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Theory of collisional transfer between orientation and alignment
of atoms excited by a single-mode laser
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Theoretical study is made of the transfer between orientation and alignment of excited-state atoms by
anisotropic collisions with ground-state atoms. The anisotropy considered is due to the anisotropic velocity
distribution of atoms excited by a single-mode laser beam. The transfer rate and relaxation rates for each
multipole moment are calculated for the excited state with J = 1 as a function of detuning of the laser
frequency from the center of an absorption line and mass of perturbing ground-state atoms. Experiments to
observe the transfer from alignment to orientation and from orientation to alignment in a weak magnetic
field are considered, and corresponding signals are analyzed in terms of the transfer and relaxation rates.

I. INTRODUCTION

Collisional relaxation among Zeeman substates
of the excited states of atoms has been extensively
studied theoretically and experimentally in past
two decades. ' In most of these experiments, the
atoms are excited by the light from a spectral
lamp or by collisions with electrons, so that the
velocity distribution of excited atoms is generally
given by the Maxwellian function, when self-ab-
sorption can be neglected. As a result, the colli-
sions of the excited (emitter) atoms with the
ground-state (perturber) atoms are isotropic, i.e. ,
all collision directions are equally probable. It is
obvious from the argument of symmetry that iso-
tropic collisions cause the independent relaxation
of each multipole moment such that

where p~ is the density-matrix element corre-
sponding to the q component (q = -k, -k+ 1, . . . , + p)
of the 2~-pole moment of the excited state, i.e. ,

p,' is the population, p,
' is the magnetic dipole

moment or "orientation, "-p,
' is the electric quad-

rupole moment or "alignment, " and so on. Equa-
tion (1) also shows that the relaxation rate is in-
dependent of the value of q. In recent years„gas
lasers have been used to study the relaxation of
orientation and alignment of laser levels, ' and now
tunable lasers such as dye lasers are considered
to be powerful light sources because they remove
the limitation on the levels to be studied. When
atoms are excited by laser light, the velocity dis-
tribution of excited atoms along the light axis is
generally different from the Maxwellian function,
whose width is given by the gas temperature.

In the present paper, we would like to give the
theory of relaxation of atoms excited by a single-
mode laser light. By such excitation the velocity

distribution of excited emitters along the light
axis generally becomes narrower than the distri-
butions perpendicular to the light axis, which are
given by a, Maxwellian function. Consequently the
collisions with perturber atoms become aniso-
tropic, and the anisotropy can be changed by the
detuning of the laser frequency from the absorp-
tion line center. In case of anisotropic collisions,
the change in p,'is no longer given by Eq. (1) and
can generally be expressed as

d'Pc I ok'
QQ pq

yt +0

which shows that the transfer among multipole
moments becomes possible. We have calculated
I',",", by changing the laser tuning relative to the
line center for various masses of perturber atoms,
assuming that the interaction between colliding
atoms is electric dipole-dipole in the same man-
ner as the isotropic-collision theories of Omont,
and Herman and Lamb. ' Although we have analyzed
for the single-mode excitation, the results ob-
tained are easily applicable to excitation by light
with an arbitrary spectrum. We discuss also the
relations of 1"„,with observable quantities in the
Hanle experiment using linearly polarized or cir-
cularly polarized laser light. Such experiments
are now under way in our laboratory using neon
atoms in the 2p, state excited by a single-mode
dye laser. We have obtained preliminary results
for the signal of orientation transferred from
alignment by collisions with ground-state neon
atoms. The precise experimental results may be
repor ted elsewhere.

II, ASSUMPTIONS AND APPROXIMATIONS

We consider binary collisions between an ex-
cited atom (emitter) to be observed and a per-
turber atom in its nondegenerate ground state
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(J=0). As in the conventional theory of isotropic
collisions, "several approximations are made:
(i) The relative trajectory of a perturber is as-
sumed to be a straight-line path. (ii) The electric
dipole-dipole approximation is made for the emit-
ter-perturber interaction, and we shall restrict
ourselves to its lowest-order contribution, that is,
to the first order for resonant collisions and to the
second order for nonresonant collisions. (iii) We
assume that the duration of the collisional inter-
action is much smaller than the time between
binary collisions (impact approximation). (iv) Ex-
ternal magnetic field is assumed to be weak so that
the Larmor precession of the excited state can be
neglected during the collisional interaction. (v)
Collisions are assumed to be nonadiabatic with
respect to Zeeman substates.

