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Absolute cross sections from the "boomerang model" for resonant electron-molecule scattering
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The boomerang model is used to calculate absolute cross sections near the 'H shape resonance in e-N,
scattering. The calculated cross sections are shown to satisfy detailed balancing. The exchange of electrons is

taken into account. A parametrized complex-potential curve for the intermediate N, ion is determined from

a small part of the experimental data, and then used to calculate other properties. The calculations are in

good agreement with the absolute cross sections for vibrational excitation from the ground state, the absolute

cross section v =- 1~2, and the absolute total cross section.

I. INTRODUCTION

A. Objective

Perhaps the most thoroughly studied of all res-
onances in electron-molecule scattering at ener- .

gies of a few electron volts occurs at about 2 ep
in e-N2 collisions. It plays a major role in the
pumping of the CO, -N2 laser, and in the slowing
of electrons and the transport of energy in the up-
per atmosphere. 3 The resonance arises from the
temporary capture of an electron into the lowest
vacant orbital in the N, molecule; it is a "shape
resonance, " in the sense that the target molecule
provides a potential well, but does not become
excited (except for a minor polarization). The
extra electron enters and departs by tunneling
through a barrier due to a centrifugal potential.

Up to now, almost all observations on the 2-eV
resonance in e-N2 scattering experiments have
dealt with inelastic processes, the excitation of
vibrations, 4 and rotation. 5 Recently, it has be-
come possible' to detect supexezgstic collisions,
in which the energy of the bombarding electron
increases by a vibrational quantum. Despite the
absence of measurements, the cross sections are
often needed in calculations on gas lasers' and in
atmospheric processes. The cross sections may
be calculated' with the "boomerang model, "
which corresponds to a lifetime of the transitory
N2 ion so short that the nuclei have time for only
a single vibrational cycle before the extra elec-
tron departs. The object of this paper is to pres-
ent new calculations with the boomerang model on
both superelastic and inelastic processes in the
resonance region. The cross sections are given
in absolute magnitude. Comparison with experi-
ment confronts absolute measured cross sections
with absolute calculated cross sections. The
theoretical discussion is restricted to the e-N2
resonance; only minor changes are needed to
modify the theory for other resonances.

The present calculations are an extension of

earlier calculations on the reaction

8+ N2 -N2 -N2*+ 8',

which fitted the energy dependence of the observed
cross sections for the excitation of the lowest
seven vibrationally excited states of N2 from the
ground state, but did not give the absolute mag-
nitude; that calculation was based on a parametr-
ized potential-energy curve for the N2 ion. The
permissible values of all but one of the adjustable
parameters are tied down almost completely by
an gb initio calculation. '0 The one remaining
parameter is a "correlation energy, " which Krauss
and Mies' adjusted to get the resonance appearing
at the right energy. It turned out in Ref. 9 that
the potential parameters needed to fit the observed
cross sections are in excellent agreement with the
ab initio calculation of Krauss and Mies, if their
chosen value of the correlation energy was used.
There are some differences in notation between
this paper and Ref. 9; they are explained in the
Appendix.

B. Obervations

The e-N, resonance was observed first in mea-
surements of the total cross section, "with energy
resolution too poor tg observe vibrational struc-
ture. The first measurement with energy reso-
lution good enough to detect vibrational structure
and to record the excitation of individual vibra-
tional states were done by Schulz' in 1962. Fur-
ther measurements of vibrational excitation in
e+ N2 scattering near 2 eV were published by
Schulz' and by Ehrhardt and Willmann. '4 The
experimental situation has been reviewed by
Schulz, ' most recently in 1976.

Measurements of the total cross section which
detect vibrational structure have been done by
Golden" and by Bonham and Kennerley„"
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C. Previous ca/culations

The first calculations of e-N2 scattering near
the 2-eP resonance were done by Stier" in 1932
and Fisk' in 1936. They regarded the nuclei as
fixed, and so began a long series of fixed-nucleus
calculations, which is still being pursued. At
the time Stier and Fisk did their calculations, the
available experiments showed a strong resonance,
about 1 e7 wide, but there was no hint of vibra-
tional structure.

For Stier and Fisk to treat the nuclei as fixed
was consistent with the available experimental
evidence on nuclear relaxation. The experimen-
tal -picture changed drastically in 1962, when
Schulz' demonstrated nuclear relaxation experi-
mentally. He observed vibrational structure
which had to be associated with the transient N2
ion formed at the resonance, because the peak
positions and spacings bore no resemblance to
the vibrationa1 levels of the electronic ground
state of the neutral N, molecule.

With Schulz s demonstration of nuclear relax-
ation, there arose a rift of opinion among theor-
ists: one school' "thought that the nuclear re-
laxation had to be built into the calculations, while
another school' felt that the fixed-nucleus cal-
culations could still somehow be rescued. A liv-
ely debate ' between representatives of the two
schools of thought took place in 1973, with Temkin
for the fixed-nucLeus school, and one of us for
the relaxers. However, the rift of opinion has
now been healed by a study" by Chandra and
Temkin, in which they showed that only if the
.nuclei in the transient N, are allowed to relax
does one obtain oscillations in the energy depen-
dence of the cross sections which resemble the
experiments. Moreover, it has become clear
from the good agreement between the gb initio
calculations of Ref. 10 and the parameters needed
to fit experiments in Ref. 9 that the method of
Ref. 9 offers a way in which results from fixed-
nucleus models can be incorporated in calcula-
tions with relaxing nuclei.

In 1962, as soon as the results of Schulz's ex-
periment' were published, it was shown'9'0 that
his observations could be reproduced fairly well
in a calculation which took nuclear relaxation. in-
to account. At first, there was no simple physi-
cal picture of the origin of the striking regulari-
ties observed by Schulz, but such a picture was
eventually supplied. " It is now called the "boom-
erang model, " because the nuclei execute only a
single vibrational cycle during the limited life-
time of the N2 ion. Later, in 1971, it was shown
that a calculation which rests on the essential
physics of the boomerang picture gives a good fit

of the energy dependence of the cross sections
observed by Schulz.

In the "boomerang model, "~' ' the incoming elec-
tron is supposed to be trapped in a quasistationary
electronic state g(q, R), where q stands for the
totality of electronic coordinates and R for the co-
ordinates of the nuclei. As any electron moves
out, g decreases at first, either because the elec-
tron happens to be in a truly bound orbital, or
because it happens to be in an orbital confined
within a potential barrier; at large distances, P
joins to outgoing waves, representing decay by
autoionization. The state g has a finite decay
rate I'(R)/5, which depends on the position of the
nuclei. Such states are hardly novel. In 1928
Gamow 8 introduced the concept of the particle
emitting unstable state in his treatment of the
n decay of nuclei, and showed that the energy
must be complex; the imaginary part is ——,'I". Ten
years later, in 1938, Kapur and Peierls ~ used a
complete set of particle-emitting states with com-
plex energies to discuss resonance scattering in
nuclei.

In the boomerang model, one supposes that the
lifetime of g happens to be so short that the elec-
tron is usually emitted after the nuclei have ex-
ecuted about a single vibrational cycle. How this
picture leads to the regularities observed by
Schulz is explained in Refs. 9 and 27. There is now
a good example of a contrasting case, s ' ' in which
the lifetime against autoionization is much shorter,
so short that the nuclear wave packet does not
even survive long enough to give a reflected wave;
there is then no interference pattern, and the
cross sections do not oscillate as a function of
energy. This case may be labeled'9 "impulse
model, " because the nuclear wave packet acquires
momentum from the electric field of the extra
electron, but does not move appreciably during its
residence (unlike the nuclei in the e-N2 resonance).

