PHYSICAL REVIEW A

VOLUME 20, NUMBER 5

Echoes in gaseous media: A generalized theory of rephasing phenomena

T. W. Mossberg, R. Kachru, and S. R. Hartmann
Columbia Radiation Laboratory, Department of Physics, Columbia University, New York, New York 10027

A. M. Flusberg
Avco Everett Research Corporation, Everett, Massachusetts 02149
(Received 26 March 1979)

The primary objective of this paper is to provide a formalism to predict and characterize the echoes which
may be produced in a gaseous sample by an arbitrary sequence of one- or two-frequency laser excitation
pulses which successively transfer atomic population between two or more atomic energy levels. The
resulting echoes can occur at times which depend on the relative frequencies of the excitation pulses as well
as on the times at which the pulses were applied. Using an idealized model of the excitation pulses and the
atoms, the authors derive a simple transformation equation which provides the density matrix of a single
atom after a general excitation sequence. Equations are derived which utilize the single-atom density matrix
to predict the properties of the echoes (if any) which result. The means by which the sample of atoms
“remembers” the information necessary to produce different types of echoes is discussed, and it is then
shown how a study of the echo can provide information concerning the atomic relaxation processes which
tend to destroy this information. It is observed that trilevel echoes can be used to determine the relaxation
characteristics of superposition states between energy levels coupled by two-photon transitions. In the case
of certain other echoes (such as the three-excitation-pulse stimulated echo) the authors discuss the
heretofore unappreciated fact that the sample remembers the “echo information” via a nonthermal velocity
distribution of the atoms in one specific atomic state. In these cases a study of the echo behavior can
provide information pertaining to the relaxation processes affecting only the one atomic state. The
formalism developed is used to predict the properties of several echo effects. First, to provide a connection
with previous work, the well-known photon echo is briefly discussed. Then important new properties of the
three-excitation-pulse-stimulated echo are described. Finally, three different types of trilevel echo are
analyzed. Each of the trilevel echoes discussed has widespread applicability in the study of relaxation
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processes.

INTRODUCTION

It has recently been demonstrated® that experi-
mental techniques utilizing the trilevel echo® can
be used to great advantage to make relaxation mea-
surements over a wide range of superposition
states. In particular, in atomic Na vapor the
noble-gas-induced relaxation properties of the
328, ,,-n°S,,, and 325, ,,-n°D;,, superposition
states have been studied, with the principal quan-
tum number » of the upper level ranging from 4 to
=z 40. The ease with which the various trilevel echo
techniques can be applied and the wide range of
states to which they are applicable ensures that the
trilevel echo effect will find extensive use in the
field of coherent transient studies in atomic and
molecular physics. In this paper we present a
theoretical treatment of echo effects in a Doppler-
broadened gaseous medium which facilitates the
analysis and understanding of such new echo effects
as the trilevel echo, as well as providing basic new
insight into such older effects as the three-excita-
tion-pulse stimulated echo.®

Unlike the well-known echo effects produced in
two-level spin® and electronic systems,* ¢ trilevel
echoes''? (and related effects in spin systems?)
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cannot in general be completely described in terms
of the usual vector model®:® or its generaliza-
tions.'>! Attempts have been made in the past to
provide alternative means of describing echo
formation, but only specific excitation sequences
have been considered.'> We attempt here to pre-
sent a treatment sufficiently general to describe
the echo effects (if any) to be expected after an
arbitrary sequence of travelling-wave excitation
pulses in a Doppler-broadened gaseous sample of
multilevel atoms. The formalism presented can
be used to describe not only trilevel echoes (and
the two-level echoes as special cases) but also ef-
fects such as the Raman echo'*''* and the two-pho-
ton echo.'®> When applied to the three-excitation-
pulse two-level (stimulated) echo, interesting new
insights into the effect are obtained.®

The plan of the paper is as follows: In Sec. Ia
formalism is developed to provide the single-atom
density matrix after an arbitrary sequence of mod-
el excitation pulses. Section II discusses the
conditions under which echoes will arise in a
large-compared-to-the-emission-wavelength Dop-
pler-broadened sample of atoms, and how the re-
sults of Sec. I can be used to determine when these
conditions are satisfied. Section III briefly discus-
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ses the echo decay which results from atomic re-

laxation. Finally, Sec. IV provides a series of de-
tailed examples of the analysis of certain echo ef-
fects. )

I. SINGLE-ATOM THEORY

A. Introduction and definitions

The objective of Sec. I is to provide a simple
method for determining the state of a particular
multilevel atom after excitation by a series of one-
or two-frequency pulses of electromagnetic radia-
tion. For simplicity we assume throughout this
section that only three levels of the atom are
coupled by the excitation fields; however, in Sec.
IVC the treatment will be generalized to describe
an excitation sequence which couples four levels.

Figure 1 defines the types of three-level atom
discussed here. The nondegenerate levels '0),
[1), and |2) have energies #,=0, #%,, and #Q,.
The interference effects which arise when the lev-
els consist of a number of degenerate or nearly
degenerate sublevels are ignored. These echo-
quantum-beat effects’’+'® are interesting, but gen-
erally do not change the basic nature of the re-
sults. )

Considering the electric dipole operator p to be
a scalar, we define

piy=(i|p| (1.1a)

e, 12)

a)
— 1y
Mgt wy)

c)

LIES™)
he, ———
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FIG. 1. Different level arrangements discussed in
this paper are shown. In each case the |2)-|0) transi-
tion is forbidden. Generally we assume that the popula-
tion is initially in the state of lowest energy.

and assume

P20=0.

Consider a moving atom whose instantaneous cen-
ter-of-mass position is ¥, which we assume may
be treated classically. The electric field it sees
is given in scalar form by

(1.1b)

E(F,1)=E,(F, )+ E\F, 1, (1.2a)
where ¢ is the time and

E, =&, exp[-i(w,t-K )] +cc. (n=1,2). (L.2b)

It is assumed that the fields of Egs. (1.2) are
plane-wave Fourier-transform-limited square
pulses, i.e., that &, is constant throughout the du-
ration of the pulse. The near-resonance condition

|9 - w, | < |2 - @y, (1.32)
[(R, =) = w, | < [(R,-2) -, | (1.3b)

is imposed on the two components of E. This al-

lows us to assume that the E, (E,) component of

E interacts only with the |1)-|0) (|2)-|1)) transi-

tion and simplifies the calculations. We also im-
pose the following two-photon-resonance condition
on the excitation fields: It is required that either

lw1+w2l= lgz'ﬂol (1.4a)
or
|w1—w21= ,Qz-ﬂol, (1.4b)

depending on the level configuration of the atoms.
The time evolution of the atom is determined by -
the Schrddinger equation

WD esiaiy e ) (1.5)

where H, is the Hamiltonian for the unperturbed
three-level atom and V represents the atom-exci-
tation field interaction. Our method of solving Eq.
(1.5) follows the work of Hartmann'®; however,
many other useful approaches have been pre-
sented.'® The basis vectors of the matrices rep-
resented in Eq. (1.5) are chosen to be the time-in-
dependent eigenstates of H,, i.e.,

(0 |H,[0) (O |H,[1) (O|H,]|2)
Hy=\ (1|H,|0) (1[H,[1) (1[H,|2) (1.6a)
(2|H, |0y (2|H,[1) (2|H,|2)

00 o0
=long O (1.6b)
0 0 7,

In the electric dipole approximation the interaction
is given by V= —pE. Thus
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0 ~pou{8F expli(w,z -k 7] 0
+c.c. :
V= | =ity expl-ilent -K D) 0 —pia{8F expli(w,t K+ P)] | . (1.7)
+c.c.} +c.c.
0 "1721{82 exp[- i(wyt —EZ’F)] 0
( +c.c.}

B. Solution of the single-atom equations of motion

Eq. (1.5) may be transformed into a Schrddinger-
type equation whose Hamiltonian is, to a certain
approximation, independent of time, and which we
can therefore solve exactly. Using this result, we
solve for the state of the atom after an arbitrary
sequence of one- or two-frequency traveling-wave
excitation pulses.

We define an interaction-picture wave function
¥, given by

¥ ()= exp(iAt)y(¢) , (1.8)

where for the atoms shown in Fig. 1 of types “a,”
‘p,” and “c,” respectively,

00 0
A=10 w 0 ,
0 0 w+w,

(1.9a)
00 0
A= (0 w, 0 , (1.9b)
00 w-w,
0 0 0
A= 0 —w, 0 (1.9¢)
0 0 wy-uw
The wave function y , then satisfies
@6—;’-}9— = - H Y (8, (1.10)
where
H,=exp(iAt)(Hy+ V — A) exp(—iAt) . (1.11)

Using the rotating-wave approximation,® one ob-
tains

0 g% 0O
H,=| a & ], (1.12)
0 b 0y
where for type “a” atoms
a= -p,o8, explik,* ), (1.132)
b= ~py 8, explik, F), (1.13b)

A=7(Q, - w,); (1.13¢)
for type “b” atoms

a=-pi6, exp(if{:- ), (1.14a)

b= —p,,8% eXp(‘iﬁz ~T) , (1.14b)

A=7(Q - w); (1.14c)
and for type “c” atoms

a= —py 8F exp(-ik, - T), (1.15a)

b= _pzlgz eXp(iEI ° ;) s (1.15b)

A=7(Q + wy) ., (1.15¢)

The quantities ¢ and b carry all the information
pertaining to the relative phase of the electric di-
pole moment(s) of the atom. Hence they are re-
ferred to as “phase factors.” The complex con-
jugates of @ and b, while also referred to as phase
factors, will occasionally be referred to specific-
ally as “conjugate phase factors.” The magnitude
of the phase factor g (b) is proportional to the

Rabi flipping frequency associated with resonant
single-frequency excitation of the |1)-|0) ( |2)-]1))
transition. Products of a phase factor and its con-
jugate such as aa* and bb*, which appear often be-
low, carry no phase information.

We now assume that the optical pulse is so short
that the vector ¥, which denotes the instantaneous
position of the atom, may be considered a con-
stant over the pulse duration. This assumption is
equivalent to ignoring inhomogeneous (Doppler)
broadening during the pulse. It follows that H  is
independent of time. We emphasize that this as-
sumption is not crucial to the production of echoes;
it is violated in most echo experiments done to
date. However, treating ¥ as a constant during the
pulse greatly simplifies the theoretical analysis of
echoes and does not change the fundamental re-
sults.