We use a reference frame 0, in which the emit-
ter is fixed at the origin, the perturber moves
with relative velocity vz in the z, direction, and

the impact parameter b is directed to the x, axis
as seen in Fig. l. [This is the same frame as
Cooper s'(x', y', g') frame 'To. transfer from
Herman's collision frame' to ours, a rotation of
(v, —,'v, w) is required. ]

We define the time evolution matrix M(t) of the
state vector a in the interaction representation,
where the state vector a is the direct product of
the excited-state state vector of the emitter and
the ground-state state vector of the perturber in
the interaction representation as defined in Eq.-

(53) of Ref. 4. Since we consider only the case
where the ground state of the perturber is nonde-
generate, the vector a is composed of 2j+ 1 ele-
ments a (m= j, . . . , -j)„where j is the total an-
gular momentum of the excited state of the emit-
ter and m is the magnetic quantum number. 'The

time evolution of a is given by

a{t)=M(f)a(- ).

We define the density matrix of the emitter-
perturber system, in which the emitter is in its
excited state and the perturber is in its ground
state, as p, = a a*, . 'fhe change in the density
matrix caused by a collision in our reference
frame ls

5p, (fp, vs, 0„'c)=Q M"~, (b, vs, 0,)p„~(c),
fthm

where

M"~, (b, vs, Q )0=M „(~)M*,&(~) —fL „5~&,

(4)

and c is the past-collision history. Since we use
the impact approximation, which implies that each
collision is an independent event, M "~.(b, vs, 0,)
is not affected by past-collision histories. Hence
the averaging of Eq. (4) over all possible histories
is performed by replacing p„z (c) with its average
over all possible histories, which is denoted by

~nW.

RELAXATION AND TRANSFER RATES OF
ALIGNMENT AND ORIENTATION

A. Collisions of emitters moving with a definite velocity

Before considering the case in which emitters
are excited by a single-mode laser beam, we will
consider here particular collisions where emitters
have a definite velocity v, in a particular direction,
while perturbers have an isotropic Maxwellian
velocity distribution. We consider a new frame
(X, Y,Z) which moves with the velocity v, in the
Z direction such that the emitter is fixed at the
origin. As shown in Fig. 2, we can transform
(x„y„z,) to (X, Y,Z) by a rotation Q, = (—,'v —Q, 0,
--2m —g), where 8 is the angle between v, and the
relative velocity v~. Since perturber velocity is
given by v~ = v, + v~, the perturber velocity distri-
bution (assumed to be isotropic Maxwellian) is

Ik
PERTURBER(

I

HL

EMITTER
=Yc

xc

FIG. l. Reference frame 00 where the emitter is fixed
at the origin and the perturber moves with relative ve-
locity vz in the z~ direction. The x& axis is chosen in the
direction of the impact parameter b.

FIG. 2. Relationship between the reference frame
(x„y„z,) and the frame (X, F, Z) where the emitter
velocity v~ is fixed in the Z direction.
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given by

fp (ve+ vR)

= (~~/m)'i'exp[-o'~(v, '+ v„'+ 2v, vR cos8}],

where n~=m~/2kT, m~ is the mass of the per-
turber, k is the Boltzmann constant, and T is the
absolute gas temperature. For fixed v„averaging
M "~,(b, vs, fl, ) over the impact parameter and over
the relative velocity, we obtain

f'"",(v, )
dQ

= n~ g db d'v„bv„f~(v, + vs)S'„*(0, .)
0

x u J„.„,(Q, )X)z,, (Q, )X)i„„(Q,)

x M""„,(b, vs, Qo), (7)

where n~ is the perturber density and I)' „(0,) is
the rotation matrix for the rotation 0„. Using the
relation of. the Clebsch-Gordon series' and 3 —j
symbols, we can rewrite Eq. (7) as

F till (v )

r ~ ~ gw r ~

=g (-1)""' ' "' (2J + 1)(2J'+ 1)(2A+ 1) j J"
n -n' M v -v' N& m -m' M',

N'i -M M' QJ NN' Q-'

where the summation is taken over p, , p, ', v, v',
M, M', N, N', J, cl', K, Q, and Q'.

Owing to the axial symmetry of our system, it.
is convenient to represent the density matrix on
the basis of normalized irreducible tensors. ' ' Us-
ing this representation, we can write the average

collisional relaxation of the density matrix as

and the coefficient of relaxation as

~ q p ~ k" k ' KI"~~, (v ) = -Q (-1)~~ """ [(2k+ 1)(2k'+ 1)]'i'(2K+ 1)
N~~v -o' N, iq -q Q

k O' E'
x db d'vsn~bvn f~(v, + vs)X)$&, (O, )M"„~.(b, vs, 0„).

