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Coherent dynamics of N-level atoms and molecules. IV. Two- and three-level behavior
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The authors demonstrate special cases for which the resonantly excited N-level atom displays particularly
simple periodic behavior involving only two levels. The cases, which occur when first and last transitions
are weak, have analytic solutions. A striking difference is noted between even-N and odd-N, related to the
resonance structure of the dressed (N —2)-level atom.

INTRODUCTION

The N-level atom" provides a valuable mathe-
matical idealization of coherent excitation driven
by multiple monochroma, tic resonantly tuned las-
ers; both analytical' ' and numerical" solutions
provide useful insights into coherent excitation
dynamics (which can differ dramatically from in-
coherent excitation) as well as guiding searches
for .optimum excitation conditions. The growth
of literature ' treating this model a.ttests to both
mathematical and physical interest.

By N-level atom we mean the loss-free system
of N probability amplitudes C„(t)whose time
evolution is governed by the rotating-wave-ap-
proximation (RWA) time-dependent Schrodinger
equation"

i —"C„(t)= Q W„.C.(t),

where the RWA Hamiltonian 8' is a real sym-
metric tridiagonal matrix expressing adjacent-
level linkages along an excitation ladder. In the
case of resonant excitation, our sole concern in
this paper, the only nonzero elements of 8" are
the N —1 values of the Rabi frequencies 0„,
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—vv n+ &, n
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that express as frequencies the interaction energy
between dipole-transition moments and laser elec-
tric fields. For simplicity we take all 0„to be
positive real numbers, as is always possible by
suitable choice of basis-state phases. By permit-
ting N —1 separate la,sers of adjustable intensity
we admit the sequence of Ra.bi frequencies as
arbitrary parameters, adjustable to serve our
purposes. Thus previous papers' ' have discussed
choices for the Q„which permitted analytical so-
lution in terms of traditional special functions. In
the present paper we describe broad classes of
Rabi sequences for which the generally compli-
cated N-level behavior undergoes great simplifica-
tion, permitting approximate analytic solution.
Furthermore, these choices for Rabi frequencies

produce the maximum time-averaged population
in level N and so, in this sense, they represent
a prescription for optimum inversion.

TIME AVERAGES

Although solutions to the Schrodinger equation
continue varying with time indefinitely and ap-
proach no steady-state quiescent limit, - time
average probabilities

do approach asymptotic limits fairly rapidly (i.e.,
within a few population oscillations; see. Fig. 1)
and thus values of the limiting value P„=P„(~)
provide useful indicators of average populations.
The simplicity of computing I'„from eigenvalues
and eigenvectors of the RWA Hamiltonian' makes
this infinite-time average a particularly useful
monitor of population dynamics; in the study of
laser-induced chemical reactions at low densities
(i.e., molecular beams) the values P„measure
the availability of excited states to reactions.
Thus it is useful to understand the conditions upon
the Rabi frequencies which maximize the value of

P
„

for some level (or levels) n
Figure 2 compares populations for several

Rabi-frequency sequences. Previous authors"
have noted that if all Rabi frequencies are
equal, then the population averages of an N-level
system tend toward the rate-equation equilibrium
value of P„-1/N (levels 1 and N approach this
value from above), and that if Rabi frequencies
increase with n then P„decreases with n (although
significant level-to-level variations may occur).
We further observe that sequences which place
the largest Rabi frequencies in middle levels tend
to concentrate populations in the end levels —as
though population tended to avoid large Rabi fre-
quencies. This observation suggests a strategy
for placing maximum population into the most ex-
cited state: employ a sequence of Rabi frequen-
cies in which first and last steps have the smallest
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provides one such sequence; here the parameter
x =Q„~,/0, gives the ratio of maximum to mini-
mum Rabi frequencies. For example, in a 10-
level system we find that as x grows larger popu-
lation tends to concentrate in levels 1 and 10,
with P, =P»- 0.5 as x- . Intermediate-level
population averages tend to zero. Thus this limit-
ing case represents a maximum excitation limit.

