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Inverse bremsstrahlung is one of the important mechanisms for heating plasmas with lasers. In the i@tense

fields required for laser fusion, processes involving multiphoton effects are very important. This paper

reviews and compares the different approaches used to quantify the effect of intense fields on the inverse-

bremsstrahlung absorption rate. The quantum-mechanical treatment of this problem requires summation of
the contribution of large numbers of photons. Numerical problems associated with this summation have

made direct evaluation difficult. In this paper the authors describe a method, applicable to many potentials

of interest, for transforming the sum over a large number of complicated terms into a rapidly converging

sum. Numerical results for both classical and quantum treatments are presented and compared, and the

errors introduced by several approximations are quantified.

I. INTRODUCTION

Inverse bremsstrahlung is one of the important
mechanisms for transferring energy from laser
light to matter. In the very intense field used in
the laser fusion-program, processes involving
multiphoton absorption and emission are very im-
portant. ' ' There have been a number of different
formalisms suggested for treating inverse brems-
strahlung in intense fields' "and a few numerical
calculations. " There are some errors in the nu-
merical calculations in the literature and there has
been no systematic comparisons of the numerical
results of the different formulations. In this paper,
we review the present status of the theory and pre-
sent numerical comparisons which show clearly
the magnitude of the errors due to some of the ap-
proximations.

The main difficulty with the more elaborate the-
ories is that, at high intensities, large numbers
of photons must be included. The numerical prob-
lem associated with summing the contributions
from many photons make the direct evaluation dif-
ficult. For the pure Coulomb potential it is possi-
ble to do enough of the problem analytically to
avoid the numerical cancellations that occur, but
those same methods will not work if shielding ef-
fects are included or if the plasma is only partial-
ly ionized. In the work discussed here we have
sueeeeded in transforming the sum over a large
number of intractable terms into a relatively rap-
idly converging sum.

The previous analytical works have made a num-
ber of approximations, and it is important that
these be identified and their reliability assessed
since some approximations will have to be made
when more exact calculations, which go beyond the
Born approximation and which include the effects
of the atomic electrons on bremsstrahlung absorp-
tion, are done.

The intense-field bremsstrahlung problem has
been addressed using two somewhat different ap-
proaches. The approach used here has two steps:
(i) The cross section for absorption or emission
of bremsstrahlung by an electron in an external
field is calculated. (ii) The rate at which energy is
absorbed by electrons with a specified energy dis-
tribution is calculated.

The assumptions or approximations we make for
obtaining the cross sections are (a) the electrons
interact with infinitely heavy ions via a static,
shielded, Coulomb potential; (b) the laser field is
treated as a classical plane electromagnetic wave;
and (c) the Born approximation is used for the scat-
tering of electrons from ions. The appropriate
generalization of plane waves is the exact relativ-
istic wave functions for an electron in a classical
plane electromagnetic wave.

The cross section for these approximations is
calculated exactly. Several other approximate
forms for the cross section such as nonrelativistic,
classical nonrelativistic, and classical relativistic
are also derived. The approximate forms are use-
ful in numerical computation of the energy absorp-
tion rate.

In our approach, to obtain analytic or numerical
values for the energy absorption rate, we must
specify an electron distribution function. We de-
rive the expression for the energy absorption rate
using the various approximate forms of the cross
section obtained above by assuming that the elec-
trons have a Maxwellian distribution in their can-
onical momenta (the random part of their veloci-
ties).

The numerical results for the correction factor
for the bremsstrahlung absorption rate, calculated
according to these assumptions, are presented in
Sec. V. The range of applicability of these assump-
tions will be discussed in See. VI. There we also
describe methods which allow the assumptions to
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be relaxed or eliminated.
The other approach' ' "to the calculation of the

bremsstrahlung absorption rate involves solving
the Boltzmann equation or some approximation to
it for the plasma in the presence of the laser beam.
Using the distribution function thus obtained, the
current J and electric field E are calculated. The
rate at which the plasma gains energy from the
laser beam is given by the average over a laser
period of J E. The assumptions involved in this
treatment concern the specification of the collision
term in the Boltzmann equation and the approxima-
tions used to obtain a solution. In Sec. VI we dis-
cuss the relationship between the energy absorp-
tion rate obtained using this method and various
different approximations and the rate obtained ac-
cording to our prescription. We show that quali-
tatively and quantitatively there is little difference
in the results obtained via these different ap-
proaches for the range of physical parameters of
interest.

For simplicity and brevity we will limit our cal-
culations to wavelengths of 1 or 10 p, , intensities
from 1.5x10" to 5x10"W/cm', and electron tem-
peratures between 100 eV and 10 keV.