N -N' Q',
(10)

Because of the axial symmetry, I'~~, vanishes when q&q', then only the terms with Q = 0 give rise to non-
zero contributions to the summation on the right-hand side of Eq. (10). For the sake of simplicity, we
denote I"~~, by I'~~ . After integrating I',"~, over angle, one can see that only the terms with Q'=. 0 give rise
to nonzero contributions (see Appendix A). Thus we obtain

k~~ kF,"'(v,) = -Q (-1)'~' """'[(2k+ 1)(2k'+ 1)]'"(2K+1)
Ni ~v -v

k k' A' k k' &' -„„. (, )~f f If. ~e

q -q 0 X -N 0
(1 la)

where

9R'„"„',x(v, ) = n~ db
J

d'v~ bv~ f~(v, + v„)
0

xPx(cos 8)M"„'„,(b, v~, Qo), (lib)

and Pr(cos8) [=XP«(Q,)] is the Legendre poly-
nomial. The quadrupole integral in Eq. (lib) can
be reduced to a simple infinite series (see Ap-
pendix A). We obtain for resonant collisions
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3R',"„,„(v,) = (-2) M"„'„', exp(-o'~v,')

~o (2m+ 2K+ 1)!m! I'(2)
12a

I AA" f04' w (13b)

From these two relations, we see that I'," is real
for even k+ k', imaginary for odd k+k', and that
f," =0 for odd k+k'. Furthermore, as we use
the approximations of the electrostatic interaction
and classical linear path and the one-level per-
turber approximation, ' the system is invariant
with time reversal, which yields

f'NA (1)k'+lt' Pk'. 0 4

From Eqs. (13a)-(13c), we obtain

(13d)

Numerical calculation of the elements of the
relaxation matrix was made for the emitter state
with total angular momentum j= 1 perturbed by
nonresonant collisions. For nonresonant colli-
sions, M""„.(b, v„, Q, ) may be shown to be a func-
tion of $ (=8/b'vR), where B is the constant deter-
mined by the oscillator strengths for virtual
transitions of emitter and perturber defined in Ref.
4 (see Appendix A). We have solved the Schr'o-
dinger equation in order to obtain M"",($, Qo)

where I'(x) is the y function and M"„"„.is defined in
Eq. (A5a). For nonresonant collisions,

3R","„,„(v,) = (-2) M"„„.exp(-o'~v,')

(m+K)! I"(m+ —,'K+ ')
(„,(2m+ 2K+ 1)!m! I'('—, )

(12b)

where M"„„, is defined in Eq. (A5b).
It is readily verified that I'~" satisfies the fol-

lowing relations' from the invariance under re-
flection on planes containing the Z axis:

(13a)

and from the hermiticity of density matrix p,

[=M"",(b, va, Q,)] for a single collision in the re-
ference frame using the same procedure as in
Ref. 4. Namely, we use the perturbation. method
in the region 0.0 & $ & 0.01, and we carried out the
machine calculation with the Hunge-Kutta-Gill
method in the region 0.01 ~ $ «5.0. In the region
5.0 ~ ( & ~, we have obtained the solutions in the
form of exponential asymptotic averages. (For
isotropic collisions, only five elements, Moooo($, Q,},
M,'0'(), Qo), M,",($, Q„.), Re[M', Oo((, Q )], and

M", ,(F„Q,), are required essentially, and other ele-
ments which give rise to nonzero contributions are
deduced from these five elements. In addition to
these five elements, 1m[M,",($, Q,)] is required for
anisotropic collisions. ) The values of M"", ob-
tained by numerical integration of M"" ~ (t, Q, ) over
$ are tabulated in Table I. Similar calculations
have been made by Chamoun et al."and the values
of M"", are shown in a different basis from ours.
'The values calculated from the values in 'Table 5
in Ref. 10 by changing the basis are also shown in
Table I. Similarly, Berman and I.amb4 have shown
the values averaged over all of collision directions
for isotropic collisions. Since some of the aver-
aged elements become zero from the spherical
symmetry, we cannot get enough information to
calculate the values of M"", in our basis. How-

ever, translating inversely our values into their
basis and averaging them over the collision direc-
tions, we can see a good agreement with their
values (within 0.1/p).

Substituting the values in Table I into Eq. (12),
we obtain the elements of the relaxation matrix
I'," as functions of an emitter velocity whose
direction is fixed in the Z direction (Fig. 3}. For
isotropic collisions (v, = 0}, I'f~ is diagonal with

respect to k and is independent of q for each value
of k. The appearance of nondiagonal components
of the relaxation matrix and the splitting of the
diagonal components (the relaxation rates of
multipole components) with different values of ~q ~

are due to the anisotropy of the velocity distribu-
tion, while it should be noted that the increase in
the relaxation rates is due mainly to the increase

TABLE I. Averaged relaxation-matrix elements for nonresonant collisions in units of
-xn&B 5 (v&3 ), together with the values calculated by Chamoun et aE.P

00 M 00
ii Miiii Re(M i00) I yzii00)

Present
work

ChaI110un
et aE.

-2.21

-2.11 1.05 -4.93

-5.38

-4.51

2.12

1.58

4.27

~Reference 10.
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FIG. 3. Belaxation-matrix elements for emitters mov-
ing with a definite velocity in the Z direction as functions
of the emitter velocity normali, zed by (2k '/m&)

in relative velocity rather than to the anisotropy.