The boomerang picture has been used to give
qualitative interpretations of experiments and cal-
culations on e+ CO2, "e+ NO, 3' ands on reson-
ances in e+N, above 2 eV. A classification of
observed resonances on the basis of the boom-
erang picture .was made by Schulz~ in his review
in 1976.

During the last two years, several groups have
published calculations related to the boomerang
model, either by the method of Ref. 9, or by re-
lated methods, on e+ CO, ' e+ CO2, 3' and e+ N2. 37

D. Born-Oppenheimer approximation

Basic to the boomerang modele'9 2' is the as-
sumption that the electrons follow the nuclei ad-
iabatically in the quasistationary electronic state
g(q, R). We make the assumption only in cases
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where g occupies a volume which is not apprec-
iably larger than the molecule, for example if
g contains the extra electron in a valence orbital,
and is otherwise identical with the ground state
of the target (except for a small relaxation due to
polarization). We exclude from consideration
cases where the electron interacts with the tar-
get molecule over distances appreciably larger
than molecular dimensions, as for example in the
dipole tail from a polar molecule. In such cases
the question of adiabatic following becomes very
delicate, because even a small angular velocity
of the nuclear framework can lead to a large lin-
ear velocity of the fluctuations of the dipole po-
tential at a large distance. The point has been
discussed by Chang and Fanos in their "frame-
transformation" approach. An important differ-
ence between the Chang-Fano viewpoint and our
own is that Chang and Fano regard the nuclei as
fixed when the extra electron is within the mol-
ecule; by contrast, as we have already empha-
sized, we regard the relaxation of the nuclei in
the electric field of the extra electron as an essen-
tial feature when the trapping time is comparable
to a vibrational period, or larger.

The adiabatic picture implies that g should appear
in a product g(q, R)g(R), where $ is the wave func-
tion of the nuclei associated with the trapped elec-
tronic state, and that the variation of g with re-
spect to R should be very slow compared with the
variation of $.

It has often been suggested that there might be a
conflict between the demand for a g varying slowly
with R and the fact that when an electron is scat-
tered at a narrow resonance, a calculation with
fixed nuclei leads to a jump of n in a resonance
phase shift in a range of R which becomes small
as the width does. However, there is no conflict
because the complete wave function in a fixed-
nucleus model contains g in the form~s g(q, R)/
[E W(R)], where W-(R) is the complex resonance
energy and E the total energy. The rapid varia-
tion of the phase shift at a resonance in a theory
without nuclear relaxation comes not from p(q, R),
but from the denominator E- W, when Re g™E.
When the nuclei are allowed to relax, the rapidly
varying factor [E W(R)j ' is replac-ed by the nuc-
lear wave function $ in a transitory negative ion;
in an adiabatic picture, g is expected to vary rap-
idly with R, so that there is no conflict.

The debate about the Born-Oppenheimer approx-
imation in resonant electron-molecule scattering
has been reviewed by Schneider. 3~

E. Ab initio calculations and adjustable parameters

No gb initio calculation has succeeded in repro-
ducing the observed cross sections, including the

vibrational structure, near the 2-eV resonance
in e+ N&. The most recent gb initio calculations
for fixed-nucleus models, made by McKoy and
Burke ' and their collaborators, yield a reson-
ance 1 or 2 eV away from the observed position.
(There is, of course, no vibrational structure in

'a fixed-nucleus calculation. )
Impiovements have so far been obtained only

by the introduction of adjustable parameters; for
example, 3 Burke, Chandra, and Buckley can move
the resonance in their fixed-nucleus model to the
right energy, with a single adjustable parameter.

The most serious attempt at an ab initio cal-
culation which allowed for nuclear relaxation is
the work 6 of Chandra and Temkin. They find
that with a single adjustable parameter, the res-
onance can be made to appear at the right energy;
however, the vibrational structure bears only a
superficial resemblance to the experiment, the
number of peaks and their spacings both disagree-
ing with the observations.

Both the magnitude and the vibrational substruc-
ture of the cross sections are reproduced by the
boomerang calculations (see Ref. 9 and this paper)
with the help of six adjustable parameters. One
needs that many to describe the potential-energy
curve of the intermediate N2 ion, and its width
(the details are explained in Sec. IV). lt is worth
emphasizing that in Ref. 9, the six parameters
account for all the details of about 50 observed
peaks in different excitation channels in the rel-
ative cross sections.

Why is it so difficult to reproduce the observed
vibrational structure in an ab initio calculation?
The trouble is probably due to the extreme ac-
curacy demanded by the rapid oscillations in the
nuclear wave functions. At a nuclear kinetic
energy of 0.5 eP, which is typical of the e-N2
problem, the reduced nuclear wavelength (= K„)
is 'L„=6x10 2aq (a0=0.52x10 8 cm). Since one
must expect to have to locate the nodes and anti-
nodes to better than 4„ to get the maxima and
minima of the cross sections at the right ener-
gies, one must locate the potential curves of N2
and N, correctly to about 10 ao. That is a very
severe demand on an gb initio calculation.

It is our opinion that at present the only prac-
ticable method of dealing with the short nuclear
wavelength is to use a parametrized potential-
energy curve for the transitory N& ion. Such cal-
culations can be brought close to being ab initio
if one compares the potential-energy curve that
fits the experiments with a potential-energy curve
calculated ab initio. Agreement is satisfactory if
the differences are no larger than one expects from
the limited accuracy of the calculated curve. This
program has been carried through completely in
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the single example of the e+ N2 resonance at 2 eV,
where an (almost) gb initio curve was calculated
by Krauss and Mies. ' But even they needed to
introduce a single adjustable parameter, the
correlation energy, to get the resonance appear-
ing at the right energy.

F. Advances beyond earlier calculations

Some development to the theory was needed to
make the present calculation possible:

(i) The superelastic cross sections are related
to inelastic cross sections by the principle of
detailed balancing. We have proved (in Sec. II H)

that our approximate theory satisifies this prin-
ciple.

(ii) To calculate cross sections in absolute mag-
nitude, we have developed a relation between the
lifetime (or width) of the compound state and the
amplitudes for the entry and exit of the bombard-
ing electron (see Sec. II D). This relation gives
one the absolute magnitudes as soon as one has
fitted the energy dependence of the relative cross
sections; no new parameters must be introduced
to make the cross sections absolute.

(iii) The amplitude for vibrationally elastic scat-
tering contains a direct component in addition to
the resonant component which dominates the in-
elastic scattering. We have incorporated the di-
rect amplitudes into the theory.

(iv) The previous theorys was formulated with-

out exchange of the projectile and target electrons.
We have now incorporated exchange, in Sec. II G. .

We have also taken this opportunity to give a
simpler derivation of the theory than that in Ref.
9, and to clarify a number of minor points.

4f exp(ik& r)pfQfgf .

We shall initially ignore the exchange of the pro-
jectile with the target electrons, and return to
discuss exchange in Sec. II G. We shall regard
the direction of the molecular axis as fixed; this
approximation should be good as long as the life-
time of the electronic state is short compared
with a rotational period; in the e-N2 resonance at
-2 eV, the lifetime is at most of the order of a
vibrational period, about 10 '4 Sec. , while the

rotational period at room temperature is about

100 times as long, of the order of 10 ' sec. We

continue to restrict ourselves to a diatomic mol-

ecule; its axis lies in the direction R.

The Hamiltonian is

H =H, (q, R) +E, (2.1)

where H, is the electronic Hamiltonian corres-
ponding to nuclei at R, and E is the kinetic energy
of the nuclear vibration along R. The mass cen-
ter will be regarded as fixed. The Schrodinger
equation at energy E is

p; (I, 2, . . . , N) and $&(1, 2, . . . , N), with the target
electrons appearing in ascending order from left
to right. The position of the nuclei is denoted
collectively by R. The symbol q.is to stand for
the totality of electronic coordinates; wherever
we have to single out the spatial coordinate of the

arriving or departing electron, we shall denote
it by r.