Since H , is independent of ¢, Eq. (1.10) can be
integrated to give an expression for the wave func-
tion after an excitation pulse

</1“;(t)= My (t),

where

(1.16)



M= exp(—ifi™*H 1) . (1.17)

The corresponding interaction-picture density ma-
trix® p (f)=exp(iA#)p(t) exp(-iAf) where p(¢) is the
laboratory-frame density matrix, is given by

p()=Mp (t)M™*. (1.18)

For an arbitrary sequence of j one- or two-fre-
quency excitation pulses

Pt =MM, ¢ Myp, (¢ M MG MG,
(1.19)
where p,(t,) and p,(;), respectively, represent the
initial and final density matrix.
Consider now the explicit evaluation of the M ma-

trix associated with a particular pulse. Since H
J

]
—Db*X — ag*(A.e™?+/ 2 -2 e™?-/?)
XX

—a
22 (em18,/2 _ pmi6-/2)
x

—X—_% (X = n_e 14/ 24 ) g710-/2) —Tb (e164/2 _ g=16-/2)
~

where f
x=(x.-2) (1.24)

and
6,=2x,7/F. (1.25)

The matrix M"! is obtained from the expression
for M by changing the signs of 6, and 6.. It is
understood that the value T which enters a par-
ticular M matrix through Egs. (1.13)-(1.15) is the
atomic position during the particular correspond-
J

r
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*
I8 (em18./2 _ g16./2)
x

% (A_e-w_/ 2 _ A*e'16+/2)
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is not diagonal, explicit expressions for M are ob-
tained from

M=S"" exp(-if "'SH S™*7)S , (1.20)

where 7 is the temporal width of the excitation
pulse and S is the matrix which diagonalizes H .
We find that

-b/a* 0 1
S=| a/x, 1 b*/x, |, (1.21)
“a/n. 1 b/
with
A, =314 2 [A%4+ 4(bb* + aa*)]* % (1.22)

Then, using Eq. (1.20), we find M to be given by

a*b*

XXX

(X —x_ets/24 ) g™t6-/2)

_b*
A ARl , (1.23)
—aa*X — bb*(A e84/ 2 — ) e™10-/?)

XXX

ing pulse. Since the position of an atom changes
with time, Eq. (1.19) includes the effect of atomic
motion between excitation pulses.

Although many echoes can be produced with non-
intermediate-state resonant two-photon excitation
and require the general M matrix for their com-
plete description, the essential features of echo
formation are more easily elucidated with a sim-
pler M matrix. Thus restricting ourselves to res-
onant excitation, i.e., A=0, M becomes

N

bb* + aa* coss6 —ia*siny6 —a*b*[l —cosz 0]
aa* + bb* (aa* + bb*)t/2 aa* + bb*
_ —iagsing6 N —ib* sinz 6
MR_ W 005(29) (aa*+bb*)1/2 ’ (1.26)
—ab[l —cos38] -ibsinid  aa*+bb* coszd
aa* + bb* (aa* + bb*)t/? aa* + bb* ]
ﬁ .
- where (1.19), the M (or My) matrix permits us to calcu-
0=2(aa* + bb*)/27/F=(62+ 63)*/2 (1.27) late the density matrix of an atom after interaction
- - a .

and 6,=2(aa*)'/ %1/ [ 8,= 2(bb*)*/ %1/ K] represents
the area of the w, (w,) component of the two-fre-
quency pulse when it interacts with the [1)-|0)
(]2)-|1)) transition in the absence of the other fre-
quency component. Used with Egs. (1.18) and

with the excitation pulses. Equations (1.18), (1.19),
(1.23), and (1.26) thus represent the principal re-
sults of Sec. L

Summarizing the highlights of Secs. IA and IB,
we have taken the following model of the interac-
tion of atoms with a series of one- or two-fre-
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quency pulses: (i) The atoms are three-level sys-
tems. (ii) Level pair 0-1 (1-2) is coupled by fre-
quency component w, (w,) only. (iii) The center-
of-mass position of each atom is considered a
classically well-defined quantity. (iv) Each pulse
is a temporally square plane wave which is so
short that the individual atoms may be considered
stationary during the pulse, but atomic center-of-
mass motion between pulses is (implicitly) taken
into account. Using this model and the rotating-
wave approximation, we have derived a matrix
which gives the exact state of each atom after an
arbitrary sequence of pulses.

C. Calculation of the single-atom density matrix after
different excitation sequences

As an application of the M, matrix we consider
the effect of a two-frequency pulse [Fig. 2(a)] on a
type-a (Fig. 1) three-level atom initially in state
[0). We have

100
000
000

plto)= (1.28)

The interaction-picture density matrix p (¢,) is in
this case identical to p(#,). Thus substituting Eqs.
(1.26) and (1.28) into Eq. (1.18), we find that after
the excitation pulse

J

V. B
W, 1:'
a)
w 'tll

b) m

@)

1 []

w

FIG. 2. Various excitation sequences considered in
Sec. I. (a) Depicts a single two-frequency pulse. (b)
Depicts two successive single-frequency pulses. (c)
Same as (b) except that a second excitation pulse reson-
ant with the|2) -| 1) transition is applied.

(bb* +aa* cos%@)2
aa* + bb*

—iasin3 8(bb* + aa* cos36)
(aa*+ bb*)3/z

—ab(1 - cos36)(bb* + aa* cos3 0)

Pw (tf) =

ia* sinz 0(bb* + aa™ cos; 6)

R
—a*b*(1 - cos3 0)(bb* + aa* cos30)

(aa™ + bb*)°72

aa* sin®; 6
=z
aa™ + bb

—iaa*bsin36(1 - cos30)

(aa* + bb*)*?

(aa* + bb*)3/2

(aa* + bb*)?
iaa*b* sin3 (1 — cos:6)
(aa*+ bb*)3/2
aa*bb*(1 — coss 6)?
(aa* + bb*)?

\

If we set b=b*=0, p, (¢ )in Eq. (1.29) should reduce
to the familiar result for a two-level system. In-
deed, we find

l+cos6  ia*(sin6)/|a|0

1
Pyt )p=0=3 —ia(sin6)/|a| 1-cosé 0

0 0 0
(1.30)

Note that when a phase factor appears on the diag-
onal of Eq. (1.29) it is always multiplied by its con-
jugate phase factor, hence no phase information is

(1.29)

r

present in the diagonal matrix elements. This is
expected, since the diagonal elements of p  (f;) re-
fer to the population in the three levels; however,
in the off-diagonal elements the single phase fac-
tors retain their phase information. Given the
definitions of the phase factors, Eqs. (1.13)—(1.15),
this implies that the relative phase of each off-
diagonal element (and the associated electric di--
pole moment) is determined by the relative phase
of the excitation field at ¥, the location of the atom
during excitation. Thus the relative phase of the
oscillating electric dipole moments of different
atoms will depend on the spatial separations of the
atoms at the time of excitation.



20 ECHOES IN GASEOUS MEDIA: A GENERALIZED THEORY... 1981

We now consider [(see Fig. 2(b)] the application
of two successive single-frequency excitation
pulses of frequencies w, and w,, respectively. In
accordance with Eq. (1.19), M, is applied twice—

J

ia* sind, cos30, - a*b* sing, sinj 4, )

first with » = 0, then witha=0. Using Egs. (1.26)
and (1.28) in Eq. (1.19), we find that after the sec-
ond excitation pulse

2 1
cos® 36, 3Tl
—iasing, cos3f, . ., 21g
P,(t)= —s1. . sin 30, cos®36,
—ab sing, sinz 0, —ib sin?36, sind,

2lallbl 21v1

-

where 6, is the area of the ith pulse.

‘As in Sec. IB, it is understood here that the
atomic position T, which enters p, through Egs.
(1.13)=(1.15), may be different for the two pulses.
We note that Eq. (1.31) has a considerably simpler
appearance than Eq. (1.29). This is a characteris-
tic difference between “two-photon” [(Eq. (1.29)]
and “stepwise” [(Eq. (1.31)] excitation. In the two-
photon case each frequency component of the exci-
tation pulse affects the population in all three lev-
els. The second pulse in the stepwise case affects
only levels |1)and |2).

The three-pulse excitation scheme of Fig. 2(c) is
important for calculations made below. Further-
more, it provides insight into several effects im-
portant in the production of echoes. Starting from
Eq. (1.31) as the initial density matrix and using
Eqgs. (1.18) and (1.26), we find that after this exci-
tation sequence

~iBsin®3 6, cosb, sind,

2lallbl

ib* sin® £ ¢, sin g,
2( ’

in2di in2l
sin®36, sin®30,

4 21 . 21
1b sin®; 0, sinf, cos®; 6,

(1.31)

(p,)oo= cOS*36, , (1.32a)

(p,)1,=sin’*3 6, [cos® 36, cos? 50, + sin®4 6, sin? 36,]
- [sin?}6, sing, sin6,(bg* + b*B)] /4 [b | 8],
(1.32b)
()22 =sin®36,[cos?30,sin*50, + sin?4 0, cos?36,]

+8in306, sinb, sin6,(b8* + b*B)]/4 b | |B] ,

(Po)a=(Pu)iz= ZIA1 - 2151

=(T )P +(T )2 +(T)D.

Here B is the equivalent of & for the third excita-
tion pulse, i.e.,

B= —1’218; exp(sky* .f3) ’

where T, is the atomic position at the time of the
third pulse.

There are two points to discuss. First, although
each off-diagonal element (p,) ;; has a certain over-
all magnitude and relative phase, it is here de-
composed into a series of “memory terms”
(1)$5,(1)$%,. .. whose relative phases are, as
indicated by the phase factors, determined by the
excitation fields in different ways. By way of ex-
ample, this decomposition has been written out
explicitly in Eq. (1.32f). This decomposition is im-

(1.32¢)
(P o= (P )%
=ising, [abB* sinz0,sin 0,/ [b | |8
—acosz0,cos36,]/2]al, (1.32d)
_ _ sing, [aBcosz6,sinz 6,
(pw)zo‘(pw 02‘_21a,[ 'BI
ab sing 6, cos%ea]
—la2r T2 3 .32 :
i ,  (1.32e)
ib*8? sin® 50, sir1202 sin? 16,
2[b] |8]
(1.32f)

r

portant because, as we will see below, in a gase-
ous sample of atoms a necessary condition for co-
herent emission to occur at a particular time on
the (i-j)th transition is that at least one of the
memory terms (7,)},, expressed as a function of
the instantaneous position ¥(¢), be independent or
nearly independent of atomic velocity V. Thus an
analysis of the behavior of each individual (T,)},
as a function of ¢, ¥(#), and V will tell us when co-
herent emission is possible. Second, the (p,),,
and (p,),, diagonal elements contain the quantity
bB* + b*B. Using the definitions of b and B, and
assuming that K, | [k} | |Z, and k,= &}, we have

bB* + b*Bx 2 coslky(z; — 25) ]

=2cos[kwlt; ~1,)], (1.33)
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POPULATION OF UPPER STATE

