



20 SHAPE OF THE R AND P LINES IN THE FUNDAMENTAL. . . 2007

relation functions and review their relation to the
line shape. In the following three sections, we
then treat the pressure-broadened allowed spec-
trum, the interference effect between the allowed
and the induced dipole moments, and the sharp in-
terference associated with the induced dipoles,
respectively. In the final section, after consider-
ing several limiting cases which illustrate the
qualitative behavior of the interference effects,
we compare our results with the experimental
results of McKellar. '

written as a sum of n-body contributions, C„(t);
specifically,

C(t) CAA(t) +CAI(t) +CIA(t) ASCII(t)

In this expression

C", "(t) = (tI"(0) ~ P "(t)),

c,"'(c =(pT"(a). Qli,'(c)

=N(u "(o) ~ v'(t))

(7)

(6)

II. DIPOLE CORRELATION FUNCTIONS

y(~) =— e '"C(t)dt
2r (2)

and the corresponding dipole correlation function
C(t) is

C(t) = g(0) ~ p, (t)) .
The angular brackets denote an ensemble average
and the other symbols have their standard mean-
ing. For the fundamental band, the stimulated
emission factor e ~" is negligible. The correla-
tion function C(t) satisfies the symmetry relation

c(-t) =c(t)+

and the line-shape function can accordingly be
written as a real function

(4)

(t)((d) =—Re e ' 'C(t)dt .1
7T p

As is well known, the absorption coefficient is
related to the Fourier transform of the dipole
autocorrelation function. In the following sections,
we will perform the calculations as if only one of
the molecules, referred to as the absorbing mole-
cule, can absorb radiation and multiply the result-
ing absorption coefficient by the total number of
molecules, N. In this picture all other molecules
will be referred to as perturbers. The absorption
coefficient per unit wavelength at frequency ~,
n((d), can therefore be written in the form

a((o) =n(4I)'/Mc)u)(1 —e 8" )(t)((o),

where the line-shape function (t)(&o) is given by

and

c,'"(c=(P -',(a). -"()))

=N(tI'(0) ~ tT"(t)),

c (() = ("Q a,'(a) ~ Q iP(t))

=~'(g(0) - lI', (t)),

(10)

where p, , and p, , refer to two different perturbers.
In writing Eq. (7), we have neglected the two-body
induced dipole correlation function

C,"(t)=X(t ',(0). t ',(t)),
for the reasons discussed in the Introduction. In
addition, we will not consider the correlations
between the allowed dipoles associated with differ-
ent absorbers, which are expected to be small in
the present case. The one-, two-, and three-body
contributions will be considered in the following
three sections, respectively.

III. PURE ALLOWED SPECTRUM

In this section we review the well-known results
for the shape of an isolated pressure broadened
spectral. line. " The theory is based on the .classi-
cal path approximation" in which the density ma-
trix is written as a product of absorber and pertur-
ber density matrices, and in which the translation-
al motion is treated classically. The effect of the
translation on the internal degrees of freedom of
the absorbing molecule is described by a time-
dependent potential. Within the approximation, the
dipole correlation function can be written"

The dipole moment operator p. (t) occurring in (3)
is a Heisenberg operator and in the present case
can be represented by

C", "(t) = Q p„(P,.~(0). P~, (t)), (12)

i(t) =tT"(t)+g PI(t) (6)
f

where FATA(t) is the allowed dipole of the absorbing
molecule, and tAI(t) is the dipole induced in a colli-
sion between the absorber and the perturber j.
Using (6), the correlation function C(t) can be

where p denotes the absorber density matrix and i
and f refer to the substates associated with the
initial and final energy levels, respectively. The
curly brackets refers to a classical ensemble
average over the translational motion. With the
additional assumption of well-separated lines,
Eq. (12) can be written in the form
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p p.
"' e'f'i'' i U tU~t s

if i'f '

(13)

The quantity I'f,. is in general complex, I f' I"f,-
+iI'f„and can in principle be calculated from the
time-dependent interaction potential. " In this
paper we are interested in the R(J) and P(J) lines
of the fundamental band, and performing the sum
over all substates in this case, we finally obtain
for the correlation function

CAA(t) p(g) [m ~(pA )2ej )F4 g t r/4~t/2

where P~«. is the transition dipole strength, '
0 1 llJ'J J'J 2~J'J ~

(15)

~m [ is 8+1 for 8 and J for P lines, and P(J) is the
Boltzmann function for the initial state normalized
according to P~(28+I)P(J) =1.

The correlation function (15) yields a symmetric
Lorentzian line shape

using line-space notation"; U denotes the time-
evolution operator of the internal states of the ab-
sorber in the interaction representation, and ~f,-
is the unperturbed transition. frequency.