Examining the details of time-dependent popula-
tion flows in Fig. 3, we observe a simple pattern
both for small x —1.8, where it becomes nearly
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FIG. 1. Populations P„{t)(upper frames) and time
averages P„(lower frames) for resonantly tuned three-
level atom, Babi frequencies Qf Q2 1.

'10

x~3

Habi frequencies.
It is interesting to consider an N-level sequence

of Babi frequencies Q„which symmetrically dis-
tributes values around a maximum value in the
middle level n =N/2. The parabolic distribution
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FIG. 2. Time averaged populations P
„

for N = 10-level
atom, without detuning, for three choices of Rabi-fre-
quency sequences: case U: 0„=1;caseH: Q„=un,case
~: a„=[~(io-n)j'~'.

FIG. 3. Populations P„(t)for M=10-level atom, re-
sonantly excited with parabolic distribution of Rabi
frequencies, Eq. (4), for various values of parameter
S=95/91.
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indistinguishable from the periodic behavior of
the spin-+ model, ~ and for large x ~ 10 where
the system approaches an effective two-level atom.
In both these limits we observe periodic behavior;
note that in the two-level limit the time scale be-
comes quite long.
This two-level limit generalizes the previously

described" behavior of a virtual level produced
by detuning lasers of a two-step excitation. In the
present example, however, the lasers remain
tuned to the Bohr frequencies.

i C,(t) =-', P Q,U, ~a (t) exp(- iX t),dt
(9a)

t
&

C~(t) =2 Qn&, U&,a (t) exp( —iA. t), (9b)&-1 N-1 m

i
„

—
, a.(t) = —,' [n ,U&, ' mC, (t) +n

„ ,U&,
&' C„(t)]

Here a, (t) =—a„(t)—= 0 so that we can carry the sum-
mation as m = 1,¹ Expressed in this basis the
RWA Schrodinger equation becomes

x exp(iA. t) . (9c)
ANALYTIC DESCRIPTION

It is possible to obtain an analytic description
of the two-level limit of the N-level atom. We
partition the RWA Hamiltonian into two parts
8' =A+8 such that 8 contains only the links to
levels 1 and N, while A contains the remainder.
The only nonzero elements of B are therefore

1
12 21 & 1&

l
+N-1, N +N, N+1 2~/-1.

%e readily verify that the matrix A has a pair
of eigenvectors

1 0

So written the equation singles out the first and
last levels, those that under suitable limits of
Rabi frequencies define a two-level atom.

The limiting regime of interest occurs when

C,(t) and C„(t)vary much more slowly than any
of the factors a (t) exp(-i& t). In turn, this con-
dition obtains if all of the eigenvalues A. are much
larger than the reciprocal of the characteristic
time scale for variations in C,(t} and C„(t}.One
ca,n show (see Appendix A) that the eigenvalues
occur in pairs + ~A. ~, except for an additional null
eigenvalue A. =O which occurs when N is an odd
integer. Thus we must separately consider even-
N and odd-N sequences.

EVEN-N SYSTEMS

(6)

whose eigenvalues are zero, A.,=A.~=O. The re-
mainder of the eigenvectors of A have the struc-
ture

When we deal with an even number of energy
levels we can require that C,(t) and C„(t)vary
much more slowly than the function exp(-iA, t).
We then obtain for a (t) the solution, strictly valid
in the limit of unchanged C, and C„,

+n, ,U' ',c„(t)].

Utm)

(m)
2

(m =2, . . . , N —1) .

Upon substituting this expression into Eqs. 9(a)
and 9(b) and replacing terms such as 1
—exp(- iX t) by 1 (a second rotating-wave approxi-
mation) we obtain the equations of a two-level
atom:

(m)Qg

0

Let us expand the RWA amplitudes in a basis of
these eigenvectors of the A matrix:

c„(t)=c,(t)U'„"+c„(t)U'„"'

+ Q a (t)U'„'exp(-iX t).

i —c,(t) = d,c,(t) +-,'n c,(t),1 1 1

i CN(t) = 2QC~(t)+—d~—C„(t).dt

Here the effective Rabi frequency is

and the effective detunings are

(lib)