POPULATION OF LOWER STATE

4 8 -6 -4 -2 2 4 6 8 10
VELOCITY X104cm/sec

FIG. 3. Modulation of population in states [1) (lower)
and | 2) (upper) as a function of v 2» the z component
of thermal velocity, after excitation by two pulses pro-
pagating along 2 resonant with the |2) ~|1) transition
(see text). In generating this figure it is assumed that
the temporal separation of the two excitation pulses is
4 nsec. Longer separations produce more rapid modula-
tion of the population as a function of »,. The envelope
of the modulation represents the Doppler distribution of
velocities (characteristic of Na at 400 K) which are pre-
sent in | 1) before the two | 2) -| 1) excitation pulses.

where z, (z,) is the position of the atom along the
z axis during the second (third) pulse, which oc-
curs at time ¢, (¢,), and v, is the constant z compo-
nent of the atom’s thermal velocity. Eq. (1.33) im-
plies that the population in both states [1)and |2)
is modulated as a function of »,. Figure 3 depicts
the population in these states as a function of v,
for the case of maximum modulation (6, =7, 6,
=37, and 6,=37). This modulation can be appre-
ciated by means of a simple classical example.
When a pendulum is at rest (state [1)) all driving
impulses of equal magnitude are equivalent to it.
Thus the first pulse on the ]2)- [1) transition ex-
cites all the atoms equivalently. Once the pendu-
lum is in motion, however, both the magnitude of
the driving impulse and its phase relative to that
of the pendulum are important. Thus the second
impulse (pulse on the [2)-|1) transition) either ex-
cites the pendulum (the atom into state ]2)) or de-
excites it (into state |1>), depending on its relative
phase. In the case we consider here of an atom in
a gaseous sample, the relative phase between the
two impulses is determined by the distance trav-
eled by the atom in the interval between the two
pulses. Two excitation pulses in succession on a
particular transition generally produce population
modulation. This effect, which is responsible for
the Ramsey fringe effect,? will be shown below to
bring about a certain class of echo phenomena as
well.

D. Phase matrix

Eqgs. (1.19) and (1.26) provide a straightforward
recipe for calculating p ; however, in cases of
multiple-pulse excitation the algebraic complexity
of the calculation can be burdensome. To simplify
the calculation we note that, except for questions
of magnitude, the phase factors appearing in p,
completely determine the characteristics of a
sample’s coherent emission. Thus in many cases
only the phase factors of p, need be calculated.
This can be accomplished by setting the coeffi-
cients of the phase factors in M, equal to unity and
using the resulting matrix M, given by

1 a* a*b*
My=M;'=\ a 1 b
ab b 1

(1.34)

in Eq. 1.19. We term the modified “density ma-
trix” p, which results the phase matrix, since its
elements are composed solely of phase factors.
As an example, the phase matrix after the three
excitation pulses of Fig. 2(c) is simply

1 a*+a*b*B  a*B* + a*b*
pp,=\ a+abp* 1+(bB*+0*B) b*+p*+bp*?
aB+ab  b+B+b*B®  1+(bB*+b*p)
(1.35)

Here a, b, and B are defined as for Eq. (1.32). In
calculating Eq. (1.35), all products of a phase fac-
tor and its conjugate were set equal to unity; how-
ever, care was taken not to set such products as
bB* equal to unity. It is seen that in the phase ma-
trix the memory terms are simple products of
phase factors; e.g., in Eq. (1.35) T&)=b*, T
=p*, and T8 =b(B*)%.

Summarizing the results of Secs. IC and ID, we
have applied the formalism of Secs. IA and IB to
calculate the state of an atom after it is excited
by several example pulse sequences. We have
shown how the individual density-matrix elements
of the atom should be decomposed into what we
have called “memory terms,” whose velocity de-
pendence, as we will show below, determine the
time at which coherent emission is possible. We
have indicated that diagonal density-matrix ele-
ments may contain memory terms as well, so that
the dependence of atomic population on velocity
may lead to coherent emission. Finally, we have
shown how the memory terms may be followed in
what we have called a “phase matrix,” which is a
simplified density matrix in which only the phases,
but not the magnitudes, of the memory terms ap-
pear.
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II. COHERENT EMISSION

A. Basic requirements

In Sec. I we developed a general formalism which
permits the calculation of the density matrix of a
single atom after an arbitrary excitation sequence.
Here, in Sec. II, we focus our attention on the na-
ture of, and conditions governing, the coherent
emission from an optically thin, Doppler-broad-
ened sample of atoms which is large cOmpdred to
the wavelength of the emitted radiation. We will
see that the single-atom density matrix of Sec. I
contains all the information needed to determine
the characteristics of the sample’s coherent emis-
sion.

In the semiclassical picture the total field
emitted from a sample is simply the sum of the
fields from the atoms individually. In a sample
small compared to the wavelength A of the emitted
radiation, the degree to which the sample’s emis-
sion is “coherent” depends on the degree to which
the individual radiators (atoms) have the same
phase. In a sample large compared to A, the same
basic criterion applies except that for coherent
emission to occur it is also necessary that the av-
erage phase at each point varies with position in
such a way that a traveling wave will remain in
phase with the radiators it is passing.

To transform these qualitative remarks into
quantitative results for a Doppler-broadened gas-
eous sample we note that the phase of the radia-
tion emitted by each atom on the (i-j)th transition
is determined by the phase of its dipole moment
for that transition, ®,;, and that we may obtain
the phase of @,; from both the ij and ji elements
of each atom’s laboratory-frame density matrix,
using the equality ®;,=p,;,0,;+p;0;;- Thus, by
examining the phase information in the memory
terms T}, (T},) of p,, (p,,), we can determine the
coherence properties of the sample. The analysis
is facilitated by the fact that an arbitrary memory
term T:j of p,; is proportional to an overall phase
factor

n
exp(ip},) = exp[i(z Cpkpy* T, = wut>], (2.1)
m=1

where the summation runs over the » phase fac-
tors associated with the T}, memory term, T, is
the location of the atom during the mth excitation
pulse at time £, Em is the wave vector of the mth
excitation pulse, c,=+1 or +2, and w;;=Q,-Q,.
The constant c¢,,= +2 when the term contains a
phase factor squared, as in Eq. (1.32f). We as-
sume Eq. (2.1) is arranged such that ¢, <¢,<<++ <¢,.
Consider the atoms at a particular point ¥ in the
sample at a time £>¢,. For each atom at T the

relative phase of a memory term Tij can be written

as in Eq. (2.1). For a particular atom with con-

stant velocity ¥ the positions ¥, can be related to

T by )
F,=T-V(t-t,). ’ (2.2)

Substituting Eq. (2.2) into Eq. (2.1), we have

n -
exp(ip},) = exp [if‘ ( > Cm'f,,.>

m=1

_ﬁ-<§; cm:?m(t-tm)) —iw”t] . (2;3)

If ¢}, expressed in terms of ¥ as in Eq. (2.3), is
at a certain time nearly independent of ¥, then we
say the sample has local coherence at that time.
The magnitude of the total radiating dipole mo-
ment ®}; at ¥, corresponding to T};, is propor-
tional to the sum of exp(ig},) over all atoms at T.
This sum is equivalent to the integral of Eq. (2.3)
over the thermal velocity distribution (V). Ex-

plicitly,

&L, o expli(y T - w,,0)] [ d¥n(®)

x exp[-ﬁ- ( Z A t,,,))] , (2.4)
m=1 .

(2.5)

The integral will be small unless the coefficient of
V in the exponential is nearly zero. Thus the con-
dition for complete local coherence is that

n -
D Cuknlt=1t,)
m=1

[R(2) | = =0, (2.62)

Unless Eq. (2.6a) is nearly satisfied no coherent
emission can result from the memory term Tﬁ,
under consideration. If Eq. (2.6a) is only approx-
imately satisfied we say that the local coherence is
only partial.

In Eq. (2.4) the macroscopic coherence of the
sample is described by the factor exp[i(l.«';'F
- wut)] , which describes the variation of the av-
erage phase at each point as a function of ¥. Thus
the radiation emitted by the atoms at a certain lo-
cation will remain in phase with the radiators it
passes if it is a traveling wave with the form
expli(k,* ¥ - |w,, |t)], where K, satisties |K, |
= |wy|/c, and :

K, 2:K,. (2.6b)

We have assumed without loss of generality that
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the refractive index of the sample is 1. The + (=)
sign occurs if Q,>Q, (Q,>Q;) and signifie§ that the
echo propagates parallel (antiparallel) to k,. We
note that the condition expressed in Eq. (2.6b) is
just the phase-matching condition of nonlinear op-
tics, albeit in a somewhat different context. The
phase-matching condition ensures that the coher-
ent radiation emitted from a large sample will be
highly directional. Unless otherwise stated we
assume that the excitation pulses are oriented in
such a fashion that Eq. (2.6b) is satisfied.

Observing the form of |R|, we see that it gen-
erally is minimum for only a certain value of ¢
To determine this time £, and hence the time of
potential coherent emission we first use Eq.
(2.6b) to rewrite ﬁ, and obtain

RO=E(t =)= 3" cpfltn—1). (2.7)

Then, equating d |R(#) |?/dt=0 and solving for ¢,
we find

- -

t,=Ky, D/k3, (2.8)

where K, is given by Eq. (2.5) and
- - n -
D=kt + 3 cplkplty—1). (2.9)
m=2

If the time {,>¢,, where ¢, is the time of the last
excitation pulse, if |R(z,)| is sufficiently small,

if the relevant transition is allowed, and if Eq.
(2.6Db) is satisfied, an echo will be emitted in the
direction lfzp. If {,<t, no coherent emission is pos-
sible. However, such a situation is not without
physical meaning. When ¢>¢, the atoms at each
point have the relative phases they would have had
were |R(#)| minimum at the time #,<¢,. This
might be termed a virtual echo.?

For memory terms Tﬁj which consist of only one
phase factor it is found that ¢{,=¢,, where ¢, re-
fers to the time at which the phase factor was ac-
quired. In this case the emission from the sample
represents a free decay. If a memory term Tij
from either of the elements of p, corresponding
to the “forbidden” |2)-|0) transition is analyzed
and found to satisfy Eq. (2.6a) for some #,, the
sample can only emit direct radiation through
higher multipole moments.* However, if the
sample is “probed” by an excitation pulse at ¢,
which transfers the population of the |2) ( |0))
state to the ]1) state, the sample has immediate
local coherence on the allowed |1)-[0) ( [2)-[1))
transition and may radiate coherently if Eq. (2.6b)
is satisfied. '

We now turn our attention to determining the
magnitude of |R| at ¢,. Inserting Eq. (2.8) into
Eq. (2.7) it is found that

R(t,)= -D,= - [D -k, D)/#3], (2.10)

where _ﬁl represents the component of D perpen-
dicular to E,,. In the case when all the excitation
pulses travel collinearly it is clear from Egs.
(2.6b) and (2.9) that D | |k, and D, =0. Thus the
sample rephases completely to produce maximum
local coherences and hence maximum echo size.
With noncollinear excitation pulses ﬁ; is generally
nonzero, leading to reduced local coherence. Since
it is easier to detect an echo when it is not travel-
ing collinearly with an excitation pulse, it is use-
ful to determine whether |D, | remains sufficiently
small in the noncollinear case to produce an echo
of reasonable size. )

The decrease in echo intensity which results
from a given nonzero |D, | relative to the case
when [D, [=0 can be determined by performing the
integration of Eq. (2.4). Substituting

n(¥) o exp(—mv®/2k,T) , Co(2.11)

where m is the mass of an atom, %, is Boltzmann’s
constant, and T is the absolute temperature, into
Eq. (2.4), we have

51,5, )/F140)

=f dv,dv,dv,exp[-(mv?/2k,T+i¥'D,)].