We use the standard impact theory to evaluate
(13). In this approximation all collisions are
treated as statistically independent. In addition,
the actual radiation dipole matrix elements during
a collision are replaced by those which would have
occurred during an instantaneous collision with
the same overall phase shift. Hence, the actual
allowed dipole is misrepresented during a fraction
v~/7. , of its time history; for w, /q-, «1 this does
not give rise to appreciable error, however. With
these assumptions the line-space matrix element
in (13) is given by"

«t'y' ~{V,(t)V/(t). t) ~iy)) = 5, t 5«,e "/-*-

I

4 ""(~)= P(&) lm l(p&& )'(,ZUi /'/ + (td ~/'z)

which is characterized by the width I'J.J and the
shifted center frequency v J.J. The corresponding
intensities f o.()d)dtd/&o which are independent of
the broadening and shifting, can be obtained either
by integrating over the line-shape function or from
the correlation function [Eq. (15)] at t =0.

IV. INTERFERENCE BETWEEN ALLOWED AND
INDUCED DIPOLES

In this section we will consider the two-body
correlations C, and C,"which describe the inter-
ference between the allowed and the induced di-
poles. As pointed out in the Introduction, this in-
terference will be important if (tt//r, )/(p", /~, ) is, .of
order unity. In the classical path approximation
C,"'(t) becomes

c,"/(t) =A g p, , {/ ",(0) q/', (t.;R(t))), (17)

p~/(t; R(t)) = p";/(t)p(R(t)), (18)

where P(A) represents the strength of the induced
dipole. Again, for well-separated lines, we have
in analogy with (13)

where the time dependence of the induced dipole
matrix element is due to two sources. In the
first place, the internal states of the absorber
change under the influence of the time-dependent
forces exerted by the perturbers as before. In the
second place, the induced dipole has an explicit
dependence on the absorber-perturber separation
R which, in the classical path approximation, is a
definite function of time. For a nonzero contribu-
tion to C,"/(t), it is necessary that both p,

" and P
have nonvanishing matrix elements between the
same initial and final states i and f. As discussed
in detail previously, "the only component of p.
which satisfies this requirement is of the form

Note that C,"/(0), which is related to the integrated
intensity, is given by

I

in the impact approximation. For statistically in-
dependent collisions we can write

c /(0) =A g p„. It-", I'{P(ft))
if

=44'(4) I~)(44 )'44 J )4))4)4))) ))4' 4)) .
0

We now discuss the quantity

{p(ft(t)) v,.(t)v,'(t))

(20)

{p(ft(t))v, (t)v,'(t))
={v;(t—7,)v, (t —7,)){p(1~(t))v, (7,)v,'(~,)).

The first factor on the right-hand side of Eq. (21)
describes the evolution of the system from time
zero to f —v„; for t» 7„, this line-space matrix
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element can be written as in the previous section

((f'f' IjV,(f —~,)V,'(f ~,) Jiff})= 6I,,6«,e 'I-I'I'.

4m
(P,„)Iq = b, II

— P(R)g(R)R'dR
0

=a„(P(R)j, (24)
(22}

For the second factor, where U(rg} denotes the
time-evolution operator of the system from t -r„
to t, we can write

((& f IIp(R(t) }UI(&A) ~I(7 A)} I&f)}=6I ( 6«(p.,);I,
(23)

where (P,„)II will be discussed in Sec. Vi. Note
that this average involves only single collisions,
is in general complex, and for t»T, is independent
of time. For comparison with the previous work, "
it is convenient to introduce the complex quantity
b, ,f defined by

where g(R} is the pair distribution function and V

is the volume of the gas. After summing over
substates we obtain for C,"I(t)

CAI(t) n P(p IIII(pA ) e( g(g, & I I'&,I I-/2

x 6~~.4m p R R R'dR
0

(25)

By a similar procedure, one can evaluate CI"(t);
it turns out that C, A(It} =CI"(t). Because LII is
complex, the total line-shape function associated
with the interference between allowed and induced
dipoles becomes a sum of a symmetric Lorentzian
and an antisymmetric anomalous dispersion line
shape, i.e. ,

oo I I II

yAI(~) + GAIA(~)
—2 ~(J) IIIII(pA )24v p(R)g(R)R2 dR x, ™&&

0 (-,
' I.I)'+ (~ — I.I)' (-,'rI.I}'+(~ — I I}' (26)

The anomalous dispersion component, which sig-
nificantly alters the line shape, does not affect
the integrated intensity. The integrated intensity
due to the interference between the allowed and in-
duced dipoles can be obtained directly from Eq.
(20} (i.e. , within the classical path formalism but
without invoking the impact approximations), and
it agrees with that found previously, calculated
under the assumption of uncoupled translational
and rotational motions. ' This differs, however,
from that obtained by integrating the line shape
given above by the factor h~.~. This difference
arises because the impact approximation used to
derive Eq. (26} is only valid for ]»~A. Thus, the
line shape, while it provides a good approximation
for several half-widths around the center of the
line, is not correct in the far wings where it is
well known that the impact shape can not apply.
When comparing with experiment, however, it is
appropriate to use Eq. (26}, as will be discussed
in detail in Sec. VI.