The complete initial and final states are

C, = exp(ik, r) Q, o. ,y,

G. Plan of this paper
(H- g)4)=0, (2 2)

where 4,. is the complete state; it has the form

4, = 4, + (scattered waves).The theory is developed in Sec. III. Calculated
results are presented and compared with experi-
ment in Sec. III. The results are discussed in
Sec. IV.

II. THEORY

A. Initial and final states

Consider the scattering of an electron from an

initial state exp(ik, ~ r)n, to a final state
exp(ik& ~ r)a& by a molecule whose initial and final
states are Q, (q, R)y, (R) and @q(q, R)gy(R). Here

Nk, and W& are the initial and final momenta, a&

and n& are the initial and final spin states of the

projectile, y, and g& are the initial and final vibra-
tional states, and P, and Q& are the initial and

final electronic states of the molecule. The func-
tions Q, and Qz are antisymmetric with respect to
exchange of the target electrons; we shall adopt
the convention that they are to be written

B. Electronic compound state and adiabatic criterion

In the e-N, resonance at 2 eV, the scattering in-

volves two electronic resonant states g, and 0,
each of which consists of an N2 molecule in its
electronic ground state, with an additional elec-
tron in a g~ orbital; this happens to be the lowest
vacant orbital in the N2 molecule. In an expan-
sion of the m orbital in spherical harmonics, the

lowest I value is l= 2; this angular momentum

provides the centrifugal potential barrier which

traps the extra electron. There is one unit of
orbital angular momentum about the axis; the

subscript + or — distinguishes between the two

directions. The states g, and P are eigenfunc-
tions of H, :
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[H,(q, R) —W(R) ]g, (q, R) = 0, (2 3)

where W(R) is the eigenvalue at the nuclear con-
figuration R. We shall see that W(R) becomes the
energy surface of the negative ion.

The functions |/, cannot be normalized by inte-
grating ~g ~

over all space because autoioniza-
tion gives them tails of outgoing waves, which
would make the integral f dq

~ P, ~

diverge if it
were taken over all space. Therefore we intro-
duce a finite volume, called the "interior region"
or IR, which encloses the target molecule. The
boundaries of the IR will be discussed later. We
shall normalize g so that J,„dq~g, ~'=1, where the
subscript IR means that the integration is to be
restricted to the IR.

At the boundary of the IR, the exact wave func-
tion matches onto outgoing waves corresponding to
the vibrational and rotational states which can be
excited in the molecular target, in addition to the
incident plane wave. To define g, as solutions of
(2.3), we shall use an adiabatic approximation, by
matching t/I, onto outgoing waves at the boundary
of the internal region as if the escaping electron
came from a molecule with stationary nuclei. The
justification comes from the Franck-Condon prin-
ciple, which states that the emission of an elec-
tron must occur without change of momentum by
the nuclei; therefore the kinetic energies of the
nuclei before and after emission must be equal.
If E is the total energy, && the energy of the final
molecule, W(R) the potential-energy surface in
the negative ion, and V&(R) the potential-energy
surface of the final molecule, then Z —W(R)
= ez —V&(R). Therefore E- cz ——W(R) —Vz(R), and
since the emerging electron carries away kinetic
energy E- &z, the configuration R emits electrons
of energy W(R) —Vz(R). This is completely de-
termined by R, just as if the nuclei were station-
ary. Qf course this result is only approximately
true, because the Franck-Condon principle is
itself only approximately true.

In matching g, on to outgoing waves, at the bound
boundary of the IR, we shall take the energy of the
outgoing wave to be the eigenvalue W(R) which
appears in (2.3). This specification of the res-
onant state was originally proposed by Siegert ',
it is closely related to an earlier formulation by
Kapur and Peierls, who used the energy of the
scattering experiment, and the even earlier
formulation by Gamow. One advantage of Sie-
gert's prescription is that it is straightforward
to show that the eigenvalue S' is independent of
just where one cuts off the internal region; by
contrast, the Kapur- Peierls formulation gives
one eigenvalues which depend somewhat on where
the IR is cut off. It is straightforward to show

C. Nuclear wave equation

We need the complete state 4,. only within the
region where the extra electron interacts strongly
with the target molecule, because the differential
scattering cross section is given by

(2.4)

where 4, and 4& are the initial and final states
mentioned in Sec. II A, V is the interaction of the
extra electron with the molecule, and vf and v,.

are the velocities of the scattered and incident
electrons.

Within the internal region we write

4'q(q, R;k;) = 4)(q, R;k,.) + t/), (q, R)$,(R, kq)

+ g (q, R) $ (R, k;) + n @&, (2,.5)

where $, and $ remain to be determined. The
function 4%',. is to contain all the distortion of the
wave function associated with direct scattering,
that is all the distortion in 4, which cannot be
represented by g, and g . We shall suppose that
direct scattering is negligible for the symmetry
of P„and g in a frame fixed in the molecule.
However, direct scattering with /= 0 and /= 1 will
be taken into account.

To determine g, and g, insert (2.5) into (2.2),
multiply in turn by g,* and g~, and integrate over
the electron coordinates within the internal reg-
ion. Two approximations will be made:

(i) Take

that Siegert's prescription makes the eigenvalues
W(R) complex, if the real part is sufficiently high
to permit autoionization; we shall follow convention
by writing

W(R) = Re W(R)--,' I'(R),

where l" is real, and &0.
The boundary of the IR is conveniently chosen so

that g, falls in amplitude with increasing radius
within the boundary, and joins onto an oscillating
outgoing wave outside. Since the confinement of
the e-N, resonance at -2 eV is due to a barrier
from the centrifugal potential, we choose the
boundary of the IR to be the outer limit p of the
centrifugal barrier, given by ka = [I(I+1)]'~ .
Here k is the average wave number of the escap-
ing electrons, and I the orbital angular momen-
turn in the dominant component of the wave func-
tion of the extra electron in an expansion in spher-
ical harmonics outside the molecular core; for the
e-N2 resonance at -2 eV, one has l=2. At 2.3
eV, one has 0=0.41 a,~ (where a, =0.52x10 8 cm);
one finds a=6.0a, for the radius at the boundary
of the IR.



20 ABSOLUTE CROSS SECTIONS FROM THE "BOOMERANG. . . 199

dq g,"(H, —E)b,&» = 0,
KR

(2.6)

H =H~ +K =H() + V,

where (Ho —E)4)» =0. Then

J dq», )H E)o, = Jdq», vs, -.
IR IR

(2.8)

(2 9)

With the aid of (2.6)—(2.9), one finds from (2.2)

[K+ W(R) —E]$,(R) = —f(R», k»)g»(R), (2.10)

where

f,.',(R, k, ) —= dq $,*Ve'~» ' "Q,c»».
IR

(2.11)

Equation (2.10) is the wave equation for the nu-
clear wave function g, in the negative ion. The

'

integral f», (R, k, ) will be called the "electron entry
amplitude. " Since we are regarding the orienta-

t

because of our assumption that there is no direct
scattering with the same symmetry as )j, and P
in the molecular frame.