(2.12)
Upon evaluation of the integral this becomes
®1(|D, )/31,0)=exp(3V3|D, |, (2.13)
where
Vo=(2k,T/m)*/2. (2.14)

With all other factors (such as overlap volume of
the excitation pulses) held constant, the intensity
of the emitted radiation corresponding to the mem-
ory term T}, vaires as (®},)%. Thus we have

I1(|B, |)/10) = exp(- 3 VZ|D, |?). (2.15)

From Eq. (2.15) it is evident that the intensity of
the emitted radiation falls off rapidly as IDL] in-
creases beyond 1/v,.

B. Excitation pulse requirements and absolute echo size

It is found that with all other factors (sample
geometry, ﬁl, etc.) held constant the echo inten-
sity is optimized when the magnitude of the mem-
ory term T}j responsible for the echo in maxi-
mized. Examining, for example, the density ma-
trix represented in Eq. (1.32), we see that the
memory terms are maximized when the excitation
pulse areas are of order 37. Thus to determine
the approximate intensity required of a Fourier-
transform-limited square pulse resonant with the
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(i-j)th transition it is only necessary to calculate
the intensity I#/,,, of a 37 pulse on the |[i)- ;)
transition. Since the expressions have been eval-
uated elsewhere, 2% we quote the result

I8 ,5,=m"Re/3\,T°A,,, (2.16a)

where X, is the wavelength of the particular tran-
sition, 7 is the temporal width of the pulse, and
A, is the Einstein A coefficient for the transition.
Alternatively, using the oscillator strength f,; of
the transition, we find that I}/, ,, is given by

Ig/>2)= ”2ﬁ/24727’e)‘ufu s (2.16Db)

where reEez/mcz is the classical electron radius,
and, ignoring the possible degeneracy of states i
and j, fis.related to A by f= AN*/8n%r,c. For the
resonance lines of the alkali metals the order of
magnitude of I,,,,, is 1 W/cm? for a 7-nsec pulse.
These power levels are clearly obtainable with
available tunable dye lasers.

The intensity of the echo can be calculated by
solving the classical problem of the intensity
emitted by a phased array of oscillating dipoles.
The amplitude and spatial arrangement of the os-
cillating dipoles are determined by the magnitude
of the memory term of p responsible for the echo
and the directions of the excitation pulses, respec-
tively. Fortunately, this problem has been ana-
lyzed in detail for the case of the photon echo*'®
and those results properly interpreted can also be
applied to other types of echoes.

Let the echo be generated on the (i-j)th transi-
tion by atoms in a pencil-shaped sample whose
cross section area s and length [ satisfy the condi-
tion that the Fresnel number (s/A;;0) > 1. Then it
is found that the number 7n of photons emitted in an
echo is

3 2 72 2
17=§§'1'T'(2p0) nl®sh5; AT, (2.17)
where » is the number density of atoms excited
and p, is the magnitude of the memory term of p
responsible for the echo.

In deriving the expression for 7 it is assumed
that Eq. (2.6b) is satisfied exactly, optimum ex-
citation pulses are used throughout, and all re-
laxation effects are neglected. Furthermore, Eq.
(2.17) becomes invalid if » is not uniform through-
out the sample or a significant fraction of the
stored energy is emitted. For » to be constant
throughout the sample it is necessary that the
sample be optically thin on all the pump transi-
tions. Explicitly, a}1<«1, where a¥, the classi-
cal absorption coefficient for the (i-j)th transition,
is givenby a}i = (31/4m2;A, T, with T¥% repre-
senting the inhomogeneous dephasing time of the
(¢-7)th transition. In the case of the photon echo
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for which only one transition is involved, Eq. (2.17)
can be rewritten simply in terms of the ¢, and

Te the number of resonant photons in a 3 7 exci-
tation pulse, as

Npg=(a,l/7)°n,,. (2.18)

Although Eq. (2.18) is only valid for @, <1 the
case of larger «,l has been studied.” It is found
that the echo peaks at o,/=1 and at the point is
somewhat smaller than the value predicted by Eq.
(2.18). Thus the magnitude of a photon echo can
be within approximately two orders of magnitude
of a 3 7 pulse on the emitting transition. Eq. (2.18)
fails for @ 712 1 because the pump pulses are ab-
sorbed before passing through the sample.

It is not possible to give a comprehensive state-
ment regarding the maximum size of an arbitrary
trilevel echo. It is necessary to examine the con-
ditions of validity of Eq. (2.17) with respect to »
for each echo type. The maximum obtainable echo
can then be estimated by calculating 7 for the num-
ber density at which Eq. (2.17) begins to become
invalid.

The quantities appearing in Eqgs. (2.16) and (2.18)
must be reinterpreted in the case of non-Fourier-
transform-limited pulses. It is found that the nec-
essary non-transform-limited pulse intensity is
given by (ITTL,)¥ =(7/7)I¥,,,, where 277 is the
inverse of the spectral width of the excitation
pulse and 7 is given by the number of resonant
photons in the non-transform-limited 37 pulse.

C. Summary

In summary, we have considered in Sec. Il a
model medium, consisting of a dilute sample of
atoms of the type discussed in Sec. I, which is op-
tically thin but which has a spatial extent much
larger than a wavelength. We have shown that in
order for coherent radiation to be emitted by this
sample, two basic requirements must be fulfilled,
one implying “local” coherence and the other ma-
croscopic coherence. The second requirement is
equivalent to phase matching in nonlinear optics.
Free decay and echoes have been shown to be pos-
sible examples of the coherent emission. Finally,
we have discussed the excitation pulse intensity
requirements and the absolute size of the echo.

III. ATOMIC RELAXATION AND ECHO DECAY

Although the results presented above afford a de-
scription of the basic properties of echo effects,
no account has been given of the important influ-
ence of atomic relaxation processes on echo be-
havior. It is found that such basic properties of
echoes as the time of occurrence are not signifi-
cantly affected by relaxation processes; however,
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the echo intensity is reduced. This degradation of
echo intensity can be utilized to obtain significant
information concerning the relaxation processes
responsible for it. We restrict ourselves here to

a qualitative discussion of the effects of relaxation
processes which occur in a gaseous medium. More
detailed treatments of various aspects of echo de-
cay in gases can be found elsewhere.”

As a preliminary, we discuss the means by which
the sample stores the information necessary to
produce an echo (echo information). We divide the
interval ¢, between the first excitation pulse and
the echo into subintervals ¢,;, which are bounded by
the times ¢, of the excitation pulses. It is found
that during any subinterval except ¢, and ¢,,, where
t, is the time of the last excitation pulse, the echo
information can be stored in one of two ways: (i)
an ordering (with respect to a particular component
of the thermal velocity and the position at time #, of
each atom) of the phase associated with a certain
two-level superposition state of the atom, or (i) a
modulation of the population in one particular state
as a function of a given component of the thermal
velocity. We term the former mode of storage
“phase mediated,” while we term the latter “popu-
lation mediated.” Population-mediated storage of
echo information was discussed in Sec. IC. During
the intervals £, and {,, only phase-mediated stor-
age is possible. Phase-mediated echo information
can be converted (by an excitation pulse) to popu-
lation-mediated echo information and vice versa.
The final echo intensity depends on the maintain-
ance of the echo information throughout £,,. Thus
any decrease in echo intensity can be written as a
product of factors each of which represents the
loss of echo information during a particular #,,.

In a gaseous sample relaxation occurs, principally
due to spontaneous emission and collisions. We
concentrate on collisional relaxation.

During an interval ¢,, of population-mediated
storage of echo information collisions can destroy
the echo information in two ways. First, state-
changing collisions can remove atoms from the in-
formation-containing energy state, and second, the
modulated atomic velocity distribution can be al-
tered by velocity-changing collisions (VCC). In the
latter case the effectiveness of velocity changes of
a given magnitude toward randomizing the velocity
distribution depends on the temporal length of one
of the preceding intervals £, (see Sec. IC). Thus
given a fixed probability distribution of velocity
changes occurring in the collisions, the rate at
which the echo information is destroyed during i
can be dependent on ¢,,. In fact it has been shown'¢
that, by studying the ¢,; dependence of the rate of
echo information loss during #,,, it is possible to
infer the distribution of velocity changes occurring

in the collisions, as well as to unambiguously de-
termine the total VCC cross section (see Sec. IV
B). :

During intervals of phase-mediated storage of
echo information the situation is more compli-
cated. In addition to state-changing collisions and
VCC we must consider the effect of phase-changing
collisions (PCC), i.e., those collisions which
change the phase of the relevant two-level super-
position state. Considerable effort has gone into
understanding the meaning of VCC and PCC and
their interrelationship when experienced by an
atom in a superposition state.?® However, there is
experimental evidence'®® which implies that the
echo decay resulting from collisions occurring dur-
ing an interval of phase-mediated echo information
storage can be related to the widths of collisionally
broadened absorption lines which are observed in
traditional absorption linewidth measurements.