V. PURE INDUCED SPECTRUM

The two-body autocorrelation function of the
induced dipole operator is responsible for the
broad asymmetric absorption features proportional
to n' which characterize collision-induced spectra. '
In addition, for homonuclear molecules (notably
H, ) the correlation between dipoles induced in dif-
ferent collisions leads to a destructive interference
which is manifested by a sharp dip centered at the
transition frequency. " In HD the induced dipole
has additional components with symmetries such

C,"(f)=N gp ~{/ (0;R,(0)}~,(;,(f)}).
if

In analogy to Eq. (21), the ensemble average can
be factored into three terms: one describing a

collision of duration v~ centered around t =0, a

second similar term describing a collision cen-
tered around t, and the usual term which embodies
the broadening and shifting effects of completed
collisions. As a consequence, for t»r„, Eq. (27)
can be written in the form

(27)

C"(f) =n'I'(~} l~l(p" )'e
00 2

x g~i~4w P gR R dR
0

(28)

and the corresponding line shape function becomes
oo )2

g (m)=n'&(g)lml(g",

";)'(graf

g(g)g(g)g*gg)
0 )

(b, 'I'I- b, I'2I) rI.Ij2II
(grIlI} +((g) —(gIIiI)

gg'„~...(m -m. .,)iw)
(2r,',)'+ (~ —~I I)' (29)

r
that the selection rules AJ=+1, +3, etc. , are
satisfied. These components induced in different
collisions will interfere constructively' and lead
to modifications of the shape and intensity of the
R and P lines proportional to n'. This interference
can be treated within the present theoretical
framework by a straightforward generalization of
the results of Sec. IV.

Within the classical path impact formalism, the
correlation function describing the pure induced
dipole interference, C3II(t), is given by
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Again, because of the limitations of the impact
approximations, the intensity obtained by integrat-
ing (2S} is not correct; the proper value can be
obtain'ed through Eq. (27) by setting t =0, and it is
in agreement with that derived previously. ' One
should use Eq. (29}, however, when comparing with
the experimental data as will be discussed in Sec.
VI.

VI. DISCUSSION AND COMPARISON WITH
EXPERIMENT

Using the results of Secs. III-V, including the
contributions from the pure allowed dipole, the
interference between the allowed and the induced
dipoles, and the pure induced dipole interference,
the total absorption coefficient per unit wavelength
for the sharp P and P lines can be written

4 2 I

n(~) =n ~P(g) ~m[(p~~~. )' . . .', [I +2n& I+n'(& ' —~ ')I ]35t. gIgr~ + 4) —ldgig

2 ((0 47gsg)—/77 yg+ .i;2—; —;2(»z zf +n'&zvc r zf )
~ZT &i&) +~(d —(d&r&j

(30)

where

I=4m PA gA A dA.
0

Before comparing this expression with the experi-
mental data, it is of interest to consider in more
detail the complex quantity h~i~ which appears in
the line shape. Using Eqs. (23) and (24), this can
be written in terms of averages over single colli-
sions

&& fI(P(il(f)}U, ("}IB~.)] Iif&}
Eu(R)]

In principle, 6 can be calculated from a knowledge
of the interaction between two colliding molecules,
although in practice, this would be a difficult calcu-
lation. Some insight, however, can be obtained
from the form of Eq. (31). In view of the unitarity
of the time-development operators, the absolute
magnitude of either 6' or 4 can never exceed
unity. As collisions increase in disruptive effect,
6 becomes complex and b decreases from its
unperturbed value of unity. One can thus envision
several limiting cases.

(i) Gentle encounter limit. -In this case, the
time-development operators remain real and es-
sentially equal to unity, i.e., 6= 1. The corres-
ponding line shape would be a pressure-broadened
and -shifted Lorentzian with intensity in agree-
ment w'ith that of Ref. 9.

(ii) Violent encounter limit. -Here, through
either collision-induced inelastic transitions or
large random phase shifts, the U s would differ
substantially from unity and, in general, give
rise to a near-zero value for h. In this case the
line shape would again approach a symmetric
Lorentzian, while the corresponding intensity
would approach that of an allowed line.

