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Resonant potential scattering in a low-frequency laser field
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The problem of resonant potential scattering of a charged particle in the presence of a low-frequency laser
is analyzed. A method suggested by Kriiger and Jung is used and their result is obtained as part of the
lowest order in an expansion in co, the laser frequency. Additional terms are obtained in lowest order and in
the next order. No expansion in powers of co/I is made where I is the resonance width. A modified sum
rule for the scattering is obtained.

I. INTRODUCTION

One of the motivations for studying electron-
atom scattering in the presence of a laser field
is that it provides a means of measuring off-shell
T matrices and interference effects which are not
otherwise accessible. This was recognized' some
time ago in nuclear physics and has been the mo-
tivation for studies of nuclear bremsstrahlung. The
laser, in atomic physics, makes the experiment
easier by increasing the coupling to the radiation
field through the stimulated process rather than
reyling on the weak coupling in the spontaneous
process as in bremsstrahlung.

. The exotic processes mentioned above have yet
to be seen. In the situation in which the laser is
tuned to a transition of Ehe free atomic target the
only new quantities that have been measured' or
calculated' are cross sections with initial states
that are laser prepared and perhaps not other-
wise accessible. The exotic effects require more-
intense tunable lasers. A similar remark can be
made concerning the situation in which the laser
is tuned to a transition in the compound state,
between resonant states, ' or between a resonant
state and a negative ion state. '

lf the laser is low frequency and intense, (a
CO, laser for example) it has been shown by
Kroll and %atson' for potential scattering that,
neglecting terms of order ~', the only thing one
obtains is the conventional cross section with no
off-shell effects. The proof has been extended to
atomic targets' and it has been shown' that off-
shell effects will enter in order &'. These de-
velopments neglect the possibility of scattering
resonances in the absence of the laser and, as
Kruger and Jung' have observed this effect dra-
matically changes the form of the T matrix in the
presence of the laser for potential scattering.
For example, in lowest order in ~, the Kroll-
Watson result for the T matrix for scattering with
the transfer of l photons is

J ((p~-p;) ~)[pf IT(~;) lp;] (1.1)

where T is the conventional T matrix in the ab-
sence of the laser, p,. and pf are the initial and
final momenta, and

n = (e/m ) E/&o' (1.2)

is held fixed in the expansion in powers of u. The
average initial electron energy &, = p',./2m is
related to the final energy" by

&z
—Pf,/2m = 6,. +1~,

but since we are discussing the lowest order in
u the T matrix in (1.1) is evaluated on-shell. The
expansion used to obtain (1.1) is in powers of
&u/e, , but as Kriiger and Jung have pointed out,
when a resonance occurs there is also an implied
expansion in powers of v/I", where I" is the width
of a resonance, and this is usually not small.
They treated the case in which the resonance en-
ergy occurs such that

where m, is an integer. Then when the projectile
picks up», photons it has the correct energy to
resonate with the target. Their result for the T
matrix in lowest order can be written

(1.5)

That is, the total scattering for all l in the pres-
ence of the laser is equal to the scattering in the
absence of the laser. This is satisfied by the
Kroll-Watson result (1.1) even when terms of
order &u are included. It is not satisfied by (1.5),
where an additional factor J', (p, ' o.') appears on

This result has been obtained only in lowest
order in (d and so the T matrix is evaluated on
shell.

Only one experiment" has been performed in this
field. Values of l as high as + 3 have been seen
but the only quantitative result has been the sum
rule
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the left-hand side of (1.6). The experiment is not
potential scattering, but electron-argon scat-
tering at the resonant energy of 11 eV and more
important, since m, =0 and' (o.' ~ p, )'-0.1, the
Bessel function is hardly different from unity.

In Sec. II the work of Kruger and Jung is ex-
tended by obtaining higher-order terms in the
expansion in powers of ~/a, , but terms of order
&u/I' are retained to all orders. The method used
closely follows a suggestion of Kruger and Jung.
Their result is reproduced as part of the lowest-
order result. Additional lowest-order terms are
obtained and a modified sum rule is discussed.

II. DERIVATION OF THE T MATRIX

The method used by Kriiger and Jung' to ob-
tain (1.5) was to treat the projectile-laser in-
teraction in the initial and final states exactly but
to expand in powers of it in intermediate states.
The justification was that the scattering event
takes place rapidly enough so that this interaction
will only perturb the projectile weakly even for
intense lasers. They kept. only the zero-order
term but higher orders will be obtained here.