IV. DESCRIPTION OF SOME PARTICULARLY
INTERESTING ECHO EFFECTS

A. Photon echoes

The two-pulse photon echo* has been dealt with
extensively both experimentally’”*%:%° and theo-
retically®® by others and thus provides a natural
first application of the present formalism. We
first obtain the density matrix (or phase matrix)
for a two-level atom after two excitation pulses.
The two levels can be considered to be the levels
[0) and [1) of the three-level atom of Fig. 1(a).
Figure 4 shows the excitation scheme and angular

a)

FIG. 4. (a) The two excitation pulses (solid lines) and the
echo involved ina two-pulse two-level (photon) echo. (b)
’I;he angular configuration of the first (E) and second
(k{) excitation pulses and the echo ('122). The two ex-
citation pulses are at an angle y with respect to each
other. It is apparent that for x>0, ZE{— 1= 'Ee and the
echo is not phase matched. For small x the phase mis-
match is minimum when the echo is at an angle of 2y
with respect to -121. '
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orientation of the excitation pulses. Pulse 1 (2)
with wave vector 1?1 (k’l’) and phase f_a..ctor a

= —pyo8, explik,* T,) [a= —p,,8] exp(ikj* T,)] occurs
at time #, (#,). The wave vectors Kk, and k] make
an angle x with respect to each other. Using the
2 X 2 upper left-hand corner of Eq. (1.28) as the
initial density matrix along with Eq. (1.18), we
find that after the second pulse

(p,)oo= €OS®3 6, cos?36,+ sin®36, sin®3 0,

siné, sinéf

- 2 * * 4'1
APIET (a*a+ aa*), (4.1a)
(Pw)10= (P,,,):l
_=—iasing, cos®36, iacosé,sind,
- 2lal 2lal
io’a* sinb, sin®36, ‘
Slallal  ° (4.1b)
()1 = cos® 36, sin® 6, + sin? 36, cos? 36,
siné, sinf, . «
T Tal (a*a+ aa*). (4.1¢)

The memory term which produces the echo is
(T )EE=1ia*a’sing, sin’36,/2lal lal?. (4.2)

The other two memory terms of (p ),, correspond
to free decay after the first and second pulses, re-
spectively. From the expression for (T )5F and
Eq. (2.1) we see that

i = -k, , (4.3a)
K= 2K . (4.3b)

Since &, =k/=F,= w,/c, it is impossible to satisfy
the phase-matching condition Eq. (2.6b) which re-
quires that 2K, —K, =K, if x>0. Thus for x #0 the
echo will suffer some degradation due to the fact
that the emitted echo signal will not remain in
phase with the atoms it passes throughout the sam-
ple length. For small x this degradation is at a
minimum along the direction k’e which minimizes
|K, - 2KI+ K, |. Since Eq. (2.6b) is not satisfied,
the expression for the echo time Eq. (2.8) is only
approximately correct. However, for small x the
error is negligible. Using Egs. (2.8) and (4.3), we
find

t, =2t + 2(t, ~ t,) cosx (4.4)

to be the time of maximum rephasing. The degree
of rephasing is found by using Eqs. (2.10) and .
(2.15). For small ¥ _ ‘

B, |2= 2, - )22 %3, (4.5)

and the echo intensity is reduced owing to incom-
plete rephasing according to

1X)/1 (x=0)=exp(-v¥t, -.tl)zk';’ X3 . (4.6)

Note that the decrease in echo size due to imper-
fect phase-matching is not accounted for here. As
an example of the effect of Eq. (4.6) consider the
case of photon echoes on the 3S-3P transition in
sodium vapor, where k,=27/(5.89 x10"° cm), v,
=5.4x10* cm/sec for a temperature of 400 °K,
(¢,=1)=50 nsec, and x=0.02 rad (21°). It is
found that I,(0.02)/1,(0)=¢"%. Thus the echo is
rapidly destroyed as X is increased from zero.
Note, however, that if ¢, -, is shortened, a con-
siderably smaller decrease takes place for a given
X. This fact has recently been utilized by Hu and
Gibbs® to detect picosecond photon echoes 2 on the
sodium transition discussed above. When x=0
both the rephasing and phase-matching conditions
are satisfied exactly. The results obtained here
concerning the photon echo agree with those ob-
tained in the previous treatments mentioned above.

B. Stimyulated photon echoes

As in the case of the photon echo, the three-pulse
stimulated photon (SP) echo is a well-known phe-
nomenon.*°® We find,*® however, that the SP echo
has a number of interesting and useful features
which have previously gone unnoticed.

1. Simple picture

In its simplest form the SP echo is produced by
three excitation pulses resonant with a single tran-
sition [see Fig. 5(a) for nomenclature]. However,
we find that [as shown in Fig. 5(b)] the third pulse
may also be resonant with a different transition.

A simple picture can be used to understand the
formation and principal features of the SP echo.
Consider the action of the first two pulses (for this

_discussion K, =K/ | [£). The two-level density ma-

trix after the first two pulses is given by Eq. (4.1).
The appearance of the a*a+ ag* factor in Eqgs.
(4.1a) and (4.1c) indicates [see Eq. (1.33) and ac-
companying discussion] that the population in both
the upper, ]1), and lower |0), state is modulated
as a function of the £ component of velocity (z ve-
locity). If we assume [in Eq. (4.1)] that 6,=6,=3m,
the z velocity distribution of atoms in either state
can be written as

n'(v,) = coexp( —mvi/ZkDT)f(%klv,tZI) , (4.7)

where c, is a constant, ¢,,=¢,~t,, f =sin® for state
|0), and f=cos® for state |1). The exponential
envelope represents the normal thermal distribu-
tion of v,. It is the modulated z velocity distribu-
tion in either state |0) or |1) separately which
contains the information necessary to produce the
SP echo.-

To see how the third excitation pulse acts to

create an echo, we imagine that we are somehow
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FIG. 5. (a) Excitation pulses (solid lines) and echo
involved in the usual two-level stimulated photon echo.
(b) The excitation pulses and echo which result when
the third excitation pulse is resonant with a different
transition involving only one of the initial two levels.
In this case the “information” responsible for the echo
is stored in only one atomic state between ¢, and #3.

(c) The phase-matched spatial orientation of the exc1ta—-
tion pulses and the echo. Note that the third pulse (ks)
and echo (k ) can propagate in the same or oppostbe
direction as the first two excitation pulses (k‘ and k{ .

able to obtain a sample of atoms all of which are
in state |0) but whose z velocity distribution is
modulated as shown in Eq. (4.7) and Fig. 3. The
third pulse excites the atoms in [0) into a super-
position between the [0) and |1) states. Since the
pulse excites the atoms coherently, the atoms at
each point initially radiate in phase. This results
in a free decay signal. Being Doppler shifted from
each other in frequency, the atoms dephase and
the free decay terminates. However, because of
the modulation of the z velocity distribution (and
hence the frequency distribution), it is found that
the atoms are again partially in phase at a later
time and emit the SP “echo”. More quantitatively,
the time evolution of the field emitted from the
atoms at one representative point in the sample is
obtained from the Fourier transform of the z ve-
locity (frequency) distribution.

E ()= ]-"” n'(v,)E(v,,t)dv,

=c} f exp(—mv/ 2k,T) sin’(z kyv,tx)

-co

xexp[-i(w, + kv )t]dv, , (4.8)

where E(v,, {) is the field emitted by a single atom,
t=0 at the time of the third pulse, ¢/ is a con-
stant, and k=k£. We find

E, (1) = cl exp(-iw,t) {exp(- 1x°1%02)
+§ exp[— 4kt - Ry 1)}
+zexp[- (it + Ry 1) 0]},
(4.9)

where v,=(2k,T/m)"/? and ¢! is a constant. The
first term of Eq. (4.9) corresponds to the usual
free decay from a thermal (Gaussian) distribution
of z velocities. The second (third) term, which
peaks at t=k,t, /k (t= ~k,t,,/x) represents the SP
echo when K, | |£ (K| |-2). The description of the
SP echo as free decay shows clearly how modula-
tion of the z velocity distribution [Eq. (4.7)] in a
single state can lead to an echo.

We can immediately appreciate some interesting
aspects ofthe stimulated echo. (i) Anechowill occur
ifthethirdpulse excites a transition which has either
level ]O) or level [1) as aterminal level.*® From the
expression for the echo timeabovewe seethat itwill
vary with the ratio k,/k,. (ii) If pulse 3 excites
the |0)-|1) transition and both levels are equally
populated, the free decay at #=0 vanishes, but the
intensity of the SP echo is four times as large as
it would be if one of the levels was empty. (iii)
The third excitation pulse can propagate parallel
or antiparallel to the first two pulses. (iv) As long
as z velocity modulation exists an SP echo can be
produced. The electric field of an SP echo created
by using only the z-velocity modulation in level
|1) (assumed to be an excited state) will decay as
a function of {;, at the same rate as the population
in [1) In contrast, an SP echo generated from z
velocity modulation in |0> (assumed to be a ground
state) can last indefinitely. As long as all the pop-
ulation in |1) does not recombine with the popula-
tion in ]O) [thus destroying the z velocity modula-
tion; see Eq. (4.7)], an SP echo can be created.
The appearance of hyperfine structure or magnetic
degeneracy in ]0) can result in SP echoes which
are independent of #,, for as long as the atoms do
not diffuse out of the excitation region. (v) If the
population in |1) decays to state |v), the z veloc-
ity distribution in lx) is modulated (neglecting ra-
diation reaction). Thus if the third excitation pulse
excites a transition with [x) as a terminal level an
SP echo can occur.

2. Detailed analysis

We now apply the methods of Secs. I and II to
analyze the SP echo. We assume that pulse 3 is
resonant with the Ii)- [j) transition, where it is
understood that at least one of the terminal levels
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is |0) or |1). We need to obtain the (p,);, ele-
ment of the density matrix after pulse 3. This is
made easy by the fact (shown by the free-decay
model) that after pulse 2 the SP “echo informa-
tion” resides solely in the population of the IO)
or |1) level —not in their superposition. Thus the
action of pulse 3 can be calculated by using a sim-
ple two-level density matrix describing the [5)
and |j) levels. The off-diagonal elements of this
two-level p  before pulse 3 are zero, while the
diagonal ones simply represent the population in
the levels [i)and |j) after pulse 2. For example,
if |i{)=|0)and |j = |1) [Fig. 5(a)] the diagonal ele-
ments of the two-level p, are given by Egs. (4.1a)
and (4.1c). If [i)= |1) and |j) is a higher energy
state, initially unpopulated, then (p,),, is given by
Eq. (4.1c) and (p,),, =0. We assume that the rows
and columns of the two-level p, are arranged so
that the population in the state of lower energy
appears in the (p_ ),, position. In this case the
phase factor of pulse 3 has the form y Ocexp(ik's"f).
After applying the M, matrix for pulse 3 [Egs.
(1.18) and (1.26)], we find that (p,);; contains the
two memory terms

iaa*y sind, sinf, siné,

o 4.10:
(T)yy lallallyl (4.10a)
, _ia*aysinb, sind,sing,
(T *grariary! ’ (4.10b)

where ¥ and 0, are respectively the phase factor
and area of pulse 3; the other quantities are de-
fined in Eq. (4.1). '

Using the expressions for the phase factors a
and « given preceding Eq. (4.1) and the expression
for ¥ above, we find that the cik’ , coefficients of
Eq. (2.1) are given by

ik = K, , (4.11a)
c,k,= FK! (4.11D)
csl'c's=1’<:, (4.11¢)

where here and in the following equations the upper
(lower) signs correspond to the gaa*y (a* ay) term
in Eq. (4.10). The SP-echo phase-matching condi-
tions [Eq. (2.6b)] derived from the two memory
terms of Eq. (4.10) can be written as

-

K, -K=K -& (aa*y), (4.12a)
kK, -E=-(K -K) (a*ay). (4.12b)

We discuss here only the two spatial orientations

of the excitation pulses shown in Fig. 5(¢). It can

be seen that, unlike the photon echo, the SP echo

can be phase-matched with noncollinear excitation

pulses. The effect of excitation-pulse noncollin-

earity on rephasing will be considered below.
Using Eqgs. (2.9) and (4.11), we find

D=k, 7kt - 1) + K (t, - 1,) , (4.13)
and the time of the echo is found to be
ty=t, F(K, K /Bty - ) + (K K /Rt 1) . (4.14)

Since it is necessary to have f,>¢; for an echo to
be emitted, we see that the aa*y (a* ay) memory
term produces an echo only when the third pulse
counterpropagates (copropagates) with the first
two excitation pulses. The spatial orientations of
the excitation pulses and echo shown in Fig. 5(c)
provide for ¢,>¢;, as well as satisfying the phase-
matching condition Eq. (4.12), If x and 0 <1 we
have

t,=t +(kl/R)Nt, —1,) cos(x+ 0)+(t, —1,) cosx . (4.15)

When X=06=0 and #,=0, we have t,= (k{t,/k,)
+t;, which agrees with the result obtained from
the free-decay model.