(ii) Make the adiabatic approximation

(2.7)

because»j), and 0 are expected to vary slowly with
R in comparison with g. and g . [As in (2.1), K
is the nuclear vibrational kinetic energy. ] The
terms neglected in (2.7) contain derivatives of )j),

with respect to R. They are of order (PP„/M)g,
where P, is an electronic momentum, P„a nuclear
momentum, and M a nuclear mass. The approx-
imation is justified if these neglected terms are
small compared with the other terms in the
Schrodinger equation, that is the Coulomb inter-
actions, the electronic kinetic energy, and the
nuclear kinetic energy. The electronic kinetic
energy and the Coulomb interactions are of the
same order, because of the virial theorem; they
are of the order of 1 a.u. The nuclear kinetic
energy is much smaller, of the order of (m/
M)'~2 = 0.01 a.u. in a low vibrational state of the
neutral (where m is the electronic mass). Thus
the neglect of the terms M„/M will be justified
if they are much smaller than the nuclear kinetic
energy —,'p„'/M, in other words if p,/p„«1. In a
low vibrational state of the neutral, one has P,/
P„= (m/M)'~ = 0.1; in the e-N, shape resonance,
p, is of the same order, since valence orbitals
are involved, but p„may be somewhat larger be-
cause the molecule becomes vibrationally ex-
cited. Therefore the ratio P,/P„should be some-
what smaller than 0.1, so that the approximation
(2.7) should be well satisfied.

Split up the Hamiltonian

tion of the molecule as fixed, there is no rotational
kinetic energy in E.

Cross sections can be calculated from (2.4) and

(2.5) as soon as g, and ( have been determined
from (2.10). For the scattering from the incident
state 4,- to the final state 4f, one finds

(2.12)

with

i f i f i f~ (2.13)

7 = — [oyI vI(c»+ b4»)], (2.14a)

7» 5"2 @2 [(~f I ~f (R k~)
I &.)

(2.14b)

fz, (R, &~) =— dq(e'"&' Q~o.~)»'Vg, .
IR

(2.14c)

The integral (2.14c) may be called the "electron
exit amplitude. " It follows from (2.11) and (2.14c)
that

g~, (R, k) = g~, (R, k) +. (2.15)

D. Entry and exit amplitudes

To.calculate cross sections in absolute magni-
tude, one needs the entry and exit amplitudes in

(2.11) and (2.15). We next show that the g«and
Pi'~ can be expressed in terms of I' if there is only
a single electronic channel open. This is usually
the case in a shape resonance, and happens to be
true for the e-N2 resonance at -2 eV; on autoioni-
zation, the extra electron vacates its orbital and

leaves the molecule in its electronic parent state.
The significance of the relation between fi„g,'„
and T' is that one can often determine 1 by fitting
the energy dependence and relative magnitudes of
cross sections, but without regard to the absolute
magnitudes. The link between I and f„and g,',
then enables one to assign absolute magnitudes to
the cross sections without further adjustment of
parameters.

Consider the fictitious problem in which the nu-
clei are fixed. We shall distinguish quantities be-
longing to the fixed-nucleus problem by a super-
script E; for example the initial and final states
are 4, and 4f . The Hamiltonian is now H =H„
the nuclear kinetic energy K being dropped. In
place of (2.5), we have

4» ——4»+»I) g +)j) $ +64'»,
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TF = T~o'F+ T'j~f j~ f jwf

Tyot F 4,F y 4,F + gyF

(2.16a)

(2.16b)

m f,(R, k~) g,'(R, k;) + g (R, k~) f '(R, k(),
2vk E —W(R)

(2 16 )

where kf is the wave number of the outgoing elec-
tron. In place of (2.12),

(~go J (2.17)

since the initial and final velocities are now equal.
According to the optical theorem, the total cross.

section 0~, corresponding to fixed nuclei, is given
by

o = (4v/k, )Im T„. (2.18)

where the electronic resonant functions g, and g
are the same as before, because they were always
defined relative to fixed nuclei. The equation for
g~ and )~becomes, in place of (2.10),

[W(R) —E]$~ = —f,'~(R, k)),

where 1,.', is still given by (2.11);k,. is the wave
vector of the incoming electron.

We shall suppose that only a single electronic
state is energetically accessible, so that the ini-
tial and final electronic states of the molecule
are identical; therefore we can drop the suffices
i and f from g& and g&, and write g,

' in place of
f,'„and f, in place of gf, .

In place of (2.13), one has

This expression consists of terms which behave,
near the resonance at E = W(R), like (E —W) 2,

(E —W) ', and a constant. The coefficient of
(E —W)

' becomes

—[—,I'(R)],Re [/, (R, k,.)g,'(R, k,.)
j

+ g (R, k;)f'(R, k;)]. (2.19)

One may average (2.19) over the orientation of
the molecule, because the orientation may be
supposed to be random. However, it is easier to

Jls

average over the direction 0j of the incident beam
instead. This average is the same for the two
terms in (2.19), because the states g. and g differ
only by a reflection in a plane pissing through the
molecular axis. The coefficient of

I
E —WI in

(2.18) becomes, with the aid of (2.15),

I'(R) m

kj 2wA
(2.20)

we could have written f' in place of g,'.

Another expression for the total cross section
comes from integrating (2.12) over all final direc-
tions. We may set vf ——v;, because the nuclei
have been supposed to be fixed, and at -2 eV no
excited electronic states of the N2 molecule are
accessible. In the integral over all directions kf,
there is no interference between the two terms in
the numerator of E W(R) in (2.1-6c), because the
outgoing waves belong to opposite angular momen-
ta about the molecular axis. With the aid of
(2.15), one finds from (2.1V) and (2.16c)

T- f deaf

4 2 @2 2 d~f f R kf dkj f,' R, kj + deaf f R kf (2.21)

+[terms of order (E W) '];-
we have again written g, and g,

' without subscripts
denoting initial and final electronic states, be-
cause only the elastic electronic channel is ac-
cessible energetically. The cross section (2.21)
is an average over the direction k„which is
equivalent to an average over the directions of
the molecular axis with kj held fixed. From
(2.15), and the fact that the integrals containing
r,' and f' are equal (since the functions g, and g
differ only by a reflection in a plane containing
the molecular axis), the coefficient of IE WI-
in (2.21) becomes

dkj f,'R, k; (2.22)

By equating (2.20) and (2.22), one finds

(2.23)

Ik, I
should be taken at the center of the resonance,

since we have worked with the terms
I
E —WI

' in
deriving (2.23). Equation (2.23) is the sought-for
relation between I' and

I g,'I .
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f '(R, k) = f(8, k)A (R, k),

where

(2.24)

E. Separation of angular dependence

For our diatomic molecule, it is convenient to
decompose g and g~ into factors which describe
the angular distribution of the incoming and out-
going electron, and the variation of the tunneling
amplitude with the separation of the nuclei. We
write

sion of exp(ik& r) which gives a nonzero contrib-
ution to g,. in Eq. (2.11), the factor A in (2.24)
becomes

4 (R k) jf& & & & &(8 k)' (2. 26a)

l(min) is the lowest I which gives a nonzero con-
tribution; m(+) is the value of »& which corres-
ponds to the subscript + on &. The appearance of
R in the argument on the right signifies that the
molecular axis is to be used as the polar axis for
the angles in k. From (2.24a), it follows that

(2.24a) &(8, k) = f*(B,k) (2.26b)

X,(R, k) =g,'(R, k)/j(Z, k),

dk Q~ R, k =1.

(2.24b)

(2.24c)

in (2.24).
The dependence of I' and P on the energy of the

emitted or absorbed electron becomes explicit if
one replaces exp(ik, ~ r) in (2.11) by the lowest
contributing term in the spherical harmonic ex-
pansion. If one further approximates

j(ft, k) = [(4v'k'/mk) r(Z)]'~'.

A valuable approximation for f comes from
(2.11), if one expands

(2.25)

exp(ik, ~ r) = 4»g i'j, (k,r)qf„(k, )'JJ, „(r),

and notes that

j&(k& ) = (kr)'/(2l+ 1)!!

k~~l,

where

(2l+1)!!=Ix3x5x. . . x(2I+1).
[For example, for l=2, one has j2(1.0) =0.062,
j,(2.0) = 0.20, while the approximate values are
1.02/5!! =0.067, 2.0'/5!! =0.27. ] Since the res-
onant orbitals &I&, have large values only well with-
in the internal region in (2.11), the approxima-
tion for j2(k,r) will be justified in the integral.
Moreover, the higher terms in the expansion of
exp(ik ~ r) are sufficiently small to be neglected;
for example at the boundary of the internal reg-
ion,

j4(2.0)/j2(2. 0) = 0.09.