The starting point is the exact S matrix

G" =G"+G"—p'AG"
m

+G"—p'AG" —p'AG" +' ' . (2.6)
m m

This generates a series for the 8 matrix in pow-
ers of ~. G" is the Green's function. in the ab-
sence of the laser. It can be written

G" (rt, r't') = ie-(t —t')g y„(r)y +(r')

x exp[ (i W-„+ rt) (t —t')], (2.7)

where the Q„are the stationary states (with en-
ergies W„) in the presence of the potential V and

q is a positive infinitesimal. Substitution of (2.5)
and (2.6) into (2.1) results in a series for S,

s= s'"). (2.8)
n=o

The individual terms can then be simplified by
the use of (2.1), since all the t integrations can
be performed. An energy 6 function appears in
all the terms, so (2.8) can be rewritten

s = iQ 2m5-(ef —e,. -t(v) Q TI"'(pf, p,.), (2.9)

(2.i)

where |t ,
'" is the exact wave function which evolves

out of the initial state at t =-~, V is the scattering
potential and Xz is the final state. It satisfies the
Schrodinger equation with V set equal to zero and
is given by

Xf(r, t) =exp iipf [r —a(t)] —i&ft]

=g &, (pf o.) exp[ipf r —i(sf+lcm)t],

(2 C)

&,"'(p„p;)=Q ~, , (p, ~)~,(p, ~)

x (p, I vIp, .)

and the n =1 term is

(2.10)

&,"'(P„P;)=g ~, , (vf ' &)~,(P; &)

x [pf I
VG,"(e,. +xur)vip ]

thereby defining the T matrix for scattering with
the net absorbtion of l quanta of energy from the
laser. The n =0 term is just

where the laser has been treated as a classical
single-mode field in the dipole approximation and
the &'(t) has been removed from the Hamiltonian
by a contact transformation. The vector potential
has been chosen to be

where

[ IG(.)(~)I,] g 4„(~)4„*(~')
(Z'- W„)

(2.i 1)

(2.12)

A(t) = (u(m/e) n cos(ut, (2.3)
is the time-independent Green's function with the
potential V. These two can be combined to give

implying

o.'(t) = a stuart. (2.4)

(Pf PI) + I (Pft Pl)

The expansion described above can be obtained
from

=x;+G" Vx;, (2.5)

where G is the full Green's function, which can
be expanded as

(2.18)

where T is the exact T operator for scattering
from V in the absence of the laser. The n =2 term
can be evaluated with only a little more effort,
yielding
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z'(2) (p~ p )

= —QQ J, „,(p~ n)J„(p,. ~ n)
)t X=+1

x [pt I
V G,"(&,+ (d(a —x))n p G,"(c,.+»)V

I p, J,

(2.14)

where the index x arises from the cosset in A(t)
by the use of

cosset = —,
' Q exp(ixrut) .

X=+1

With this result it is now a simple matter to ob-
tain the general term in the series which is

n

T)""(p~,p;)= — Q ~ ( L,. (Pg'n) .(p n)
)tX1~ ~ «Xn

T n n-1

p„VG," e,. q(d X —P x& In pG," e,. +&@ .X —g x,. n'p ' n PGo"(e,. +(dX)V p,.j 1

(2.15)

G,"(E)= U„)(U,/(E E,)+G -(E), (2.15)

where G» is a slowly varying function of E. In
the sequence of G's in (2.15) it is clear that suc-
sessive functions may not be resonant for a given
set of the parameters (Ax, x„) since the argu-
ments of any successive pair will differ by one
of the x's times v, which cannot be zero. This
is just an expression of the fact that the projectile-
atom interaction changes the energy by +u. That
means that at most [~(n+2)J of the G's can be
resonant, where [&(n+2)J is the largest integer
~

T. (n+2). This gives the number of resonant-en-
ergy denominators that can occur in (2.15). If a
resonant Green's function occurs either first or
last in the sequency in (2.15) then it will contri-
bute a factor of (p~ I

V
I
U.) - (U.