We use Eq. (2.10) with # =0 to determine the ef-
fect of excitation-pulse noncollinearity on the re-
phasing of the SP echo. We have (where “ctp” and
“cp” denote counter- and copropagation, respec-
tively)

DetHaa*y)= - [Kl+E(k{/k,) cosd]t,

+ (K, - K, cosx)ty , (4.16a)
Dexa* ay) = [K K (k!/k,) cosb]t,
+(E, - K, cosy)t; . (4.16b)
If x and 8 <1, both expressions give
Dy [*= (gtax - R{2,0)*. (4.17)

3. Decay of the SP echo due to velocity-changing collisions

The action of “echo-atom”-foreign-gas-atom
collisions during #,, on the population-mediated
SP echo information leads to foreign-gas-induced
decay of the SP echo which has interesting and
useful aspects.* While a sophisticated analysis
of this relaxation problem might follow along the
lines of the works in Ref. 35, our method is sim-
ilar to those described in the review article by
Breene.>®

We analyze the foreign-gas-induced decay of the SP
echo while assuming the following: (i) The third ex-
citation pulse excites only one of the two levels
coupled by the first two excitation pulses. This
implies that during #,, the effect of collisions on
atoms in only one state, which for convenience we
designate |e), contributes to SP echo decay; (ii)
State-changing collisions do not significantly af-
fect the population in state |e) during ¢5,; (iii) All
atoms which experience a collision during the
phase-mediated (see Sec. III) intervals #, and ?,
do not participate in the echo. The resulting sim-
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ple exponential decay of the SP echo intensity with
foreign-gas pressure P can be measured indepen-
dently by means of photon echoes and removed
from the overall SP echo decay rate to determine
the decay due to collisions in the interval ¢;,
alone; (iv) All excitation pulses and the resulting
SP echo are collinear (f{il |£2, i=1,2,s,e). Be-
cause of assumption (ii) collisions during ¢,, can
only disturb the SP echo information by causing a
thermalization of the periodically modulated dis-
tribution of z velocities of the atoms in state [e).

The third excitation pulse places atoms which
were in state |e) during #,, into a superposition
state, the phase of which is determined by the
phase of the electric field of the third excitation
pulse at the location of interaction. Because of
atomic motion, most of the atoms at an arbitrary
location z, at a time ¢>¢{; were excited elsewhere
and will generally have phases different from one
another. We note that

& < (explig,)), | (4.18)

where @ denotes the macroscopic dipole moment
at time £, the brackets represent an average over
all atoms at z,, and ¢; is the phase of an arbitrary
atom at z, at time ¢ relative to an atom which was
excited at z,. Since a given atom at z, at time ¢,
which has a velocity »j, was excited at z’=z,
- vt -1t,), and since the phase of the electric
field of the third pulse varies as exp(ikz), we .
find (using k,=%,) that ¢,;= — k(¢ - ;). The anal-
ysis of the SP echo above indicates that in the
absence of VCC @ will be large at a later time ¢,.
We term the atoms at z, at time ¢, in the absence
of VCC as the “original” group.

In the presence of VCC the jth atom acquires a
total z velocity change during {,, given by

Avd= Z N

where the sum is over the z velocity changes ex-
perienced in individual collisions. The velocity
changes result in the presence of a “new” group
of atoms at z, at the time ¢,. The z velocity of the
jth atom of the new group of atoms at z, at time ¢,
can be written as v’ + Avj, where v’ is the origi-
nal unperturbed z-velocity of the atom. The phase
of atom j with respect-to an atom excited at z, is
@i+ 8@;= =k 0]’ + Avd)t,,. Accordingly, the
macroscopic dipole moment ®’ of the new group of
atoms at z, at time ¢, is proportional to
(expli(@}+A@,)]). Assuming that v}’ and Ao} are
uncorrelated, we have

(exp[i(@]+ap,)])= {explip)) ) expliag,)). (4.20)

Since the distribution of vJ’ among the new groﬁp
of atoms is necessarily identical to the distribu-
tion of v among the original atoms, we have

(4.19)

(exp(ip}))= (exp(ip,)). Furthermore, since the SP
echo intensity I, (®’)?, we see immediately that

I, (exp(iAg,))* = (exp(— ik, Avit,,)). (4.21)

In accordance with the assumed random nature of
the collisions, the probability W(N) that a given
atom will experience N collisions is given by a
Poisson distribution

W(N) = (nv,0 t5,) " exp(-nv,0t,,)/N1 , (4.22)

where n is the foreign-gas density, v,

= (8k,,T/1ru)1/2 is the echo-atom—foreign-gas-atom
relative velocity, u is the echo-atom-foreign-gas-
atom reduced mass, ¢ is the total VCC cross sec-
tion, and v, ot;, is the average number of colli-
sions during #,,, We assume the existence of a
scattering kernel f(Av,), symmetric about Av ;=0,
which gives the probability that a single collision
will introduce a z velocity change Av,. Then, ex-
pressing the average of (exp(iA¢,))* over all atoms
at z, as an equivalent average over all possible
Ag, of a single atom, we have

(exp(—ik,Avpt,5))
“W(0)+ 3 W)

N=1

X J:.: ﬁ exp(—ik Av t,.)f(Av,)d(Av,) .  (4.23)

i=1
Since the Ay, are considered independent

(exp( — ik, Avgt,s))

=W+ 3 W)
N=1

X (fwexp(—ikeAv,.tB3)f(Av,)d(Avi))N. (4.24)

0

* Performing the summation indicated and using Eq.

(4.22), we find that the SP echo intensity decays
with foreign-gas density as

I,(n)
=1,exp [—- 2nv,0t5,
X (1 - fwexp(—ikeAvitea)f(Av,)d(Av,)ﬂ .(4.25)

00

As a function of foreign-gas pressure, which is
the more directly observable quantity, we find

I(P)=I,exp(-B'P), (4.26)
where

n,
B'=2=29p ot
P, 70l32

% (1 _ fwexp(—’ikeAvgtes)f(Avl)d(Av!)) .
“(4.27)
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Here n, denotes the foreign-gas number density
at pressure P,. [Eqs. (4.25) and (4.26) do not in-
clude the effect of collisions during ¢, and ¢,.]
Expressing the average change in z velocity mag-
nitude as [Av;|, we find in the limit of large Z,;
when k2., | Ay, |>1 that B’ is expressed simply in
terms of ¢, the total VCC cross section, i.e.,

(4.28)

B'(Bytys 180, 1> 1) = 2Any/ Pov,t,0.

Thus in the large-¢,; regime B’ is independent of
t,; and ¢ can be determined directly. For shorter
t,3, Eq. (4.27) indicates that 8’ depends on #,,. The
details of this dependence are determined by the
characteristics of the scattering kernel f(Av,).
Thus measurements of the ¢,; dependence of B’

can be used to infer the form of f(Av,). These de-
cay characteristics, which have already been
demonstrated,'® should prove quite useful in the
study of VCC.

4. Stimulated photon echo spectroscopy

The recent discovery*®**" that backward propa-
gating echoes can be produced in gaseous samples
as well as in solids®**** opens up exciting possibil-
ities in spectroscopy. If the SP echo excitation
pulses are narrow band (i.e., have pulse duration
greater than inverse Doppler width), the for-
ward and backward propagating pulses will only
be resonant with the same atoms and hence pro-
duce an echo when their frequency is tuned to the
center of the Doppler-broadened line. Using this fact,
one can obtain Doppler-free spectraby monitoring
the echo intensity as the frequency of the excita-
tion laser is swept. This effect is similar to that
observed in saturation spectroscopy*’; however,
instead of looking for a small decrease in probe
attenuation at line center, in the case of counter-
propagating echo spectroscopy there is no signal
except at line center.

C. Sum-frequency trilevel echoes

The phase-mediated sum-frequency trilevel
echo? (SF-I echo) is one of the most potentially
useful new echo effects to be described here. It
has already been applied to the study of foreign-
gas-induced collisional relaxation of the 3S-»nS
and 3S-nD;,, superposition states of atomic sodium
vapor.! Several foreign gases have been used and
the principal quantum number » of the upper state
has exceeded 40. The SF-I echo is produced in a
nominally three-level atom of type « in Fig. 1.
The sequence of excitation pulses necessary is
shown in Fig. 6(a). In the simple case of three
nondegenerate levels we find immediately from
Eq. (1.32) that a memory term
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FIG. 6. (a) Frequencies and temporal sequence of
the excitation pulses (solid lines) and the SF-I echo
(dashed line) produced in type-a atoms. (b) Relative
directions of the excitation pulses (E, Ez, '123) and the
SF-I echo (Ee) when the phase-matching condition is
satisfied. (c) SF-I echo in a four-level atom. The
|1-) and | 1+) states are assumed to be degenerate
magnetic sublevels of a single electronic state. The
| 0y and | 2) levels are magnetic sublevels of two other
distinct electronic levels. (d) Relative polarization of
the excitation pulses and the echo when the SF-I echo is
produced in the four-level atom of (c).

(T SF-!_iabﬂ* Sin91 Sin‘%oz sm—é—@i
w10 2lallbl 1Bl

appears in (p_),, after the third pulse. Here the
phase factors a, b, and B refer to the first, sec-
ond, and third pulses, respectively. [In the limit
6,, 6,, 6,1 Eq. (4.29) is identical with result
obtained in Ref. 1.] From the definition of the
phase factors for type a atoms, Eq. (1.13), we
have

(4.29)

ek =K, , (4.30a)
Cky=K,, (4.30D)
C3’?3= - k.a ’ (4.30c)

where l?, is the wave vector of the ith excitation
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pulse. From Eq. (4.30) it follows that the wave
vector of the echo (if there is one) must satisfy
the phase-matching condition [Eq. (2.6b)]

- > > -

K -k =K -K,. (4.31)

This is satisfied when the wave vectors are angled
as shown in Fig. 6(b). It can also be satisfied with
all pulses copropagating, but it is found that only
the configuration of Fig. 6(b) leads to rephasing.
Using Egs. (2.8) and (2.9), we find that

E-B_ EE £k
te=—z§-—= t1+—f?-3(t2—tl) -—ek-g-i(t3~t1). (4.32)
e e e

If 6 and 6’ of Fig. 6(b) are small, we may easily
evaluate the scalar products to obtain

te= (kz/k1)(t3 - tz) ’

where £, has been set equal to zero and we have
used k,=Fk; and k, =k,. Thus it can be seen that
unless k,> k,t,/(t, - t,) the atoms will not rephase
to produce an echo.