8. Collisions of emitters excited by a single-mode laser

In the next stage, Eq. (lla) must be averaged
over the velocity distribution of the excited emit-
ters. In case of optical pumping with a laser beam,
which has only axial symmetry, the velocity dis-
tribution is no longer isotropic. The axially sym-
metric situation induces a coupling between dif-
ferent tensorial orders, while it causes no coup-

ling between multipole components with different
q if quantized along the axis of symmetry, as
shown in Sec. IIIA.

We consider a single-mode laser beam pro-
pagated along the z direction with frequency ~L.
This laser beam excites selectively the emitters
whose axial velocity component v„ is equal to
v, (= c[((v~/(d, ) —1fj, where (d, is the resonant
frequency of the emitter transition. We shall con-
sider only the case where the distribution function
of v„can be regarded approximately as a 5 func-
tion, while the distribution of perpendicular com-
ponent of e, is Maxwellian. In this case the dis-
tribution of emitters can be expressed as

f,(v, ) = (o.,/n) exp[-,n, (v,' -v,') J&(v„-v,), (14)

where c(,=m, /2kT, m, is the mass of the emitter,
and the factor (o.', /n) exp(c(,v,') is the normalization
constant.

The relaxation matrix for emitters whose velo-
city is in the direction of the polar angle (8, 4) in
the laboratory frame (x, y, z) can be obtained from
Eq. (lla) through a rotation Q, =(4,8, 0) (see Fig.
4). Averaging over the emitter distribution, we
obtain the averaged relaxation matrix:

r,", (v.)=g
~

d'v. f.(v.)&,'„(Il,)

From the axial symmetry of the system, we see
that I"~~. vanishes when q4 q', as described above;
we then obtain

Lq~

), , )
k k I k k

0& qx

d'v, f,(v, )PI (cos9)I', (v, ) .
1

(16)

Substituting Eq. (lla) into Eq. (16), and after some algebra, we obtain

r ~ P t)v ~

I ~~(v )= -Q (-1)~+~ '+"" [(2k+1)(2k'+ I)t' '(2K+1)
N~ ~v —v' Ng~ X -X 0~

u a'x'
X 3R„„.n(v, ),

q -q 0
(17a)

where

"„",'e, ((v,v) Ju'v f (v lp (vvve)=e("„„(v,.).. .(1Vb)

Since SR","„,„(v,) consists of a quadruple integral,
as seen in Eq. (lib), Eq. (17b) actually contains
a sevenfold integral. Nevertheless, this can be

reduced to an infinite series with respect to x
[= m~/(m~+ m, )] (see Appendix B). For resonant
collisions,

(m+ fC)!I'(m+ ~K+ &) .~ (2m+2A-+1)&m)r( —')G~( ') '

(18a)

and for nonresonant collisions,
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FIG. 4. Considered velocity distribution of emitters
excited by a single-mode laser beam propagated along
the z axis (shaded portion). The velocity distribution
perpendicular to the z axis is given by a Maxwellian.

where

(m+ K)!I"(m+ —,'K+ '—, )""'~ (2m+ 2K+ 1)im& I'(—)
(18b)

~ rc/2
G «(v, )=(-4)x(1 -x)

~

Pe~
1-x&

'x " (2K —2r —1)!! 1 —x "
~ ~

~ ~

~!(K —2r)! 2L'

g2
~ l" m+~+1, 4x™.'1-x (18c)
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FIG. 5. Relaxation-matrix elements for emitters ex-
cited by a single-mode laser tuned to the center of the
absorption line, as functions of x =mP(m&+m~). Two
dotted curves show the case where emitters have an iso-
tropic Maxwellian distribution.

In Eqs. (18), 6 is given by 4 = v o.,v„which is
proportional to the z component of the emitter
velocities, and hence to the detuning of the inci-
dent laser frequency from the center frequency of
the emitter transition; I'(n, x) is the incomplete y
function. "

Because the whole system has the same sym-
metry as in Sec. IIIA, relations (13) are still valid
for I ~' . Substituting the values given in Table I
into Eq. (18b) and using Eq. (17a), we obtain the
elements of relaxation matrix I',"' for the excited
state with j= 1 perturbed by nonresonant collisions
in the case of single-mode laser excitation. 'The

infinite series in Eq. (18b) is convergent if 0 ~x & 1.
This condition is always satisfied, but the conver-
gence becomes worse when the mass of perturber
is much larger than that of emitter (x= 1). In

Fig. 5, the components of the relaxation matrix
for emitters excited by a single-mode laser tuned
to the line center are shown as a function of
x [—= m~/(m~+m, )j. In this ca.se, only the emitters
whose axial velocities are equal to zero are excited.
As seen in Fig. 5, the relaxation rates I'~~ in this
case are smaller than those values for the iso-
tropic case, which are shown by dotted curves.

I

This'is not surprising because the average relative
velocity of emitters excited by a zero-detuning
laser is smaller than that. of isotropically excited
emitters.