Section II contains the derivation of the brems-
strahlung cross section and various approximate
forms useful in the numerical calculations. Sec-
tion III contains the derivation of the expression
for the energy absorption rate for a general dis-
tribution function and special forms for various
approximations to the cross section. Section IV
contains a discussion of the alternative methods of
derivation of the energy absorption rate. Section
V presents the numerical results and comparison
among the different expressions. Section Vl pre-
sents a discussion of the validity of the assump-
tions and methods to relax the approximations.

II. CROSS SECTION AND TRANSITION RATES

We use unrationalized CGS units throughout with

m, =@=c=1. We use the conventions of Ref. 19.
The inner product of two four-vectors A and B is
represented by A B=AOBO A B. We work in the
gauge where k A=k A=O.

In this section we calculate the cross section and
transition rate in the Born approximation for elec-
tron scattering in a static Coulomb field in the
presence of an intense laser field. First, we solve
the exact relativistic wave equation for a scalar
(spinless} particle of mass equal to the electron
mass in a classical electromagnetic field. Since
we are interested in laser beams of high intensity,
treating the laser field as a classical external field
is a good approximation. "The purpose of using
the relativistic wave equation is to obtain a form

The Klein-Gordon equation for a spinless particle
having the mass of the electron in a classical elec-
tromagnetic fields (describing the laser field) and
a static potential describing the electron Coulomb
interactions is

-eA +V (2.1)

For a static Coulomb field, V„=(V,0, 0, 0), with V
given in Eq. (2.9). For this work, we treat V in the
Born approximation. The exact solution to Eq.
(2.1) with V=O and

A„=(O, A), A(r, t) =A(et —k r}

is given by

(2.2)

where

e-fP & efgP
2v g(2E )

f T

(2eA ~ p-e'A A)dT,
P 0

(2.3)

(2.4)

with

For a linearly polarized plane wave with
A =basin(k x), Q is given by

Q~ =(1/2p k)( 2eae pco-s(k ~ x~) ,'e'a'——
x[k . x-—,

' sin(2k ~ x)]) . (2.5)

B. Scattering amplitude and cross section

The scattering amplitude for scattering from a
state labeled by p, to one labeled by p, is given by"

for the cross section which allows us to assess the
validity of using the dipole approximation for the
laser potential in the calculation of the cross sec-
tion. Since the Dirac equation in second-order
form differs only by a spin term from the Klein-
Gordon equation, it is simpler and adequate for our
purposes to consider a scalar wave equation. If it
were necessary, the formalism developed below
could be extended to the Dirac equation. '4 Second,
the relativistic wave functions are used to obtain
the Born approximation expressions for the tran-
sition rates and cross sections in an intense field.
Using these expressions, we can obtain the non-
relativistic limit for the transition rates. Finally,
the classical transition rates are derived for non-
relativistic and relativistic kinematics.

A. Electron wave function
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M(p, , p )~(E, -E -~)
=(kv)' fd yil'v(y)(-kiy(y) )kv (y). (k())

The transition rate from state p, to state p2 in the
interval d'p, is then

dIt(p„p, ) = ",' d'p, 5(E, E, m).IM(p„p, )l' .
(2.V)

Equations (2.1)—(2.6) lead to the formula

M(p„p, ) 6(E, -E,-~)
Ze dys' ' ' " ass i dv —

k
(cask y —v —

) siskk y I
4 &F-F)~e"" ~ ~ P2 ~ Pl - ~ ~ ~

4gqElE2 & P2
~ Q P, ~ Q ) 8P2 k 8P, k

~
~ ~

~ ~

~
~

Ek+E2 Wv(k) E' p2 7' p& . Pco 1 1x — + sink' ' p — + cos2$ ' gPl P2 Pl P2
(2.8)

V(r) =eZe ('"/4-mr (2.8)

v =e'a'.

Restoring units for the moment we have

(2.10)

where we have taken the Coulomb (shielded) poten-
tial

The electron within the field A gains momentum
from the field. p is the average value of the elec-
tron momentum in the field. Discussion of the or-
igin of the momentum shift and its consequences
can be found in Refs. 4 and 6.

To proceed further, we use the generating func-
tion for the Bessel functions, "

v = r,E'X'/4v'm, c', exp
2

t- —= g t~J~(Z)
aa

(2.12)

where E is the (peak) local electric field and X is
the laser wavelength. For a traveling wave, E is
related to the intensity I by E' =8mI/u, where v

is the group velocity. In that case

v = (2r, X'/~ m, c')(I/v, ) .

to expand the sin and cos in the exponential of Eq.
(2.8). Integrating over y, [in Eq. (2.8)] produces
an energy-conserving 6 function while integrating
over y produces the Fourier transform of the
shielded Coulomb potential.