We now calculate the degradation of the echo in-
tensity as the angle 6 is increased from 0. Using
Eqgs. (2.10) and (2.15), we find that

ky+k

D,= [E2+ Ee% cos (9—22;14)] (t,- 1)
e

(4.33)

- [léﬂi-:—” cos <9ﬁ2—;;1-k$>] (t,-1,) (4.34)
e

and

(4.35)

2
,ﬁl |2= <k3t3 kZZklkl = kst, k;;kl) %,
where in Eq. (4.35) #,=0 and it is assumed that 0,
6’ <1. If ¢,=0 it can be seen that |D, |* above is
smaller than in the case of photon or stimulated
echoes by a factor of approximately [(k, - %,)/
2k, )% This implies that if &, =k, the SF-I echo
experiences only a relatively small reduction in
intensity when the excitation beams are made non-
collinear. Note also that when 6> 0 the echo prop-
agates in a direction removed from those of the
excitation pulses. This makes SF-I echo detec-
tion quite simple especially when &, =&,.
The SF-I echo is useful because of the relaxation
measurements it makes possible. By observing
the evolution of the density (or phase) matrix dur-‘

_
(~ia*b*Bsing, sinz 6,
X sing 6;)/21al bl 181
sin?36, sin?36,
X sin?3 6,
(- b*Bsin®30, sind,
X sing8,)/21b 1181
(iBsin® 46, sin® 36,
x sind,)/2 18|

cos?36,

|(iabB* siné, sing 6,
X sing 6,)/2lal 161181
—iasinb, cos30,
2lal
(- ab sind, sin} 6,
LXxcosz6,)/2lallbl

4
P =

(- bB* sin*3 6, sind, (-iB* sin?}6, sin?39,
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ing the sequence of pulses it is found that the SF-
I echo information is stored in the |1)-|0) super-
position state during ¢, and ¢, but during {,, it
is stored in the |2)- |0) two-photon superposition
state. By monitoring foreign-gas-induced decay
of the SF-I echo it is thus possible to determine
the relaxation rate for the [2)- IO) superposition.
The details of such measurements are given in
Ref. 1.

We have pointed out that when %, =k,, making
the excitation beams noncollinear facilitates ob-
servation of the echo. We now discuss a more
general method of producing easily observable SF-
I echoes. Consider the four-level system shown
in Fig. 6(c). The degeneracy or near-degeneracy
of the |1) level is essential to the effect described
here. From left to right and top to bottom the
elements of the 4 x4 density matrix p!* refer to
the levels [0), |1-), |1+), and |2).

The three excitation pulses with phase factors
a, b, and B which propagate along £, —-%, and —-%,
respectively, and have linear polarizations pa-
rallel to £, Z, and j, excite sequentially the
[1+)-]0), |2)-|1+), and |2)- |1-) transitions. The
transformation matrix M%’, which determines
the evolution of p*’ is obtained from the three-
level M by simply noting that M, represents a
transformation performed on a “subspace” of the
four-level system. Thus the three-level M, is
simply imbedded in a 4 X 4 identity matrix to form

M$. For example, for the first single-frequency
excitation-pulse coupling levels [1+)-|0)
¥ aink 3
( cosss, 0 & SUEC L
lal
0 1 0 0
M= . (4.36)
. s 1
Ziasing 8 ooste 0
lal 2n
0 0 0 lj

Mg"" is obtained in the usual fashion by every-
where changing the sign of 6,. By forming the
M) matrices for the remaining two pulses and
using the transformation equation Eq. (1.18) with
an initial p$" having population only in the |0)
state, we find that after the three excitation pulses

ia* sing, cos3 6, (- a*b* siné, sinz 6, )
21al X cos36,)/2lallb|

X sinz8,)/21b 1181 X sind,)/ 2181
(ib* sin® 36, siné,
X c0s38,)/21b|
sin?36, sin®36,

X cos?3 6,

(4.37)
sin® 6, cos? 36,

(-14b sin? 36, sind,
X cos36,)/21b |
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The important result is that (p$’),,.,, consists of
a memory term identical to the one which produced
the SF-I echoes in the nondegenerate three-level
atom. Since the phase factors for the three- and
four-level cases are identical, an echo with pre-
cisely the same characteristics as the SF-I echoes
discussed earlier is produced on the [1-)-|0)
transition. It will be noted Fig. 6(d) that the po-
larization of the echo is then normal to that of the
only excitation pulse of the same frequency. This
excitation pulse can be prevented from saturating
the detector by a polarizer whose pass axis is
aligned parallel to the echo polarization.! The
second and third excitation pulses propagate in
the direction opposite to the echo and hence do not
make the detection of the echo difficult. For
other types of trilevel echoes, for which there is
often only one excitation pulse at the frequency of
the echo, it is generally found that the echo-fre-
quency excitation pulse can be eliminated by using
the polarization technique described above. The
other excitation pulses, regardless of their di-’
rection of propagation or polarization, can gen-
erally be eliminated by using appropriate band-
pass filters or other frequency-selective detec-
tion. From these considerations it can be seen
that the SF-I echo and other trilevel echoes can be
observed without the use of troublesome optical
shutters.

When performed in a four-level atom as de-
scribed above, the SF-I echo still provides a mea-
surement of the |2)- |0) superposition decay rate.
However, the intervals ¢, and ¢, are no longer
equivalent since the echo information is stored
in nominally different superposition states.

D. Difference-frequency trilevel echoes

When a sample of type-b atoms [Fig. 1(b)] with
the population initially in level ]0) is excited with
the sequence of three pulses shown in Fig. 7(a) a
difference-frequency (DF) trilevel echo can be
produced. Using the standard techniques to obtain
the phase matrix after the third pulse, one finds
that a memory term containing the phase factors
a*b*a appears in (p,),;,. The phase factors a, b,
and a correspond to the first, second, and third
excitation pulses, respectively. Using the defini-
tion of the phase factors in a type-b atom, Eq.
(1.14), one finds that the c,l?i of Eq. (2.1) are given
by

¢,k =~k , (4.38a)
coky=K,, (4.38Db)
Coky=Ky. (4.38¢)

This immediately implies that the phase-matching

b)

FIG. 7. (a) Frequencies and temporal sequence of
excitation pulses (solid lines) and echo (dashed line)
in the case of the DF echo in type-b atoms. (b) Phase-
matched spatial orientations of the excitation pulses
(-121, Ez, E;;) and the DF echo (E).

condition [Eq. (2.6b)] is
K,=-K+K+K,. (4.39)
A configuration of the wave vectors which satisfies
this requirement and the rephasing requirement
below is shown in Fig. 7(b). Using Egs. (2.8) and
(2.9), we find that the time of the echo is given by

k
t,=t+ ky (¢, -1,) cosxq-k—3 (¢, ~2)cosd, (4.40)

ke e
where the angles x and 6 are defined in Fig. 7(b).
For collinear excitation ¢,=t,+(kyt,/k,), where £,
=0 and &,=k,.
When x> 0 the degradation of the echo relative to
x=0 is found by using Eqgs. (2.10) and (2.15), where

D,=(t,-t,) (Ez -Eeﬁ cosx>

ke
. > >k
+(t;=1) ks—kek_ cosd ). (4.41)
e
Setting ¢, =0 and assuming x, 6 <<1, we have
Iﬁx Iz =(t3k30 — tk,X)° . (4.42)

It is apparent that for #,>0 the echo intensity de-
creases rapidly with x. If, however, #,=0 and %,
=k, the echo is relatively immune to the effects of
making the excitation beams noncollinear.

Like the SF-I echo, the DF echo is potentially
useful in that it allows measurements to be made
of the relaxation properties of the |2)-|0) super-
position state. If £,=0 the echo information is
stored in the phase of the [2)- ]0) superposition at
all times except between ¢; and ¢,, when it is
stored in the |1)-|2) superposition state. As de-
scribed in Ref. 1, relaxation during this interval
can be compensated for by using excited-state
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photon echoes, and the relaxation properties of

the [2)— [0) superposition determined. Like the SF-

I echo, the DF echo can be detected by using the
polarization technique.

E. Inverted-difference-frequency trilevel echo

If a sample of type-c atoms initially in state |1)
is excited by any one of the pulse sequences shown
in Fig. 8(a), 8(b), or 8(c), an echo may be pro-
duced. Any of these echoes, which we call in-
verted-difference-frequency (IDF) trilevel echoes,
can be used to measure the relaxation character-
istics of the |2)-|0) superposition state. Between
the second and third pulse in each of the excitation
schemes shown the echo information is stored in
the phase of the ]2)-‘ IO) superposition state.

We give specific results only for the excitation
scheme of Fig. 8(c). After the third excitation
pulse (p,),, contains a memory term with the phase
factors b*a*B, where b, a, and B refer to the first,
second, and third pulse, respectively. Using the
definition Eq. (1.15) of the phase factors in a type-
¢ atom, we find

k=K, (4.43a)
ck=K,, (4.43Db)
Ciky=K, . (4.43c)

Then using Egs. (2.5) and (2.6b) we find that the
phase-matching condition is

K,-k,=K, -k, . (4.44)

A configuration of the wave vectors (k" is the
wave vector of the ith pulse) which satisfies Eq.
(4.44) is shown in Fig. 8(d). Although a counter-
propagating arrangement satisfies Eq. (4.44), it
does not produce rephasing with ¢,>¢,. The time
of the echo, obtained from Egs. (2.8) and (2.9), is
found to be

t,= l1+':—2' (¢, —1,) cos(x+20)+ %—3- (t;—t,)cosb,
€ ¢ (4.45)

where the angles x'and 0 are defined in Fig. 8(d).
The degradation of the echo with respect to the
case X=0 is determined by using Eqgs. (2.10) and
(2.15), where

B, =(t, - t,)[K, - K (k,/k,) cos(x+ 20)]

+(ty = 8,) [ky = R (Ry/R,) cOSD] , (4.46)
and, with £,=0 and x, d <1,
B, |2 = [t + Rt X + 26)]2. (4.47)

Thus the degradation of the IDF echoes as X in-
creases from zero is similar to that of the DF
echo. If £,=0 and k, =k,, making the excitation
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FIG. 8. {(a)—(c) Various excitation-pulse (solid lines)
schemes which produce IDF echoes in type-c atoms.
(d) Phase-matched orientation of the excitation pulses
and the IDF echo produced by the excitation pulses of

©).

beams noncollinear degrades the echo only slight-
ly. Since IDF echoes may be most useful in mea-
suring the relaxation characteristics of super-
positions between states such as the 3P, ,, and
3P, ,, states in sodium, it may often be true that
k, =k, and echo detection can be facilitated by
angling the excitation beams. Of course it is also
possible to apply the polarization technique to de-~
tect the echo.