Figures 6 show the components of the relaxation
matrix as a function of the axial emitter velocity,
which is proportional to the detuning of the single-
mode laser frequency. The relaxation rates of
alignment and orientation for isotropic collisions
are shown by two dotted lines. The transfer rates
between alignment and orientation, which are pure
imaginary, change their signs when the detuning
is increased. It is worthwhile noting that all the
relaxation-matrix elements are approximately
equal to those for isotropic collisions when one
detunes the laser frequency so that the axial velo-
city of the emitter is equal to 60-70% of (2kT/m, )' '
It should be noted that, when the matrix elements
shown in Figs. 6 are averaged with respect to v,
over the one-dimensional Maxwellian (m, /2k 7) exp
(-m, v,'/2kT), the diagonal elements are reduced to
the relaxation rates for isotropic collisions and the
off-diagonal elements are reduced to zero, as one
might expect.

IV. OBSERVATION OF TRANSFER BETWEEN
ALIGNMENT AND ORIENTATION

The above-mentioned effect of anisotropic colli-
sions may be investigated by the observation of
the collisional broadening in various experiments
(e.g. , Hanle effect, magnetic resonance, etc.).
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FEG. 6(a). Relaxation-matrix elements for emitters
excited by a single-mode laser as functions of the nor-
malized axial emitter velocity for x= 0.167, which cor-
responds to the case of neon atoms perturbed by helium
atoms.
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FIG. 6(b). Same as for Fig. 6(a), but for x=0.5, which
corresponds to the case of nonresonant collisions of the
same species.

In laser optical-pumping experiments with a single-
mode laser, the anisotropy of velocity distribution
is not, however, so large that the effect of aniso-
tropic collisions on the broadening of the Hanle
curve or magnetic resonance signal may not be
so remarkable.

On the other hand, the transfer between align-
ment and orientation, which is absent in isotropic

Fig. 6(c). Same as Fig. 6(a), but for x= 0. 85, which
corresponds to the case of sodium atoms perturbed by
xenon atoms.

collisions, increases with increasing degree of
anisotropy. The averaged collisional interaction,
which is discussed in preceding sections, has
alignmentlike symmetry which is the same as
the symmetry of the system in an electric field.
When the excited atoms are aligned in a direction
neither parallel nor perpendicular to the axis of
anisotropy, orientation is created i.n the direction
perpendicular to the plane which contains the
alignment and the axis of anisotropy. " Converse-
ly, when the excited atoms are oriented in a direc-
tion which is not parallel to the axis of anisotropy,
alignment is created by collisions in the plane
containing the axis of anisotropy, which is per-
pendicular to the plane containing both of the axes
of orientation and anisotropy. In this plane, the
direction of created alignment is neither parallel
nor perpendicular to the axis of anisotropy.

Chamoun et a/. "investigated the former effect,
observing partially circularly polarized fluores-
cences from excited He atoms aligned by colli-
sions with a heavy-ion beam. However, in such
experiments using excitation by collisions, it is
impossible to create orientation. In laser optical-
pumping experiments, it is possible to create
alignment and orientation of emitters by linearly
and circularly polarized light beams respectively,
and the degree of anisotropy can easily be changed
by changing the detuning of the laser frequency.
Thus it is possible to observe both transfer from
alignment to orientation and from orientation to
alignment.

In a weak magnetic field, the evolution of the
density matrix can be expressed on the basis of
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normalized irreducible tensors. As in the previous
sections, we will take the axis of quantization
parallel to the axis of anisotropy, i.e. , parallel to
the laser beam, not to the direction of the mag-
netic field. 'The density matrix for the q com-
ponent of the 2"-pole moment is governed by

x Foe~(k, y), (22)

where (jlldllj, ) is the reduced matrix element of
the dipole moment operator, F0 is a constant
proportional to t.' e light intensity, and @', is de-
fined as"

i[ p]h r ph Q 1 kN'ph'+FR
a'

'The first term describes the interaction with the
magnetic field H:

[&,pg = -gp, e( [k(k+ 1) —q(q —1)]/2P~'H, p~„, —qH, p~

-(([k(k + 1) —q(q+ 1)]/2 j'~ 'H, p~, ), (20)

where g is the g factor, p,~ is the Bohr magneton,
and

H, = -(H„+iH, )/M2, HO=H„H, = (H„iH, )/v —2

(21)

The second and third terms in the right-hand side
of Eq. (19) describe the relaxations due to spon-
taneous decay and to collisions, respectively. 'The

last term describes the atomic state created by
laser excitation from a lower state with total
angular momentum j, to the excited state with j:

F' = (-1)'"'u'2k+ 1 [&jlldllj, &
(

', 1 1 k

jf

where

&, = (3r', + r', )r', ~' r+',y', (y', r', + 1"'),

&, = (r,'y', + ~') (y,'y', + ~') + r.'y2I',

A = y', Re(F,')+ —,'v 6yg", ,
(26)

The intensity of the fluorescence emitted in the
direction k with polarization X is"