If one retains only the lowest term in the expan-

We shall choose the positive root in (2.24a). There
is no suffix on g(R, k) because &t&, and &!& are mir-
ror images with respect to a plane containing the
molecular axis. The independence of i;(R, k)
from the directions of R and k follows from def-
inition (2.24a). It follows from (2.23), (2.24),
(2.24b), and (2.24c) that

j,(kr) -=(kx)'/(2l + 1)!!
in (2.11), one finds g„~k" "', where l(min) is
the lowest contributing value of I in the expansion
for exp(ik, r). Therefore, according to (2.23),

r(R) ~k(R)"' "'+', (2.27)

where k(R) is the wave number of an electron ab-.

sorbed or emitted by the, fictitious molecule with
its nuclei fixed at R.

Following Blatt and Weisskopf4' and taking l(min)
=2 for the 'll resonance in N„we shall use the
more accurate expression

I (R) = I (R)—
k(RO) @2[k(RO)p]'

where

t 2(x) =-x'/(9+ 3x'+ x') ' (2.28b)

ThereR, is the equilibrium separation of the nu-

clei; p is an estimate of the distance from the mass
center beyond which the centrifugal potential of
the projectile electron dominates over its Coulomb
and polarization interactions with the molecule.

In using (2.28), we are supposing that the variation
of P„V, and Q with R in (2.11) is sufficiently slow
to leave the factor kv2 dominant.

With relations (2.23) and (2.25) established from
the fictitious model with fixed nuclei, we now re-
turn to the problem of vibrating nuclei.

F. Calculation of resonant scattering amplitude

To calculate cross sections from (2.12), one
must find g, in (2.5) by solving (2.10). We shall
suppose that only a single electronic state is ac-
cessible energetically, so that the subscript i may
be dropped from g„ in (2.10); however, we shall
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A A

g,(II, k,.) =(g/R)(R, k, )gg(...)„(,)(R, k,). (2.29)

g(R, k,.) now depends only on the magnitudes, but
not the directions of R and k&. One finds

retain the suffices i and f on )(, and )(f to disting-
uish the different vibrational states.

Substitute (2.24) and (2.26a) into (2.10), and
drop a factor g« „& &, &

by writing

(K(R) + W(R) —E]$(R, k;) = —i;(R, k;))(i(R),(2.30)

where
8

X,(R) -=RX„K(R)-=-, —,„, (2.31)

M being the reduced mass.

The resonant part T'("z in (2.13) becomes, with
the aid of (2.14b) (2.15),. (2.26a), and (2.26b),

yI'8S

A A A A A A A A

/ )[9)(m(n)m(+)( & f) B)(min)m(+)( & ki) I ((m(n)m(-)(R) kf) 9l(min)m(-)(R~ ki)]

()(~ I r(R, k~) 1($/R)(R, k,)) (2 32)

G. Exchange

So far, we have singled out one electron as the pro]ectile and scattered particle, and ignored the pos-
sibility that this one electron may be exchanged for one of the target electrons. This restriction will now
be removed.

Suppose that the target molecule contains N electrons, so that there are N+ 1 electrons altogether. - In
place of the state. 4, in Sec. II A, we introduce N+ 1 states 4,~, where the suffix p [= 1, 2. . . , (N+ 1)]
stands for the incident electron:

4(~[1,2. . . , (N+ 1)]=—(—1)~ exp(ik, r~) $,[1,2, . . . , (p —1), (p+ 1), . . . , (N+ 1)]n;(p))(,(R). (2.33)

The factor (—l)~, together with the antisymmetry
of 4, and the order in which the coordinates in (t),.
are written (see Sec. II A) ensure that

The amplitude for the emission of electron spin-
spin state n&, with momentum k&, leaving the
molecule in state (P& is

P q4;q[1, 2, . . . , (N+ 1)]= —4;, (2.34)
T. ..= —(m/2)(k')(4„i V, i 4;"), (2.38)

where P,~ is the operator which interchanges the
coordinates of p and q.

We shall denote by 4'(~[1, 2, . . . , (N+ 1)] that
solution of the Schrodinger equation

(H- E)4'(~=0

which behaves like

4,~-4,.~+ (outg'oing waves)

(2.35)

(2.36)

4("=(N+1) '~' g 4',~. (2.37)

when any one electron moves off to infinity. Since
any of the N+ 1 electrons can be the projectile,
the physical solution of the Schrddinger equation,
which we denote by%,'", is

where V, is the interaction potential between elec-
tron s and all the other particles. It follows from
(2.34) and the antisymmetry of )I( that T, z, is
the same for all s.

The observed outgoing flux is the sum of the out-
going fluxes for the N+ 1 electrons, so that the
differential scattering cross section with exchange
per unit solid angle in direction k& and into spin
state e& is

c
9X )

-„'—„) =( N+ ) I~l .T. .l',

where s stands for any one of the N+1 electrons
and zr& and gf are the initial and final velocities.
We can absorb the factor N+ 1 by defining
v'N+ 1T i z, ——T;*z. Then, from (2.37) and (2.38),

It follows from (2.34) and the antisymmetry of Q;
that 0'," antisymmetric in all N+ 1 electrons; we
have attached the superscript "ex" to remind us
of this. The factor (N+ 1) (~i makes the incoming
flux for 0'," the same as for the no-exchange func-
tion 4', in E(I. (2.2).

T'-*~=- 2,@i Q (4~. II'. I@i)) (2.39)

(2.40)
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Expression (2.39) is the same whichever electron
appears as s.

We next separate 4',» (from 2.36) into resonant
and direct parts. Introduce electronic compound
states g»~(q, R) in which electron p occupies an
orbital above the filled shells of the target mol-
ecule:

$»&[1, 2, . . . , (N+ 1}]
= (-1)'~,(p)

xp, [1,2, . . . , (p-l), (p+ 1), . . . , (++1)];
(2.41)

z, and z are the orbitals occupied by the extra
electron; they are orthogonal to the orbitals of the
core electrons, and normalized over the internal
region. [We shall need the factor (-1)» in (2.44)
below. ] Therefore

Since the orbitals v, in g, are orthogonal to the
others, only the term p= s contributes to (2.47a},
so that

r,'* -= (m—/2~@')[e„(v,
l (q.,g. + y, g )]. (2.47b)

This expression has the same value irrespective
of which electron appears as s.

The resonant scattering amplitude with exchange,
in (2.47b), is identical with (2.14b) and (2.14c) in
the theory without exchange in Sec. II C. There-
fore resonant scattering remains unchanged when

exchange is included. The direct amplitude with
exchange [in (2.46)] differs from the expression
(2.14a) of the no-exchange theory only by the addi-
tion of exchange terms.