The variable v is four times the electron jitter
energy divided by the rest energy. The jitter en-
ergy is the average value of the energy of the elec-
tron caused only by the laser field. The momentum

p in Eq. (2.8) is given by

M(p„p, ) 5(E, E, ~)-
= g M'(P„P, ) &(E, -E, —I~),

l =-~
(2.13)

p„=p„+[t/4(p k)]u„. (2.11) where

M'(p„p, )

with

(2.14)

g (-1) z„(v,) J, ,„(v,) — „+ i[@, ,„,(v, )+z. ..„(v,)]

Pl P2

y =dc(y
'' y '') (2.15)

v
(2.16)

Qi =pk —p2 —Ik. (2.1V)
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The rate of transition from state p, to state p, in the interval d'p, is given by

dR(p, ,p, )= Q dR'(p„p, )
g =-oo

and

(2.18)

dR'(p, , p, ) =
~

—,' 2 2,d p, b(E2-E, —ltd)
4Z'r',

«1&2 Ql+ ~

V V(d 6' P1 6' P2
l -2pp 1( 1) l - 2pp+ 1(~1))P1' k P2' k

VM
+ 16 . &

+ .f [~1 -2.-2(l 1) + ~1 -2.+2(~1)1
Pl ' P2

(2.19)

where r, is the classical radius of the electron.
The cross section for absorption (l (0) or emis-

sion (l )0) of l photons is then

«' =(&1/p. ) dR'(p. p.). (2.20)

«(Q'+tl')' ' P, '

where

(2.21)

C. Nonrelativistic limit

The formula that is usua11y quoted in the liter-
ature" comes from solving the Schrodinger equa-
tion in an oscillating, spatially uniform electric
field. Other derivations of the scattering cross
section can be found in Ref. 7. This result may be
obtained from Eq. (2.19) by taking V2-0 and ne-
glecting terms of O(v/c). To this order the cross
section with absorption or emission of E photons is
given by

Physically if the absorbed and emitted photons are
soft, they have little effect on the orbit or scatter-
ing of a particle. Experimental confirmation of the
results (2.21) and (2.27) can be found in Ref. 2.

The nonrelativistic limit for the transition amp-
litude can be obtained directly from (2.8) by drop-
ping the term proportional to v in the exponential,
replacing p by p, p. k by nz, or, and neglecting terms
of the order v/c. The V2 terms in Eq. (2.8) rep-
resent the leading relativistic corrections. Note
that in taking the limit of a spatially uniform field,
one must be careful to take the limit in the transi-
tion amplitude [i.e., in Eq. (2.8) replace sin2k y by
sin2&ot j and not the wave function. Taking the lim-
it in the wave function results in the loss of the
leading relativistic correction. This correction
only matters for longer wavelength lasers such as
CO, lasers at forseeable intensities. The nonrela-
tivistic expression for the wave function, obtained
froin Elis. (2.2) and (2.4), is

Q=P1-P2 p

X = WV(Q. t.)/10.

(2.22)

(2.23)

(2.24)

exp i p x —
2

t+ie A pdt'~
2 2w"'

and for the linearly polarized wave (2.5) the wave
function is

The total differential cross section is

do' ~ dQ'

dQ, ~ dQ

The Bessel functions satisfy a sum rule

(2.28)

(2.26)

do' do' do'
(elastic, zero field) .

oo

(2.27)

which is applicable here if we realize that for mod-
erate values of / and velocities of interest, the
quantities of interest depend only weakly on l. This
leads to a sum rule

1 ip't ieaZ pexp i p. x — — xoxtxt) .
2

D. Classical calculations of cross section

A simple classical treatment may be used to ob-
tain an approximate form for the cross section.
The basis of the classical approximation, as de-
scribed in Ref. 7, is that the scattering time is
small compared to the period of the laser light.
The real value of the classical approximation is
that it can easily be extended to the relativistic
case. For the relativistic case, calculations using
the full formula (2.19) are slowly convergent and
quite time consuming. The magnitude of the cor-
rection for the relativistic case can easily be esti-
mated using the classical approximation. Further-
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more, as we will discuss in Sec. VI, the classical
approximation is expected to be excellent in the
region where relativistic effects would be impor-
tant.

The idea of the classical or instantaneous ap-
proximation is that electron-ion scattering takes
place instantaneously and elastically according to
the ordinary Coulomb cross section. Furthermore,
the instantaneous energy is conserved in the col-
lision. When this process is rewritten in terms of
the canonical momenta, there is an effective en-
ergy transfer caused by the laser field. If v(t) is
the instantaneous electron velocity, we can write

b,E(dR)„,
i
=(E, E,)-Q dR'„,

l
(3.2)

and dR,'„ is given in Eq. (2.19). For the nonrela-
tivistic case, ~ dR is given by

LE(dR)N, =(E, —E,) Q dRNR, (3.3)

where ¹ and N, are the number densities of ions
arid electrons.