I-„„=(-1)'"OI,Q ~2k+ 1
1 k

jQ

xg (-1)'p',4'(k, y), (26)

where j, is the total angular momentum of the
state to which atoms terminate after emission,
and I, is the proportionality constant. It is easily
found from Eq. (26) that, when we observe the
difference in the intensity between right-handed
and left-handed circularly polarized emissions,
the transverse orientation p,

' can be observed:

Re(p', ) = — r(uA, p,
' = — I'(u' lm(F,'),

1 2

1

0 1 0 2

2 1 1
Im(p', ) = ——y', cuA, Re(p', ) =—cu(y'y'+ ~')Im(F', ),

(24)
1

Re(p', ) = —,Re(F', ) ———', &u'A,
2 2

lm(p', ) =—[y', (y,'r', + ~') + r,'1']1m(F'),1

2

r
O', =Q (-1)'2e, (e, )* ~

P 102

(23)
1 1 1I„—I, = (-1)'"OIO 2 Re(p', ) .

j0
(27)

where e, is the circular component of the polari-
zation vector e of the excitation light.

ln Eq. (23), higher order effects of the laser
excitation are neglected, and the Zeeman splittings
of the excited and ground states are assumed to be
much smaller than the Doppler width. 'The latter
condition is satisfied in such ordinary experiments
as the Hanle experiments, where the applied rnag-
netic field is weak.

A. Excitation with linearly polarized light

When the laser beam propagated in the z direc-
tion is linearly polarized and H is directed along
the x axis, only the excitations F', , F'„Re(F'„), and

Im(F,', ) are different from zero, as seen from Eq.
(22) and Eq. (23). We then obtain the stationary
solutions of Eq. (19) as

Substituting the stationary solution for Re(p', ) in
Eq. (24) into Eq. (27), we obtain

I.,-I. =( 1)~ ~oI, -1 1 1

j0

2Q)I A
X

(3rp+ ro)rg& + ror2(rgrg + 1 )
(28)

This intensity difference for circularly polarized
emissions can be explained as follows. The trans-
verse alignment A created by laser light precesses
in the y-z plane under the influence of H. Then the
alignment p', is created along the direction (—,'w, —,'m),

which is neither parallel nor perpendicular to the

z axis. 'The anisotropic collisions transfer the

alignment p', to the transverse orientation p',

directed along the z axis. As seen in Eq. (28),
this orientation signal is in dispersion shape when
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the magnetic field is swept through zero.
On the other hand, the difference in the inten-

sities of linearly polarized emissions polarized
along the z and y directions shows the ordinary
Hanl. e signal in Lorentzian shape:

I„-I,= (-1)"oI, [v —,
' p,'+ Re(p', ) j

j0

( )...
I

) ) )

Ij0

solutions of Eq. (19) are

1 1 2p.'= ~ ly,'~'+y2(y', y', +I')]&.',
2

p =—F —— (dF1 , 3 y,y,
0 2 0 g 2 07

0 y0

Im(p', ) = — —r~ (y', y', p (u')F,',
2

(3y.'+ y dy', ~'+ y'.y'. (y', y', + I') (29)

A.,
I

)

1 1

j Ii'
I

4y', y,'yl

7 j0

(30)

For instance, for j= 1 and j0 0,

Ii'I 4y y y
(y', y; I')(3y:.y'))

Furthermore, when the anisotropy is small (y',
=y', =y', , «& y",), we obtain for j = 1 and j,= 0

From Eqs. (28) and (29), the ratio of the orienta-
tion signal to the alignment signal depicted in Fig.
7 becomes

Re(p'-, ) = — y,''—F,', Im(p', ) = —I"
1 2

In these results, Re(p', ), p'„ Im(p', ), and Re(p', )
show essentially the same results as before,
because these results can be obtained as well by
substituting E2= 0 into Eq. (24). The solutions for
p,' and Im(p,') give the ordinary Hanle signal of
orientation. It is Re(p', ) and Im(p', ) that show the
transfer from orientation to alignment. From
Eq. (26) it can be shown that, when we observe the
fluorescence which is polarized linearly in the
direction with the polar angle (-,')),0), the intensity
is given by

( )...„)I) ) Oj,
70

~.,7'~., = Ir II'y

B. Excitation with circularly polarized light

(32) 1 1 2 1
+ 2~p,' —Re(p,')+ -,'Re(p', )

6
j0

When the laser beam propagated along the z axis
is circularly polarized and H is directed along the
x axis, only the longitudinal orientation F, and
alignment F', are excited. Then the stationa. ry

When the sense of the circular polarization of the
excitation is changed, F, changes its sign, while
F,' remains unchanged. Accordingly, the difference
in the intensities of the fluorescence for the right-
and lef t-handed circula, rly polarized excitations
becomes

or

FIG. 7. Ordinary Hanle signal P„—I~) and orientation
signal P~+-I~ ) as functions of co (=gp&H) for excitation
with a linearly polarized laser beam.