I
V Ip;).

are the matrix elements coupling the resonant

with (n+ I) factors of G,"occurring. These ex-
pressions show that this generates a series in powers
powers of u, but a complication arises because
of the fact that the Green's functions may be res-
onant. Let us hypothesize that there is an isolated
pole (resonance) in G,"at the energy E~=hz
-&iI' such that 8„=&o=&,. +m, ~, where m, is an
integer. Near that energy the Green's function
can be written

state to the continuum, the mechanism of its decay,
so that these can be expected to be small and of
order P

If we put these arguments together then the
maximum contribution to T'""' will be

(d I', n+1 odd,
~
r (1/2) (tl+2) l

'p2+ 1 even

For n =3 this is (d'I'~'/(E —ER)', and since E
Es-F near -resonance this is of order (d'~'(&u/

I' )'t', which we drop. Higher values of n give
even smaller resu'its so only n ~ 2 need be con-
sidered.

Before proceeding we note that the factors
(U„l V lp,.) are taken to be small but factors such
as (p~lVG»n pl U~) are not necessarily small
since there is no reason to assume that the p
operator will only weakly couple the resonance
state to the slowly varying part of the Green's
function.

Now let us turn to the successive terms in the
series for T. We first assume that neither the
initial nor the final energy is resonant, that is
that m, 00 and l 4m, . The leading term is (2.13)
and we must distinguish X =mo from aO the others:

&("(p&,p;)+&)("(p„p;)=&., «p~ n)&.,(p; n) [p&l&«0)lp;J+ Q ~.-((p~ n)~. (p 'n)
)ti'mo

(2.iv)

The second term is nonresonant and so can be expanded about E,. or any other nonresonant energy. The
choice is arbitrary, but for symmetry' we choose

T(a, +k )=-,'(T(t, )+T(a~))+-,w(l {E,)+T(X —)) 'T(&~l)+''
f

(2.iS)
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The summations over X can now be carried out, with the result

&I"(P&,I;)+TI"(u& 0;)=~..~(p~'&)~.,(P ~) [p~IT«.}lp;]+[~-i(4'~)-J-;~(P~ ~)~ .(p '~)]

x-,'[p, lT(~,.)+T(e,)lp, ] —— —&, (q o) p, lp; n T(~;)+p, .o. T(&,) p;

P

--.'~m, J, , (p, o.)& (p,. o') p, s, T(~;)+ s T(&,) p;, q=py-p;. (2.19)

The next order, T'", can have either of the two Green's function resonant. This can be written

T,'"(p~, p,.) = —QJ, „(p~.o)J (p, o}[p~l VG,"(e~+ (o(m, —l —x)) o ~ p G,"(e,)V
I p,.]

x= tl

+
2 g J.. .(p, ~)J.,„(p, n).[p, IVG, ~(.,)Z pG&. &(~,.~(~, +~))vip,.]

x=~1

+ —2 '~.-i-.(pf
' ~)~.(p~ '~}[p~

I
VGO'«~+ ~(& —& -~})~ 'p G'"«;+»)v

I p;]
X, x

(2.20)

where the prime on the last summation deletes the terms X =mo and ~ =mo+x, which appear explicitly in
the first two terms. The Green's function G(e,) is resonant and given by (2.16), where G» is a. slowly
varying function of E, and U~ is interpreted as the resonance wave function. " The remaining Green's func-
tions in (2.20) are all nonresonant and can be expanded in powers of &u. The contribution from the terms
linear in ~ is of order ~'I" '~', which is dropped. So each of these Green's functions can be evaluated at
some nonresonant energy e, or t& and the difference (of order v) is not significant. Moreover, the non-
resonant part of the resonant wave function G» is expected (to order u&) to be the same as G(ef) and

G(&;), so the distinction among the three will now be dropped. The summations over x and X in (2.20) can
all be carried out, with the result

TI"(p„p;)

-.- (p~'~)~-, (p''~)l -' - (&~lvG~ pl&.}(&.lvlp~}+ - '-- (p, lvlU. }«.l~ pGvlp, ) I')
—-.- ~,(j nXpxlvGo" pGvlp ).

q
(2.21)

The last term in (2.21) can be rewritten with the
aid of the identity'

(+, ++a )[P~l T(E)

1
= —

p~ &(E)
(
„,~ ), T(E) p,

I

(2.22)

(2.23)

p I
VG,"(E)o..pG, '(E)V Ip. ]

Then it can be combined with the two terms of
(2.19) which contain the factor 4, (g ' o!) to give

z, (q o)-,'gp~ —xlT(~,. -7. .p,./ }lp,. -X]

+[p. -~lT(~~-~ ~./~)lp;-~]}
where X = tolmo. '/q Z. In obtaining (2.23) from the

two terms of (2.19) and the last term of (2.21) ex
plicit use has been made of the fact that the T
matrices occurring in (2.23) are nonresonant and
can therefore be expanded in powers A. . These T
matrices are on shell (with error of order &u') and
are the simple generalization of the Kroll-Watson
result arising from the averaging procedure adopted
in (2.18).