(12)
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n', ~ [U'

2 4 m ~m

(13a)

(13b)

we retain only these three terms in E . 9
e rapi ly varying terms exp Q. t

en t e equations take the form of th
level atom:

rm o a three-

~ d
z —,c,(t) =-,'nc„(t), (15a)

z —„,c„(t)=-,'nc, (t) . (15b)

Furthermore, the excitati
the limiting value 0.5

on avera eP ag N pproaches
ue . as the two-level, a roxi-

mation becomes better.
, pproxi-

For approximation (10) to b

must be appreciably smaller in magnitude t

matrix.
gnitude eigenvalue X f th A, o e

n « /~, /
.

Inter estin l og y, ne can show that these detuni
vanish indenticall se ny
sequence

y see Appendix B) for any Rab'se ny

d, = d, -=0,
so that the populations under o coun ergo complete periodic

a 'on inversion as befits th
level-atom equations

e resonant-t- wo-

. dt —C,(t) =-',Q,U' a,(t)+-,'n'C„(t),

i—a, (t) = 2Q,U, C,(t) +2Q~,Ug, C„(tN-l N

t —C~(t) = —,'n'C, (t) + —,'n„,U„'",a, (t) .

Here the Rabi frequency 0' differs from the
definition of Eg. (12) b omis

ue erm in the sum. As with the two-level

nis i entically for all Rabi sequences.
amples of even- and odd-N

e avior. For this example we chose the Rab'
frequencies

e i

n, =nox0 02 N=n. N-l ~

0 =Qox 1 m =2, . . . , N -2
with 0 chos en such that we retained th
lization

' e e norma-

N-1

ODD-N SYSTEMS n=1
0 1.

When N is an- odd integer the matrixA has a
null eigenvalue and we can no lo

and C„(t),but we also have an amplitude
ap(t) associated withi the null eigenvalue of A. If

Thus the inequality 0 &+0

wit increasin ¹ w
y N~, &+0, becomes less valid

g; we begin to see failure of the
two-level model with N = 10.

The difference in time seal
atoms becomes increasing evident as we

Even-N
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FIG. 4. Populations
P„(t)for N=4-, 5-, 10-,
and 11-level systems, re-
sonantly excited, with Rabi
frequencies given b E
(18) and (19).
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(N —2) —level subsystem

0.01 Weak probe, detune —6

FIG. 6. Excitation linkage for N-level atom ac Stark
effect.
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FIG. 5. Time averaged populations P„for N=10—and
11-level atoms, resonantly tuned, with Rabi frequencies
given by Eq. (18).

increase the ratio@ =A„~,jA„thereby dramatical-
ly slowing the even-K two-level oscillations. (In
Fig. 4 the time, scales differ only by a factor of 2.)

cession of M resonances, the ac Stark shifts,
symmetrically distributed around zero detuning.
We observe that when M is odd a resonance occurs
at zero detuning, whereas when M is even the
population I'~„is three orders of magnitude

0

1,6

ac STARK EFFECT

The dramatic differences between even-N and
odd-N systems, which appear puzzling at first,
seem more natural when we consider the effect
of detuning one of the weak lasers. Recall that
our analysis treats an N-level system whose
N -1 lasers are each tuned to the appropriate
atomic-transition frequency; the RWA Hamil-
tonian 8' of Eq. (1) has no diagonal (detuning)
elements. We have seen that when the first and
last Rabi frequencies are much weaker than the
others then we have a strongly coupled (N —2)-
level subsystem weakly coupled into level 1 and
level ¹ Under these conditions we expect mani-
festation of the dynamic (ac) Stark effect: the
weak transitions lead into maximum excitation
only when they are detuned to match one of the
"dressed-atom" frequencies of the (N —2)-level
subsystem. To exhibit the effect of Stark splitting,
consider an M = (N 2)-level ladder, —whose transi-
tions all have unit Rabi frequency 0 = 1 and zero
detuning (from the field-free Bo)r frequencies).
Let two weak-probe transitions 0,= 0& = 0.01 be
linked, respectively, to the first and last of these
levels (see Fig. 6). As we sweep the frequencies
of these probe lasers, with one red shifted and the
other blue shifted to preserve overall null de-
tuning, the average population I'„„traces a suc-

—3
l cL.