v 2 (dy', I'

(y()yg+ (& )(ygya+ ~') + I'
ygy2

If we neglect the small term I'y', y, in the denom-
inator, we can interpret Eq. (35) as follows. Cir-
cul. arly polarized light creates continuously the
longitudinal orientation F, in the z direction, which
begins to precess in the y-z plane under the in-
fluence of H directed along the x axis. Conse-
quently, the transverse orientation p,', is created
in the y direction (the Hanle effect of orientation), .

co dependence of p,', being expressed as (d/(y,'y', + &').
This transverse orientation is transferred to the
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transverse alignment pyy under the influence of
anisotropic collisions with the transfer rate I".
Furthermore, since this transverse alignment pre-
cesses about 0, p'„ is decreased by a factor of

y,'/(y', y', + uP) (the Hanle effect of alignment).

V. DISCUSSION AND CONCLUSIONS

We have investigated the collisional relaxation
among Zeeman substates for nonresonant collisions
where the velocity distribution of emitters is
anisotropic, especially in the case where the
emitters are excited by a single-mode laser beam.
Chamoun et al. observed the transfer from align-
ment to orientation in atoms excited by a heavy-
ion beam, " and theoretically estimated this ef-
fect." Their simple model of the emitter velocity
distribution is not applicable to the case in which
the emitters are excited by a single-mode laser.
Here we shall summarize and discuss about the
results obtained in the preceding sections.

The most remarkable feature of anisotropic
collisions is the appearance of the transfer bet-
e'een alignment and orientation. It is shown in
Figs. 5 and 6 that the transfer rate becomes larger
with an increase in the ratio of the mass of per-
turber to that of emitter. Even when the single-
mode laser is tuned to the line center, this trans-
fer is sufficiently large to be observed experi-
mentally. For example, the ratio of the transfer
rate to the collisional broadening is about 6%when
the mass of the emitter is equal to that of the
perturber [i.e. , x. =-m, /(m, +m~) =0.5I. When the
emitter is a sodium atom and the perturber is a
xenon atom (x= 0.85), this ratio amounts to about

12%, as seen in Fig. 5.
As the laser frequency is detuned from the line

center, the transfer rate I'", begins to decrease,
and at a detuning where the z component of nor-
marized emitter velocity (m /2&T)'~'v, is 0.6 —0.7,
the transfer disappears. When the detuning is
increased further, the transfer rate increases,
with the sign opposite to that for the small de-
tuning. 'This change of the sign of I'", appears as
the change of the sign of the orientation signal in
the experiment described in Sec. IVA, and as that
of &I in Sec. IV B.

Another feature of anisotropic collisions is the
fact that the decay rate of a multipole moment p,
is also dependent on ~q ~. Furthermore, in the
case of single-mode laser excitation, the decay
rates increase as the detuning is increased.

herefore the decay rates obtained in the experi-
ment with a single-mode laser are not the same
as those for isotropic collisions. Even when the
laser is tuned to the line center, the observed de-
cay rates are smaller than those for isotropic

collisions. As one detunes the laser frequency
from the absorption line center, the decay rates
increase and finally become greater than the values
for isotropic collisions. Consequently, it must be
emphasized that one cannot in principle calculate
the cross sections for destruction of multipole
moments by comparing the experimental results
with the isotropic collision theory. 'The error in
the calculation of cross sections is, however,
small when the perturber is not heavier than the
emitter, and when the laser is tuned around the
line center.

Although our calculations have been performed
for the case where the distribution of v, is a Q

function, our results are applicable for an arbi-
trary distribution of v, . In this case, we can ob-
tain the relaxation matrix I ~ '

by integrating the
relaxation matrix I'~~' (v, ) as follows:

r"'=
t f(v„)r'", (v„)dv„, (36)

where f(v„) is the distribution of v„. For excita-
tion with a multimode laser, the integral in Eq.
(36) is reduced to a simple summation.

Iri Sec. IV of this paper, we have shown the ef-
fects of anisotropic collisions on the alignment
and orientation signals, which can be obtained by
sweeping the magnetic field through zero. In the
case of the optical-rf double-resonance experi-
ment, the shift of magnetic resonance line becomes
important as well as its broadening. It has been
shown by Happer" that a weak isotropic fluctuating
perturbation in a strong magnetic field such that
the Larmor precession cannot be neglected com-
pared with the correlation time of the perturbation
induces anisotropic relaxations of multipole mo-
ments and causes energy shifts of Zeeman sub-
states as if a fictitious magnetic field were pre-
sent. Recently Gay" has shown that, even if the
velocity distribution is isotropie, similar shifts
are caused by collisional perturbations in such a
strong magnetic field. In the present case, the
anisotropic relaxation is caused by the anisotropic
velocity distribution of the emitter atoms, and
hence the symmetry of the system is different
from that of above cases. Namely, there is a sym-
metry with respect to the planes containing the
laser beam, so that the symmetry of the present
system is quite analogous to that of the system in
an electric field, which induces the Stark shift.
Consequently, it is expected that, when one con-
siders the emitter atoms with j=1, the magnetic
resonance line is decomposed into two components
which are shifted to opposite directions with the
same amount by the anisotropic relaxation. How-
ever, as the shifts are expected to be much small-
er than the broadening of each component, the
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overall resonance line to be observed might never
split and have only one unshifted peak at the
center.