H. Detailed balancing

The scattering amplitude (2.32) or (2.47b) may be
shown to satisfy a condition of detailed balancing:

dq(y„[1, 2, . . . , (++ 1)]('=1. (2.42)
l
7 ree

l

2
l
7 re»

(2 (2.46)

/

@~»= @~»+ ~@s + &.o&. + tI'

Equation (2.10) follows as before, with

f)»(R, k()

(2.43)

dq Q» V e'"''~
IR

xy, [1,2, . . . , (p —1),

The functions g» in the no-exchange theory in Sec.
II B had the form (2.41), with the chosen projec-
tile in the role of p. With the aid of g,», we may
write out 4,» (from 2.36) in the manner of (2.5),
with a subscript. p on all terms to distinguish the

projectile:

(The corresponding result for the cross sections
is given in Sec. 11 J.) To prove this result, write

dR' G(R, R';E)g(R', k, )y, (R'), (2.49)

where G is the Green s function for Eq. (2.30),
which satisfies

[E(R) + W(R) —E]G(R, R';E) = 5(R -R') . (2.50)

The last factor in (2.32) becomes (if we recall that
the radial factor in the volume element in spher-
ical polar coordinates is R2 dR)

(p+ 1), . . . , (N+1)]n, (p) . (2.44)

Z
ex

Z ex, yot + ~ex, res
$~f f~f 4 f~f

where

(2.45)

(2.46)

N+1

~ g [e~.I&. I (e"(.+ g ,( )] (2 47'-)-
P f

This integral is independent of which electron p
has been singled out, as one may show from the
antisymmetry of Q, and definition (2.41). There-
fore the coefficients (» are independent of p„O,»
+ a%&~ is the direct part of 4',», and P.~f, + g ~g is
the resonant part.

We can now separate the scattering amplitude

TP». into direct and resonant parts. With (2.43),
one has from (2.39)

R dR f R, kf Q R, R',E

xj(R', e,)dR' X,(R'). (2.51)

Since yf is a bound vibrational state, it may be
taken to be real. Therefore the symmetry rela-
tion (2.48) would follow if we could show that

G(R, R';E) =G(R', R;E). (2.52)

To prove (2.52), note that according to (2.49),
G(R, R';E) has to satisfy the same boundary con-
dition as g as a function of R. As R-O, f -0,
because of the factor R ' in the definition (2.29);
as R-~, either g-0 [if ReW(~)&E] or 8$/BR
—iv) -0 [if Re W(~) &E], where x is the wave num-

ber of the motion of separation. Now multiply
(2.50) by G(R, R";E), (where R" is arbitrary),
integrate over R, and subtract the same equation
with R' and R" interchanged. With the identity
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8
G(R, R") R2G(R, R') —G(R, R')

where

dP [T~es[2
$wf fI ~ f Iv~

(2.58)

(2.53) 0'."=-— da
)

~T."')~'.j~f f~ -~-f~
V)

(2.59)

one finds

G(R'R";E) —G(R "R', E)

sG(R, R';E)

II.

G(R, R',E],". (2.54)

The expression [. . . ]0 vanishes because
G(R, R";E) and G(R, R', E) satisfy the same bound-
ary conditions as a function of R when R -0 and
R-~. Equations (2.52) and (2.48) follow.

I. Numerical checks

The detailed balancing condition (2.48) is a use-
ful check on two independent solutions of (2.30),
with different inhomogeneous terms.

A second, independent check can be deduced
from (2.30) if g -0 as R -~; this is true if Re W(~)
&E. Multiply (2.30) by $(R, k,.), integrate from
8 =0 to ~, and subtract the complex-conjugate eq-
uation. Use the identity

Bg2 BR2

(2.55)

where we have used $(0) = g(~) =0. One finds

dR
~
g(R, k,.) ~'r(R)

(2.56)=-2 dB Im, k,. g
0

This result gives a check on the absolute magni-
tude of $.

(2.5V)

J. Cross sections

The cross sections follow from (2.12). In the to-
tal cross sections, the. integration over the final
direction of the electron leads to much simplifica-
tion; therefore we shall consider them first.

If the dominant l value in the resonant amplitude
is different from those taken into account in the po-
tential amplitude, then the total cross sections
(i.e. , integrated over all final directions) contain
no interference between the two terms in (2.13).
According to the assumptions stated in Sec. II,
this is the case in the 'Il resonance in e -I,
scattering, so that in this case we may write for
the total cross section for the production of a par-
ticular vibrational state

A reciprocity relation for o,'-„'f follows from
(2.58) with the aid of (2.48). The integral Jdk&

~

T,."„&I' is, spherically symmetric with respect tok, ,
and may therefore be replaced by

dk, dk
i
T,

By comparing the definition (2.58) with the rela-
tion obtained by interchanging i and f, one finds

V2 O.I'es V2 g I'es
f~f f f~~ ' (2.58')

+
( J&en«0m&-&(R ~k&)~ 'l

6 R, kf

(2.60)

if one uses the orthonormality of the functions
'&I,

& „&»(R,kz). Note that the interference between
the m(+) and m(-) states has disappeared. [Dif-
ferences in notation between this paper and Ref.
9 are explained in the Appendix. ]

Expression (2.60) must, still be averaged over the
direction R of the axis; in the total cross sections,
this average may be replaced by an average over

One obtains for the resonant cross section for
the production of a particular vibrational state, in-
tegrated over all scattering angles,

Xy~ &(,kg)~
— (2 )

vy m - $(R k&)

The resonant differential cross section is ob-
tained by averaging (2.12) [with (2.14b)] over mol-
ecular orientations R —= (e„,&f&s):

do'~es vf 1
dR

(
Tres

~

2

)~f

Since the spherical harmonics in (2.32) are de-
fined with respect to the molecular axis R as the
polar axis [according to the remark after Eq.
(2.26a)], all the angles appearing in (2.32) must
be transformed to the laboratory frame before the
integration (2.62); the observed scattering angles
emerge explicitly from the transformation.

(2.62)

Since the principle of detailed balancing for the ex-
act cross sections 0, f and of„,. is v)0) f vf(Tf
Eq. (2.58') merely shows that our approximate
method for calculating o,". f is consistent with de-
tailed balancing.

From (2.32) and (2.58),
2

f f 2 @2 l(min)1'+) ~ i
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The spherical harmonics 'Sz„(R,k), which are
referred to the molecular frame, can be expressed
in terms of the 3»(k), referred to the incident
beam direction by the equation

&»(R k}= Z &u4&)&» (k}. (2.63)

do v~ m
~ &

- Rk;
t

Ai Picos8, (2.64)

with

A~= (21.+ 1)(2l „+1)' (I „ l „1.)
(0 00)

Here &u~Qar) are the rotation matrices, defined

by Rose, 4' and (v) =(Qs, 8s, —,'w) is the set of Euler
angles which carries the frame defined by the inci-
dent beam direction into the frame defined by the
internuclear areas [T. he third Euler angle of the
molecular frame is arbitrary for a diatomic mol-
ecule. We follow Van Vleck" and Hougen" by tak-
ing this third Euler angle equal to —,'m. Thus the
Euler angles of the molecular frame are (&u)

=-(&4, 8s ~a& 1

Making use of (2.32}, (2.63), and the orthogon-
ality of the & functions, expression (2.62) reduces
to

m. RESULTS

Calculations have been done in the following sta-
ges:

(a) Calibration of the N, potential curve (Des-
cribed in See. IIIA. ) Calculated cross sections
were fitted to experiment by adjustment of para-
meters in the N, compound-state energy W(R) in
(2.3) and (2.10).

(b) Tests of the parameters: neu channels.
(Described in Sec. III B.) The parameters deter-
mined in (a) were used to calculate cross sections
in channels other than those used in (a}, which
were then compared with experiment.

(c) Tests of parameters: The total cross sec-
tion. (Described in Sec. III C.) The resonant
cross sections for all channels n= Q-8 were com-
bined with cross sections for potential scattering
to calculate total cross sections, which were com-
pared with experiment.

(d) Comparisons of parameters. (Described in
Sec. IIID.) The parameters determined from (a)
were compared with the ab initio calculations of
Krauss and Mies, 'p and with previous parameter
fits.