The next term, T'", has contributions from the
situation where two of the Green's functions (the
first and last) are simultaneously resonant and
another in which only the middle 6 is resonant.
In each case the remaining G's can be expanded
in powers of ~ and all but the lowest-order terms
can be dropped. This results in

2

(pg, p;) = —Qcl i (p~' Q)el (p; ' Q)[py I
vG (E )Q' pG (6;)Q 'pG (6 )vip]

CO

QJ, „(p~ o)J .„(p n)[p~lVG,"(&~)o.~ pG,'"(c,)o. pG,'"(a,.)vip,.].
xlx 2

(2.24)
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The resonant Green's function is now replaced by the first term of (2.16) and the summations over x are
then done. The result is

&I"$„p;)= —
—, -Z —~, , (p, ' o') ~„,(p o')

0 R

I
~ ~

/

(2.25)

where the distinction between the nonresonant Green's functions which appear here has been neglected
since that would introduce terms of order ~'. As pointed out above, higher-order terms such as T' ' can
be dropped.

Before we proceed it should be noted that, although the expansion has been in powers of ~/e, with a
retention of only the zeroth and first orders, (e/I') has been treated as a quantity of order one. In fact for a
CO, laser &u-0. 1 eV, and a typical Feshach resonance width is of order 5 && 10 ' eV, so that co/I' -20. It
then could be that the higher order-terms in the expansion in &u/&, can be compensated by powers of &u/I'.

That this is not the case can be demonstrated in the following way. Let us investigate the leading terms in
the resonant part of the expansion for T'"'. For example, the odd terms T "~"' can be obtained in essen-
tially the same way as was T"', with the result

(d ~

8' R
y

(p, (VGa f(U )
~ P —

) (V (n jG)'(f)),
p ~

' Qp~' Q co —ER
(2.26)

which sums from j=1-~ with the result

&++»( )
1 u 8~0 i (ps'o')~~o(p;' o')
2 &, -E„--,'u(U)„~c( PGn PU„)

(i, l)'(I~. )
' " ' ~' ' " (()„I)'Ii,) -' -" ' '(xi, )«~ 5(IU„)(U.I~ i)G~(i);)o-E p. e p, n

(2.27)

From this it is clear that this expansion parameter
ls

the "dressing" of the resonance state by the laser,
and the term

(&'/I')(U I~ PG~. plU )- (~'«~;)I~ pl'

which is small for the experiment in question, "
but it is also clear that a more intense laser will
make this effect significant. The effect is just

—.'~'(U, l~.p«plU&)
can be interpreted as the dynamic Stark shift of the
complex energy of the resonance.

If we now assemble the result T"' ~ ~ T"', we
obtain

(2.28)

P

T (Py Pi)=(-()
i

*&~(t)''8 P~-» ~i- '
i )(, -~ ' Fa-~ ~ '~- 'Ih-~

Im j m

~. ,(i, Z) z. (- i, a) I( i, I)'(~.)(i, ]- H i, I &(~; ) ~ r (~, ) I 5, I

~(~.-I) (5~I«~.PIU )(U l&lp;), ~~0 (P~IVIU )«~l~ P«lp;)
py + ~o-Ez p&

'+ ~o

+ (otto Py 1'(&;)+ T(~y) P; +~2~'(Pyl V[U~) . " (UslVlp;)
8 8, 2 (U~l&'pG+'plU~)

. ~.(~.-)) (i, )«~ r(L.)(().(~ i«(i;)
I)(pg' o')(py' +) &o &z
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The first term [-J,(q ~ o.)] is essentially the Kroll-
Watson result discussed above. The first term in
the second expression in curly brackets is the
resonant contr ibution calculated by Druger and Jung;
the next is a nonresonant contribution which tends
to cancel the first as we move away from reso-
nance. Thd next two are of order (di'' '/e, El-
and the remaining are of order cu, &u'I'/(~, E„-)',
and &u'/{e, —E„). [It should be pointed out here
that in the absence of resonance, i.e., as I'-,
the result (2.28) returns to its usual form. ']

The cross section is proportional to the absolute
square of the T matrix (2.28), which evidently con-
tains interference between the resonant and non-

resonant terms. In the absence of the laser this
interference is also present:

=
l —, ill. p, I T»+T, (~.)l p;]I', (2.29)

where we have used

T(~0) =T»+ T~(~0) . (2.30)

If we retain only the terms of zero order in ~ in
(2.28) but continue to distinguish between resonant
and nonresonant terms, then the sum rule (1.6) can
be written

Q «i( P~, P|)
dQ

~ ~
~

2

E I (p&I T,&I P&)I'+~'. (p ~)l[p~l T~(&0)l P; ll'+&'. ,(P; ~)«[P, IT„IP;l[p&I T~(e.)I P&]] (2 31)

which, with the aid of (2.29), is

Q «i(Ps~Ps) [1 g~ ( . -)] «(PgiP;)
QQ 0 f dQ

, «(p„p,. ) (2.32)

where

«(pg, pg )
dQ

=
(2,) I (0, I r, I i; ) I

* . (2.33)

This result already provides a new tool since in
the absence of the laser only (2.29) is measurable,
whereas the laser, through the parameter p,. ~ a,
allows for an additional measurement of the reso-

nant part of the cross section.
The summation over I in (2.31) extends over all

integers and in particular includes l =m„which
was excluded before the start of calculation (2.17).
However in l.owest order in e, (2.28) applies just
so long as the distinction between resonant and
nonresonant energies is preserved. So (2.32) is
correct. A procedure similar to the one used
above yields, for l=m010,

T.,(Pf, P;) =(-I)"l~.,(q ~) Pf -»leg — '- P;-& +~ (P ~u (-p ~)

x [- IT(, )I- ] [- IT(, )I- ]+™.(P. IVIU. )(U. I~ Pcvlg;)
)-E

-m(d p
'

p +-'&u'( lvlU) ~ P P " (Ul I )m

~

0~ ~~
~

~

~
~I

I

p ~
~ ~ «

~ ~
~

pf ~
~

~

~
~

I ~

~~
~

~

2

~ ~

~

~ ~ ~~I ~'] (2.34)

The other values of l and m0 can be obtained similarl. y but will not be discussed here.
If the next order, u&I' '/c, E~, is retaine-d in the T matrix then an additional term is added to the sum

rule, the right-hand side of (2.32). It is

W' (p o() - '- Re ' "E ' [(p~lVIU„)(U„Io' pGVIp, . )+(p~lVGa ~
pl U„)(U„IVI p;)]

(2.35)
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which is the lowest-order off-shell information
obtainable via the sum rule. More detailed in-
formation can be obtained by investigating the in-
dividual l values.

Before attempting a comparison with experiment
it is necessary that one extend the above calcu'. a-
tions to include the fact that the target is an atom
not a potential and to average over the energy
distribution of the incident beam. In the usual
case in which the beam energy width is much lar-
ger than the resonance width, the resonance

structure will then be averaged away and the addi-
tional information contained in (2.35) will be much
more difficult to obtain. This will be discussed
in a subsequent publication.

ACKNOWLEDGMENT

This research was supported by the U. S. Office
of Naval Research through Contract No. 0014-76C-
0014.

~See for example H. Feshbach and D. Yennie, Nucl.
Phys. 37, 150 (1962).

2P. Langendam, M. Gavrila, H. Kaandorp, and M. Van
der Wiel, J. Phys. B 9, L453 (1976).

See, for example, M. H. Mittleman, Phys. Rev. A 18,
685 {1978).

I. V. Hertel and W. Stoll, J. Phys. B 7, 570 {1974);7,
583 (1974); N. D. Bhaskar, B.Jaduszliwer, and B.Bed-
erson, Phys. Rev. Lett. 38, 14 (1977).

M. H. Mittleman, J. Phys. B 12, 1781 (1979).
N.. M. Kroll and K. M. Watson, Phys. Rev. A 8, 804
{1973).

M. H. Mittleman, (unpublished).
M. H. Mittleman, Phys. Rev. A 19, 134 (1979).
H. Kruger and C. Jung, Phys. Rev. A 17, 1706 (1978).
Units of 5=1 are used.
A. Weingartshofer, J. K. Holmes, G. Caudle, E. M.
Clarke, and H. Kruger, Phys. Rev. Lett. 39, 269
(1977).

12See, for example, R. G. Newton, Scattering of ~aves
and Particl, es (McGraw-Hill, New York, 1966), and
R. M. More and E. Gerjuoy, Phys. Rev. A 7, 1288
(1973).