ACKNOWLEDGMENT

This work was supported in part by the Ministry
of Education, Japan, under a Grant-in-Aid for
Scientific Research.

APPENDIX A

& =- (e'/36@'&u))
J
&s I!r,ila&(s'ilr, llp& [

',
where (sjIr, j/a) and (s'![r~!/p) are the reduced ma-
trix elements for virtual transitions of emitter and
perturber, respectively, and &v is the energy
difference in angular frequency units between the
initial and intermediate states of the emitter-per-
turber system. From Eq. (A4), we can show that
M","„', (vz) depends on v„ for nonresonant collisions
as follows:

The averaging over vz in Eq. (10) is performed
by using the transformation

00 !!' 21f !p' 25'

d'v„- v'2dv„~ sin&d& dg d(t) .
~/ 0 Jo 0 Jo

M"„"„',(v ) = [v v /21'(—', )](n v„)'/ "M"„",', ,

where

M""', -=27m &' '(v' ') M""' ($ 0 )$ ' 'd$
0 '

(A5b)

K,„',«= 42((n~/v}' -'exp( —n~v,') JI vdd dvtd
0

&& exp(-n, vd2)P«(2n, v,v„)M";,', (vs), (A2)

where

E»(x) = —,
'

sin& d& exp(-xcos&)P«(cos&)
0

(m +K)!
(2m + 2K + 1)!m! (A3)

and

Since the perturber velocity distribution function
f~(v, + v„) is symmetric with respect to the Z axis,
f~(v, +vs) is independent of (t) and g. The angular
integration over Q and (1) in Eq. (8) is easily per-
formed by using the relation

21' 2r

d(t dgSoz (0,) = 4»25+of}z,P«(cos &), (Al)
0 0

where I'~ is the Legendre polynomial. We have
used the relation (Al) to obtain Eqs. (lla) and
(11b). Substituting Eq. (6) into Eq. (lib), we ob-
tain

APPENDIX B

In order to perform the averaging over v, in
Eq. (17b), we introduce a function G «(v, } defined
as

d (v„}=-(-2) Jd'v f (v)p (epee})

& exp(-n, v', )(4n~v', )
' /'-. (B1)

Using the function G «(v, ), we can rewrite Eq.
(17b) as Eq. (18a) for resonant collisions and as
Eq. (18b) for nonresonant collisions.

To obtain the explicit form of G„«(v,}, we sub-
stitute the emitter velocity distribution given by
Eq. (14) into Eq. (Bl). After integrating Eq. (Bl)
over 4, we obtain

d (v, }=—(-2) "e.exp(e.v„*)J v.'dv.
,

0

The integration over $ in Eqs. (A5) must be per-
formed numerically. Equations (10) are easily
obtained from Eqs. (A2) and (A5) by using Z func-
tions.

M"„"„',(v/2) = 2»n~ db bv„M"„"M (b, v„, Q, ) . (A4)
0

As seen in Berman's theory4, the dependence of
M",",, (b, vz, Ao) on'b and vz can be expressed in
terms of aparameter $ asM", M, ((, 0,) =-M~'. (b, v„, 0,).

For resonant collisions, $-=A/(b vz) and A
=—(e'/65) ((sllrlla} ~', where (s[(r()a) is the reduced
matrix element for the real, transition induced by
a collision. From Eq. (A4), we can show that
M"„"„,(v„) is independent of vdd for resonant colli-
sions:

M'„",', (v )=v vA J M","„'.((,)},)('d(
0

(A5a)

For nonresonant collisions, $ = B/(b'vz) and

sine de 4~ v ++/ exp z + z
0

x 6(v, cose —v.)P«(cose) .
After integrating Eq. (B2) over e, we obtain

G.gv, )

P
2)«+2n (4n )me«/ 2

(B2)

(2K —2r —1)!!P»( (),) =
( 2), )(ff 2')) ( (}/,) '", ( )

r=

where [K/2] is the largest integer that does not

OO

Vodv, v', '""exp[-(n, + n, )v', ]P» —' . (B3)
~V0 Ve

It is convenient to expand the Legendre polynomial
as
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exceed —,K. Using Eq. (B4) and the incomplete y function defined as I'(n, x) = f„"t" 'e 'dt, we obtain

G„(,)=(-4) ()-x)( )*"(e''Q, ,
'' (-, ))'(m+r+), ) )(4x) (B5)

where x=mg(m, +m~) a,nd f-=(a,)' 'v, .
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