(e) Calculation of cross sections -for vibration
al/y excited molecules. (Described in Sec. IIIE)
The parameters determined in (a) were used to
calculate cross sections in vibrational channels
which are still beyond the reach of experiment.

xQ (1 „l„
yn -in m -m

(2.65)
A. Calibration of the N2 potential curve

In Eq. (2.30) we write

where the sums extend over both values of m

[i.e. , m(+) and m(-}]. Details of a similar analy-
sis can be found for example in O' Malley and

Taylor. 4'

The form of (2.64) suggests immediately that the
differential cross section can be written as a pro-
duct of the integrated cross section (which carries
the energy dependence) and a normalized angular
distribution g (8} such that

W(R) =E-(R) --,' i r(R),
where

E (R) —= Re W(R ) .

(3.1)

(3.2)

E (R)=E (Ro)+D ill —exp[ (R R, )/a ]]

and the function I'(R) by

(3.3)

The function E (R}was represented by the Morse
potential

(
do, l'Ss t &res g( 8)dn )

(2.66} }k(R) v.[k(R)p]' k(R, ) v, [k(R,)p]
(3.4)

with

g(8) = PA~ P~ (cos8) .1
lT p

In the case of the 'II~ resonance in N„ l „=2,
m(+) = +1, and the normalized angular distribution
takes the explicit form

Equation (3.4) is the expression used by Blatt and
Weisskopf" to represent the decay rate through a
centrifugal barrier.

The quantities Ro, E (Ro), D, I'(R,), a, and p
are adjustable param:ters. The meaning of the
first four is illustrat, ed in Fig. 1. To see the sig-
nificance of a, expand E (R) in powers of (R —Ro):

E (R) =E (Ro)+ ~ M(a )'(R Ro)'+ ' '. (3.5-}

g(8) = (I/4~) h5 (1 —3 cos'8+ '
—,
' eos'8) . (2.67) The coefficient of the quadratic term contains
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E (R) (=-N2 potential)
I

I'(Ro)
e

e

0

E (R) = E (RQ)

+2' (R-Ro) + ..

E(R) (-
=N2potential }

E{R}= E(Ro}
j 2 2&+-M~ (R-Ro)+....

fea

~DR~
t l

Ro Ro
Nuclear R
separofion

e
e e

ee 0
0

——,I- ——-&&—— E {Ro)

---~f.---—--"-E{Ro)

FIG. 1. Meaning of the
adjustable parameters
listed in Sec. IIIA.

~ =-(I/s )(2D /MP"- (3 6)

in the absence of autoionization (i.e. , if I" were
zero), I'~ would be the vibrational spacing in

N, . M is the reduced mass of the nuclei. The pa-
rameter p is the radius, measured from the mass
center of the molecule, beyond which we regard
the extra electron as free. Beyond p, the extra
electron feels only the centrifugal potential, but
no potential from the molecule.

The wave number k(R), which appears in (3.4),
was calculated from

k(R) = (2m/8')' ' [E (R) E(R)]'~'- (3.7)

where E(R) is the potential curve of the neutral N,
molecule.

Cross sections were calculated by solving (2.30)
for $(R, k, ), using (2.61) for the cross sections in-
tegrated over angles, and (2.66) for the differen-.
tial cross sections. The quantity g, which appears
in (2.30), (2.61), and (2.66), was expressed in
terms of I' by means of (2.25). The boundary con-
dition at R = 0 is $(R= 0, k&)=0, from (2.29), be-
cause the function $,(R, k,.) is finite for all R. The
boundary condition on {as R- ~ depends on the
energy and the value W(R = ~). In e -N, scattering
in the neighborhood of the 'Il shape resonance,
one has E —Be W(~) & 0, so that $ must vanish as
R» 00

~

The calculations were done with an initial choice
of parameters which were physically reasonable.
Small adjustments to the values of parameters

were then made until the calculation fitted the en-
ergy dependence of the differential cross section
for the excitation v = 0- 1 at 90'; the experimental
curve used came from a recent measurement by
Wong. " The absolute magnitude of the experimen-
tal curve was not used in this adjustment.

The initial estimates of the parameters were
made in the following way: For B,E —=E (R,)—
E(R,), where R, and R, are the equilibrium sepa-
rations in N2('ll ) and N, (X'Z~), respectively: 4E
determines the smallest electron energies which
lead to resonance scattering. A glance at the
cross section curve for v= 0-1 shows that 4E

1 8 eV For AR R p' R p AR can be estimated
from neighboring molecul. ar pairs, which differ by
one Yr electron:

~(NO', NO)= 0.09 A, 4R(O;, 0,) = 0.085 A.

Therefore we expect hR(N„N, ) = 0.09 A. For
6(h&u) =-K&u -k(u: in neighboring molecular pairs,
which differ by one ~~ electron, one has

a(k~) (NO', NO) =0.039 eV, &(h~) (0;,0,) =0.037 eV.

Therefore we expect 4(hu&) (N„N, ) =—0.038 eV, or
5& —= 0.26 eV wi.th Ice= 0.293 eV. For D: the dis-
sociation limit of N, should lie about 0.3 eV above
the lowest dissociation limit of N„owing to the
negative electron affinity of the N atom. With"'"
a lowest dissociation limit for N, of 9.76 eV, one
estimates D = 8.4 eV, if one includes a correction
for ~ and for the zero-point vibrational energy
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FIG. 2. {a) Differential cross section for the excitation
v = 0 1 at a scattering angle of 90 . ~"~: Experimental
absolute measurements by Wong et 'Nl; see Ref. 53.

Theoretical, calcula, ted from (2.66), (2.61),
{2.30), (2.25), and (2.28A), with the six parameters
listed in Sec. IIIA and illustrated in Fig. 1, adjusted to
give the best fit to the relative cross sections. The val-
ues of the parameters are given in column 2 of Table I.
The absolute theoretical magnitude is then fixed without

further adjustment of parameters (see Sec. IID). (b)
Differential cross sections v = 0 2 at 90 with the para-
meters in column 2 of Table I.

in N, . For I'(R,): the peaks in the energy depen-
dence of the cross sections in different vibrational
excitation channels v= 0-v' shift from one v' to
another in a systematic way. The "boomerang"
explanation" of this phenomenon suggests that the
average (I') of I"(R) over a vibrational cycle should
be such that the lifetime I'/(I') is of the order of
one vibrational period 2w/&u . This argument leads
to (I') = 0.04 eV. Since I (R) decreases rapidly
from R =R, outwards, because of the increase of
the centrifugal barrier, one expects I'(R,) to be
somewhat larger; I'(Ro)= 0.2 eV is a good first try.

For p. we chose p= 1.5 A, guided by the value
b= 0.03913 1/mol for the Van der Waals coefficient
for N, ; that corresponds to a hard-sphere repul-
sion of two N, molecules at a separation of 3.14 A

between the mass centers.
The initial values of all parameters are collec-

ted in column 1 of Table I. After minor readjust-
ments of the parameters, the fits shown in Figs.
2(a) and 2(b) were obtained for (do/dQ)„o for
v = 0- 1, v = 0- 2. The read justed parameter val-
ues are given in column 2 of Table I. The fits in
Figs. 2(a) and 2(b) compare experimental cross
sections measured in absolute magnitude by Wong
at Yale with our calculated cross sections, which
are absolute too. The relative accuracy of the
measurements in Pigs. 2(a) and 2(b) at different
energies is about +10/~; the scale of the experi-
mental magnitudes has an accuracy of +25%. The
absolute magnitudes of the calculated cross sec-
tions are determined as soon as one has fitted the
relative cross sections (see Sec. IID).

B. Tests of parameters: new channels

The first test of the parameters listed in column
2 of Table I was to calculate the cross sections for
v = 0- 3, 4, 5, 6, 7, 8. For comparison, we used the
measurements made by Ehrhardt and Willmann~

they were made absolute by normalizing the cross
sections for v = 0- 1 and v = 0- 2 with Wong's ex-
perimental measurements in Figs. 2(a) and 2(b).
We assumed that the relative experimental accura-
cy of the different channels was good enough for
this normalization to make all measurements ab-
solute. The experimental results are shown in

Fig. '3, compared with cross sections calculated
with the parameters in column 2 of Table I.