(iii) Phase shift limit. In some-cases, the
primary influence of the time-development opera-
tors may be described by phase shifts introduced

A(Cd) Do 1 7/ ( (
2 T/271

n(u 2 & (-,'I')'+ ((u —(o,)'

2((d —Mo)/W" 'i-:~)"( '- .)) (33)

where D„, I', q, and (d, are density-dependent
fitting parameters. Actually, (33) differs by a
frequency-independent quantity from the expres-
sion used by McKellar; this of course does not
influence the value of the parameters listed above.
Expression (33) is of the same form as the theo-
retical line shape (30), and by identification we
therefore have

~DOI"m(1 —q ')
= a,(n) = cI,(0)[1+2nD, 'I +n'('6" —6"'}P] (34)

,'D, rvq '=c7,(0)(n~"I+n'~—'~"I')-

l

into the initial and final states during adiabatic
collisions. The ensemble averaging over dynami-
cal variables can then be carried out in a way
analogous to that employed in the calculation of
pressure broadening and shifting. " The resultant
6 can thus be approximated as

f, vf(v)dv b dbf „P(t)exp[i [(u„(t'.) (u'„.]dt')dt—

f "vf(v)dv bdb j"P(t)dt
0 oo

(32)

where f(v) is the Maxwell distribution of speeds v,
and b is the impact para, meter. " The numerical
evaluation of these integrals with realistic poten-
tials and induced dipoles is beyond the scope of
the present paper, however.

We now turn to the comparison of the present
theory with the detailed experimental results of
MeKellar' on the fundamental band of HD. He
found that the R and P lines can be represented by
a line shape of the form
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where

and where the subscripts J'g on 6 have been
suppressed. Note that

represents the pure allowed dipole intensity.
Experimental values of n, (n) for the R,(0) line

at 77 K for a number of densities have been given
in Ref. 8 and are reproduced in Fig. 1. Similarly,
we give in Fig. 2 the corresponding experimental
values of q

' taken from Ref. 2. By combining
(34) and (35), we have, up to terms of order n'

q '=nA I/(I +nA I). (36}

The theoretical expression for n, (n) and q
' con-

tain the two density-independent parameters 6 I
and 6 I. If the theory adequately represents the
experimental results, it should be possible to fit
the data in Figs. 1 and 2 with reasonable values of
6 I and 6"I. This is indeed the case, and in Figs.
1 and 2, the solid curves represent the theoretical
results for 6'I =-5.5X10 ' and 6''I=-4x10 '.
The integral I was calculated previously' where it
was found that I= -7 x10 ' and, therefore, 6'
=0.8 and 6"= 0.6„respectively. These values of
6' and 6 satisfy the unitarity condition, and the
fact that 6' is still close to unity, suggests that a
theoretical calculation of 6 can be performed
within the phase-shift formalism discussed above.

The contribution to the interference by the pure
induced dipoles is relatively small and it would
therefore be of interest to investigate the region
of higher density where this effect is more impor-

tant. This applies in particular to the line-shape
factor q ', which is more sensitive to an increase
in the density than n, (n}. In addition, it is expec-
ted that the asymmetry of the profile will be more
pronounced at higher temperatures. While the
analysis discussed above applied specifically to the
R,(0) line, similar interference effects occur in
other lines of the fundamental band, ' and in the
pure rotational spectrum as well. '

Before concluding, there are two additional ex-
perimental findings on which we would like to.
comment. First, the R(0) line in the first over-
tone band (the only line in this band reported) did
not show appreciable asymmetry. ' This is consis-
tent with the present results in that the overlap-,
induced dipole in H, which gives rise to the com-
ponent in HD which interferes [cf. Eq. (18}]is
known to be small for this transition. " The inter-
ference and concomitant Fano line shape would
only become apparent at higher densities. Second,
the asymmetry of the P(1) line in the fundamental
was shaded in the opposite direction to that of the
R(J} lines. ' This implies that b,

" has the opposite
sign for this line than that found for R(0). As
mentioned above, in some cases it should be pos-
sible to calculate 6 using a phase-shift approach.
It is well known that for calculations of the pres-
sure-induced line shifts, the phase shifts associa-
ted with the R(0} and P(1) lines have the opposite
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FIG. 1. Experimental values for the integrated inten-
sity of the fundamental R&(0) line of pure HD measured
at various densities at 77 K; the solid curve is the theor-
etical fit fEq. (34)] for the parameters &'I= —5.'5 && 10 3

and 6"I=—4X10 3.

HD DENSIT Y (am@(jot'

FIG. 2. Experimental values for the line-shape para-
meter of the R&(0) line at 77 K; the solid curve is the
theoretical fit [Eq. (36)] for the parameters 4'I= —5.5
x 10 and 6,"I=—4 &&10
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sign. " This results from the fact that in addition
to the average (first-order perturbation) shift
which is the same for both lines, there is a large
second-order contribution which is nonzero for
these lines only, and which has thy opposite sign
for the R(0) and P(1) lines. In the present case for
the calculation of 4, the short-range second-order
shift would be expected to dominate since the in-
duced dipolep(R), is itself a peaked short-range
function. It would, therefore, be of interest to de-
termine whether the shading of the P(2) asymmetry

, is the same as the R lines as expected from the
above considerations.
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