ACKNOWLEDGMENT

This work was supported by the Joint Services
Electronics Program (U. S. Army, U. S. Navy,
and U. S. Air Force) under Contract No. DAAG29-
77-C-0019, and by the Office of Naval Research
under Contract No. N00014-78-C-05117.



20 ECHOES IN GASEOUS MEDIA: A GENERALIZED THEORY...

A, Flusberg, R. Kachru, T. Mossberg, and S. R.
Hartmann, Phys. Rev. A 19, 1607 (1979).

2T, Mossberg, A. Flusberg, R. Kachru, and S. R. Hart-
mann, Phys. Rev. Lett. 39, 1523 (1977).

’E. L. Hahn, Phys. Rev. 80 580 (1950); W. B. Mims,
K. Nassau, and J. D. McGee ibid. 123, 2059 (1961).
1. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys.

Rev. 141, 391 (1966).

5S. R, Hartmann, in Proceedings of the International
School of Physics “Envico Fermi” (Academlc New
York, 1969), Vol. 42, p. 532.

5N. Kurnit, Ph.D. thesis, Columbia University, 1966
(unpublished). ;

TA. A. Maudsley, A. Wokaun, and R. R. Ernst, Chem.
Phys. Lett. 55, 9 (1978); H. Hatanaka, T. Terao, and
T. Hashi, J. Phys. Soc. Jpn. 39, 835 (1975).

8R. P. Feynman, F. L. Vernon, Jr., and R. W. Hell-
warth, J. Appl. Phys. 28, 49 (1957).

L. Allen and J. H. Eberly, Optical Resonance and
Two-Level Atoms (Wiley, New York, 1975).

p. Grischkowsky, M. M. T. Loy, and P. F. Liao,
Phys. Rev. A 12, 2514 (1975).

Uy, Ducuing, in 1 Ref. 5, p. 421.

2. Y. C. Lu and L. E. Wood, Phys. Lett. 44A, 68
(1973); M. Aihara and H. Inaba, Opt. Commun.. 8,

280 (1973); J. Phys. A 6, 1709 (1973); 6, 1725
1973); T. M. Makhviladze and L. A. Shelepm, Zh.
Eksp. Teor. Fiz. 62, 2066 (1972) [Sov. Phys. JETP
35, 1080 (1972)].

133] R. Hartmann, IEEE J. Quantum Electron. 4, 802
(1968).

4p. Hu, S. Geschwind, and T. M. Jedju, Phys. Rev.
Lett. 37, 1357 (1976); 37, 1773 (1976).

g, Aokl, Phys. Rev. A 14 2258 (1976); A. Flusberg,
T. Mossberg, R. Kachru and S. R. Hartmann, Phys.
Rev. Lett. 41, 305 (1978); H. Hatanaka and T. Hashi,
J. Phys. Soc. Jpn. Lett. 39, 1139 (1975).

16T Mossberg, A. Flusberg, R. Kachru, and S. R.
Hartmann, Phys. Rev. Lett. 42, 1665 (1979).

1'7, Baer and 1. D. Abella, Phys. Lett. 594, 371 (1976);
Phys. Rev. A 16, 2093 (1977); A. Schenzle, S. Gross-
man, and R. G. Brewer, ¢bid. 13, 1891 (1976).

8A. 1. Alekseev, Pis’'ma Zh. Eksp. Teor. Fiz. 9, 472
(1969) [JETP Lett. 9, 285 (1969)]; A. 1. Alekseev and
1. V. Evseev, Zh. Eksp. Teor. Fiz. 57, 1735 (1969)
[Sov. Phys. JETP 30, 938 (1970)].

R, Weingarten, Ph. D. thesis, Columbia University,

1972 (unpublished); R. G. Brewer and E. L. Hahn, Phys.

Rev. A 8, 464 (1973); 9, 1479 (1974); 11, 1641 (1975);
A. Flusberg, Ph,D. thesis, Columbia University,
1975 (unpublished); M. Takatsuji, Phys. Rev. A 11,

619 (1975); A. Flusberg and S. R. Hartmann, .ibid. 14,

813 (1976); M. Ducloy, J. Leite, and M. S. Feld,
ibid. 17, 623 (1978).

20We note that certain echoes appear as the result of
inhomogeneous dephasing which occurs during the ex-
citation pulses; i.e., to account for them one must
consider the atomic motion during the pulses. Such
echoes were observed in Ref. 2 and explained in Ref.
1, where they were referred to as SI*-II trilevel
echoes. Echoes of this type are not directly covered
by the analysis of this work but they may be treated
with the techniques of this work by considering indivi-
dual pulses to consist of a series of two or more
subpulses. (See Appendix C of Ref. 1.)

1995

2y, Fano, Rev. Mod. Phys. 29, 74 (1957).

22\, M. Salour and C. Cohen-Tannoudji, Phys. Rev.
Lett. 38, 757 (1977); R. Teets, J. Eckstein, and
T. W. Hansch, ibid. 38, 760 (1977).

ZThe term “virtual echo” has been used in the past in
a fashion similar to that in which we use it here
[A. Saha and T. Das, Theory and Applications of Nuc-
leav Induction (Saha Institute of Nuclear Physics, Cal-
cutta, 1957)].

4D, S. Bethune, R. W. Smith, and Y. R. Shen, Phys.
Rev. Lett. 37, 431 (1976); A. Flusberg, T. Mossberg,
and S. R. Hartmann, ibid. 38, 59 (1977); ibid. 38, 694
(1977); M. Matsuoka, H. Nakatsuka, H. Uchiki, and
M. Mitsunaga, ibid. 38, 894 (1977).

%A, Flusberg, T. Mossberg, and S. R. Hartmann, Opt.
Commun. 24, 207 (1978).

%4, Compaan and I. D. Abella, Phys. Rev. Lett. 27, 23
(1971); R. Friedberg and S. R. Hartmann, Phys Lett.
37A, 285 (1971); E. L. Hahn, N. S. Shiren, and S. L.
McCall, ibid. 37A, 265 (1971).

23, Schmidt, P. R. Berman, and R. G. Brewer, Phys.
Rev. Lett. 31, 1103 (1973); P. R. Berman, J. M. Levy,
and R. G. Brewer, Phys. Rev. A 11, 1668 (1975); L. V.
Yevseyev and V. M. Yermachenko, Phys. Lett. 60A,
187 (1977); C. H. Wang, Phys. Rev. B 1, 156 (1970);
T. Baer, Phys. Rev. A 18, 2570 (1978); A. I. Alekseev,
1. V. Evseev, and V. M. Ermachenko, Zh. Eksp. Teor. '
Fiz. 73, 470 (1977) [Sov. Phys. JETP 46, 246 (1977)];
C. V. Heer, Phys. Rev. A 10, 2112 (1974); A. B. Dok~
torov and A. I. Burshtein, Zh. Eksp. Teor. Fiz. 63,
784 (1972) [Sov. Phys. JETP 36, 411 (1973)1; A. Flus-
berg, Opt. Commun. 29, 123 (1979); J.-L. LeGouét
and P. R. Berman, Phys. Rev. A 20, 1105 (1979).

®p. R, Berman and W. E, Lamb, Jr., Phys. Rev. A 2,
2435 (1970); ibid. 4, 319 (1971); P. R. Berman, Phys.
Lett. 43C, 101 (1978).

3C. K. N. Patel and R. E. Slusher, Phys. Rev. Lett. 20,
1087 (1968); T. Baer and I. D. Abella, Opt. Lett. 3,
170 (1978); B. Bolger and J. C. Diels, Phys. Lett. 284,
401 (1968); R. G. Brewer and R. L. Shoemaker, Phys.
Rev. Lett. 27, 631 (1971); R. G. Brewer and A Z.
Genack, ibid. 36, 959 (1976).

30M. Scully, M. J. Stephen, and D. C. Burnham, Phys.
Rev. 171, 213 (1968); J. P. Gordon, C. H. Wang,

C. K. N. Patel, R. E. Slusher, and W. J. Tomlinson,
179, 294 (1969); A. L. Alekseev and I. V. Evseev, Zh.
I:.ksp Teor. Fiz. 56, 2118 (1969) [Sov. Phys. JETP 29,
1139 (1969)]; 68, 456 (1975) [41 222 (1975)];
Makhviladze and M. E. Sarychev, ibid. 69, 1594 (1975)
[ibid. 42, 812 (1976)].

3P, Hu'and H. M. Gibbs, J. Opt. Soc. Am. 68, 1630
(1978). -

%We note that W. H. Hesselink and D. A. Wiersma [Chem.
Phys. Lett. 56, 227 (1978)] working in solids have de-
veloped a useful technique for the detection of picosec-
ond photon echoes.

3BCertain of the characteristics of the stimulated echo
as produced in three-level atoms were discussed by
A. 1. Siraziev and V. V. Samarthsev, in Opt. Spek~
trosk. 39, 730 (1975) [Opt. Spectrosc. 39, 413 (1975)].

A, B. Doktorov and A. I. Burshtein (Ref 27) provide
a discussion of certain aspects of the behavior of sti-
mulated echoes in the presence of velocity-changing
collisions. They apparently did not realize that the
stimulated echo could be used to study collisions af-



1996 MOSSBERG, KACHRU, HARTMANN, AND FLUSBERG 20

fecting atoms in a single state.

3B, L. Gyorffry, M. Borenstein, and W. E. Lamb, Jr.,
Phys. Rev. 169, 340 (1968); S. G. Rautian and I. I.
Sobel’man, Sov. Phys. Usp. 9, 701 (1967); P. R. Ber-

man, J. M. Levy, and R. G. Brewer, Phys. Rev. A 11,

1668 (1975).

%R. G. Breene, Rev. Mod. Phys. 29, 94 (1957).

SAfter this manuscript was in final form we received a
preprint from M. Fujita, H. Nakatsuka, H. Nakanishi,
and M. Matsuoka which also points out the possibility

of the backward-propagating stimulated echo. [Phys.
Rev. Lett. 42, 974 (1979)1.

38N. S. Shiren, Appl. Phys. Lett. 33, 299 (1978).

9N. S. Shiren and T. G. Kazyaka, Phys Rev. Lett. 28,
1304 (1972); E. 1. Shtyrkov, V. S. Lobkov, and N. G,
Yarmukhametov, Pis’ma Zh. Eksp. Teor. Fiz. 27, 685
(1978) [JETP Lett. 27, 648 (1978)].

407 W, Hinsch, L. S. Shahm, and A. L. Schawlow, Phys.
Rev. Lett. 27, 707 (1971).