The second test of t he parameters listed in col
umn 2 of Table I was to compare new measure-
ments of (do/dA)» for v= 1-2 with the cross sec-
tions calculated from the parameters determined
in Sec. III/A, without further adjustment. The
comparison is shown in Fig. 4(a). A similar cal-
culation by another method, which attempts to use
only a single adjustable parameter" is also shown

in Fig. 4(b).

C. Test of parameters: total cross section

Measurements of the total cross section by
transmission experiments have been made by Gol-
den, "and more recently by Bonham and Kenner-
ley" [Figs. 5(c), 5(a)]. The total cross section
(=—or) was calculated from the parameters in Sec.
IIIA in accordance with Sec. IIJ by summing equa-
tion (2.57) over all final states. One finds (for v= 0
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FIG. 4. (a) Differential cross sections at 90' for
v =1 2, starting from a vibrationally excited state.

Experiment by Wong et cl; see Ref. 48. "~~:

Present theory, from the set of equations listed in the
caption to Fig. 2(a), with the parameters listed in column
2 of Table I. (b) v=1 2, at 90 . :Experiment,
as in Fig. 4a. macr. : "Hybrid theory, " Ref. 52.

in the initial state i)

v, = g (x, ,=g o,'",+o',". (3.8)

In 0~", we have retained only the vibrationally
elastic component, for which we have used the ab
initio calculation by Chandra and Temkin for the
symmetries Z~, Z„, and II„. Figures 5(a) and 5(c)
show that the two experiments agree with each
other, if one smooths out the oscillations in Gol-
den's measurements below 1.9 eV. The calculated
cross section agrees with the experiments above
2.3 eV, but is about 20% too high below 2 eV. The
resonant and potential contributions to the calcula-
ted vr are shown separately in Fig. 5(b) by dashed
curves.

D. Comparison of parameters

The different sets of parameter values are com-
pared in Table I. The comparison shows (i) The
small magnitude of the readjustments from the
first guesses in column 1 of Table I to the values
giving the best fits, in column 2 of Table I. (ii)
The good agreement between the values from the ab
initio calculation in column 3 of Table I by Krauss
and Mies" with the values for the best fit in column
2. (iii) The agreement between the best fit values
from this (column 2) and the previous calculation
(column 4). The only disagreement here is between
the values of p, where we regard the previous val- .

0
ue (p= 3 A) as excessive. One parameter was quo-
ted incorrectly in Ref. 9: the parameter A quoted
in 53.1 of that paper should have been 0.088 eV,
instead of the quoted value 0.03 eV. The error
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(2.28a), with the parame-
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resonant cross section as
in Eq. (3.8), from Ref. 26.(b): Present calcu-
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Resonant contribution, cal-
culated as in (a). " ~: Non-
resonant contribution, from
Ref. 26. (c) e===: Mea-
surements by Golden, Ref.
15. Present cal-
culation, as in (a).

was pointed'out by the late Professor Fiquet-Fa-
yard. The point did not affect any of the other re-
sults in Ref. 9, because A. was the last number to
be worked out, from Eg. (ll) of that paper.

E. Calculation of cross sections for vibrationally excited N2

molecules

The parameters in Sec. IIIA have been used to
calculate several cross sections for vibrational
transitions. They are shown in Fig. 6 for inelas-
tic, in Fig. 7 for superelastic, and in Fig. 8 for
elastic collisions. [Only the resonant part of the
cross section is shown in Fig. 8; the nonresonant
part may be taken from Fig. 5(b).]

IV. DISCUSSION

The calculated results in Sec. III were derived
from the picture of a bombarding electron trapped

temporarily within the target molecule by a poten-
tial barrier due to the centrifugal potential. 'The

molecular axis was held fixed during the scatter-
ing, and the extra electron regarded as free out-
side a sphere of molecular dimensions, about 3 A
in diameter. The trapped state of the extra elec-
tron is a quasistationary state of the kind intro-
duced by Gamow" 50 years ago, matching onto
outgoing waves outside the barrier, and therefore
possessing a complex energy. (The term "Siegert
state" is also used. ")

The Born-Oppenheimer approximation (Sec. ID)
enters with the assumption that the electronic
Gamow state follows the slow motion of the nuclei
adiabatically in a volume of molecular dimensions.
This assumption reduces the determination of the
nuclear wave function during the collision to the
solution of a single ordinary differential equation
(Sec. IIC); therefore it avoids the expansion in
terms of vibrational target states which the "hy-

TABLE I. Parameter values.

(1)
. Initial
values'

(2)
Present

calculation

(3)
&b initio,
Ref. 10

(4)
Previous fit,

Ref. 9

O

R, (A)

hE=—E (Ro) E(R()) (eV)
m& —= n& —e( ' (eV)
S~ (eV)
D (eV)
1(R,} (eV)
p (&)

a' )
bx

0.09

1.8
0.038

8.4
0.2
1.5

0.0825

1.912
0.049
0.244

11.961
0.54
1.41

0.488
0.0051

0.120

0.053
0.24

13.04
0.80

0.518
0.0046

0.095

1.925
0.049
0.244

11.961
0.57
3.0
0.488
0,0051

Here a =(2D /Mcu ), where M is the reduced mass.
Here x =@co-/4D .
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p o v= (Fig. 3). Yet another test is the
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, w ic as beenwi hout vibrational excitation which h

given in another paper. " Therefore the present
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curves is more than just a new description of
known results: it enables one to use parameters
determined from a small fraction of the experi-
mental data to calculate many others, and obtain
agreement with experiment.

The rotation of the axis has been ignored in this
paper. The theory may be applied to rotational ex-
citation by the rotational-impulse approximation,
as has recently been done by Wong and Dube. "
Their work shows that the boomerang resonance
responsible for the vibrational excitation also
gives some rotational excitation with changes
6J= 0, a2, or +4 in the angular momentum of the
target molecule. Literature citations are given in
Ref. 5.

Confrontation of experiment and ab initio theory
in the present paper has been made by comparing
the N, potential curve we need to fit experiment
in Sec. III with an ab initio calculation from Ref.
10. This procedure has the advantage that we can
make very small adjustments in the potential
curve, which have little effect on its shape, but
which are crucial if the nodal structure of the nu-
clear wave function is to be reproduced with suf-
ficient accuracy to agree with experiment. It is
this freedom to make small adjustments in the po-
tential curves which enables us to get the agree-
ment shown in Sec. III.
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APPENDIX

Some changes in notation between Ref. 9 and the
present paper have been made to simplify the anal-
ysis. The most important differences are: (i) A
difference of a minus sign between the definitions
of r' in (A8) of Ref. 9 and (2.11) of the present pa-
per. (ii) A normalization factor (2m) '~' in (A2)
and (A16) of Ref. 9 has been dropped from the
plane-wave states of initial and final electrons, as
defined in Sec. IIA in this paper. (iii) A factor
(4m)'~ ' in (A13) and (A14) of Ref. 9 has been
dropped from the corresponding equations (2.24a)
and (2.29) of this paper. As a consequence of
these changes, the expression for v,".

z in (2.61) of
this paper differs from Eq. (8) of Ref. 9 by a fac-
tor

[(2z)~& 2]4 [(4z)~&2]4- 1064~8

Thus in place of the factor 128m' in Eq. (8) of Ref.
9 one finds the factor

128m'/1064m' = I/8w'

in Eq. (2.61) of this paper.
The factors (4m)'~' and (2m)'~' mentioned in

points (ii) and (iii) above account also for the dif-
ferent numerical factors in Eq. (14) of Ref. 9 and
(2.23) and (2.24a) of this paper.
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