0
I 3,4

0- --4l» -- ---- . -K ~ --—----—4h~ ~ - ~ - ~ ~ ~ ~ - ~ ~ -' - - ~ - ~ - ~y. r y- r —~ r

1,7

C
l a.

Ch0
I

—5-

—6-

—7—1 0

FIG. 7. ac Stark effect for N= 6- and N~7- level.
atoms: time-averaged populations P„asa function of
probe laser detuning 4. Top frame: N= 6. Bottom
frame: N=7.
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smaller for zero detuning (see Fig. 7). Our pre-
ceding discussion treated an N= (I+ 2)-level sys-
tem having zero detuning; we see that the dra-
matic difference between even and odd N origi-
nates in the dressed-atom resonance structure of
the (N —2) -level strongly coupled subsystem.

I

CONCLUSION

We see that it is possible to obtain classes of
periodic solutions to the resonantly. tuned N-level
atom in which long-time average population in
level N approaches the limit in value of ~. These
occur when first and last Babi frequencies are
significantly smaller than the remaining values.
For even N we obtained a two-level description,
with analytic expressions for the effective Habi

frequency and detuning. For odd N we found a
three-level description. The dramatic difference
between even N and odd N originates in the spec-
tra of the (N —2)-level dressed atom.

APPENDIX A: SYMMETRIC DISTRIBUTION OF
EIGEN VALUES

Consider the eigenvalues ~ of the real sym-
metric null-diagonal N-dimensional matrix X:

0 x

about zero. Moreover, when N is an odd integer
there always exists a null eigenvalue A. =O.

APPENDIX B: SYMMETRY OF EIGENVECTORS

Consider the tridiagonal matrix X of Appendix
A and let U and U be the eigenvectors corres-
ponding, respectively, to eigenvalues + ~ and -X:

XU = AU, XU= —AU.

Written out these matrix equations yield, in part,
the recurrence relations

x~u2= AQ~ ~

x2Q3 = W~ -x~u) y

xu, —Au, ,

x2Q3 = —XQ~ -x~u~ y

m m+ g ~m xm-1 m-1 & xmunt+ 1 ~m xnt- pm-1 p

which permit construction of all the components
of U and U given the first elements u, and u, . Tak-
ing these elements to be equal to some common
normalizing constant, we find that subsequent
elements satisfy the relationship

X=x 0 x

0 x, 0

Q = —Q2 2P

Q3=u3 q

These satisfy the determinantal equation

-A. x~ 0

x, -A, x,
D,(~)-=0 x.,

-A. x~ q

We readily see that the determinants of various
orders N satisfy the recursion relation

D»(A) = —AD» ~(A) -x» ~D» 2(A) .
Thus for even-integer N the determinant D»(A)
is a function of A. ', whereas for odd-integer N
the determinant is ~ times a function of ~':

D»(A) = E»(X'), N = even

= A.G»(A, '), N= odd.

In turn we find that if + A. is a solution to D»(A) =0,
then D»(-A) =0 and so -A, is also an eigenvalue;
the eigenvalues are symmetrically distributed

u = (-I)™+'u

In particular, if the components of U are all
positive, then the components of U alternate in
sign.

The foregoing construction demonstrates that
the components u and u of the eigenvectors cor-
responding to eigenvalues + A, and -A. have the
same magnitude:

This equality holds for any real symmetric tri-
diagonal null-diagonal matrix and thus it applies
to any sequence of Habi frequencies. As a corol-
lary, sums such as Eq. (13) vanish. For let the
eigenvalues be numbered

+1& -1 +1& +2& -2 +2& ' ' '

Then because )U„™[ = [U„™[ the sum reads, in
part,
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[U&+»/' [U&-»['
+ + ~ ~ ~

A.+~ jj, ~

A.+ ~ A.+ ~

Thus the detunings d, and d, of Eq. (13) vanish
identically for any Rabi-frequency sequence.
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