For convenience we collect the various forms of
b,E dR(p, ,p, ) here. For the general relativistic
case, b EdR( p, , p, ) is given by

v,(t) =p, -ea cosset,

v,(t) =p, -ea cosset .
(2.28)

x= Wv(Q. Z)/a).

'q2 + ~2i2 g (3.4)

(3.5)
The momenta p,- are constants in the absence of
collision. If the time of a collision is short such
that ~t does not change appreciably, then the con-
servation of energy

For the nonrelativistic classical case, 4EdB l. s
given by

(b EdR)'„'„

2vy= 2Vq
1 2 1 2 (2.29)

leads to an effective energy transfer —,(p', —p', ) given
by

0

(3.6)

6E —= )NR
= WVQ. 7 cosQ, (2.30)

III. ENERGY ABSORPTION RATE

A. General results

The quantity of primary interest is TV, the rate
per unit volume at which the electrons absorb en-
ergy from the laser. If we define f(p, E) as the
electron distribution function normalized such that

ff (p, E) d'p = 1 and dR(p, , p, ) as the transition
rate per electron, per ion from state p, to state p,
in the interval d'p, with energy change ~, then
8' is given by

where o. = &t, the phase of the electromagnetic
wave at time of scattering. Since the energy trans-
fer depends on the phase o., it is necessary to
average over 0. to obtain the energy absorption
rate.

This approximation is easily extended to the
relativistic case with the result

4 = (WvQ ~ Z cosn ——', v Q k cos'o, )/(1+ —,
'

v cos'n) .
(2.31)

I This calculation assumes that the electron is non-
relativistic in its canonical momentum (i.e., p«1),
but that the jitter velocity (ea = v v ) can be near
unity. ]

where

$NR= v v Q e cosa (3.7)

and for the relativistic classical case, $NR is re-
placed in Eqs. (3.6) and (3.V) by $a, where

WvQ. e coso. ——,
'

vQ e cos'o
1+ 2 vcos Q

(3.8)

Equation (3.8) assumes that the electron canonical
momentum p is nonrelativistic but that the jitter
velocity (ea = Wv) is near unity and thus relativis-
tic.

f(E) = exp(-E/T)/(2vT)"',

E =-I'.
We define new variables

(3.9)

(3.10)

B. Absorption rate for Maxwellian distribution,
shielded Coulomb potential, and nonrelativistic

cross-section approximation

We have found that it is extremely time consum-
ing (and probably not necessary) to evaluate W
using the fully relativistic formula (2.19). Thus
we will evaluate W nonrelativistically and in Sec.
VI discuss the relativistic corrections.

Here we evaluate R' assuming that the electron
distribution function f (p, E) is Maxwellian in the
electron canonical momentum (the random part of
the electron momentum). Thus

&&aE dR(p„p, ), (3.1)

~ =&g &e d'Pi d'P2»E~ — P»&~+~ p= '(p +p.), -
@ =Pi-P'

(3.11)

(3.12)
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With these definitions and using Eqs. (3.1), (3.2),
and (3.4} several of the integrals can be done,
which yields

16m'N. N wZ t'
(2xT)"2

There are two steps involved; first we use

1
J', (y) = — J,(2y sing} cos2lg dg

0

and then use

(3.1V)

X g i sinh I Qdp

x dx exp—

J2 v 2+@2 2
~

2

8T

(3.13)

g g(.) = QG(.}, (3.18)

where g and Q are Fourier transforms of each
other. In this case,

g(l ) = l sinh cos2itli exp — 2T,col 4)l

~el

The weak-field or "standard" result for the ener-
gy absorption rate can be obtained from Eq. (3.13)
as the leading term in v. This term is obtained by
keeping only the 1 =1 term in Eq. (3.13) and using
the small argument expansion of Z, (x); i.e., J,(x)
~ x/2. Thus

v sinh((o/2T)
std 2 Q i 2 (2xT)2i'2 pp/2T

Q' dQ exp — —
i (Q + p )2T 8Tj

(s.14)

The standard result usually found in the liter-
ature' is obtained from Eq. (3.14) by neglecting
shielding (letting p, 0). We shall briefly discuss
the validity of that result in Sec. VI. Letting p, 0,
we have

No shield
std

w sinh((o/2T)' (2nT)'~' '&u/2T P 2T

(3.15)
Although Eq. (3.13) is a relatively simple expres-

sion, for the parameters of interest, it is nec-
essary to consider terms in the sum for l ~1000.
To avoid this problem, we proceed to evaluate the
l sum. To accomplish this, we show that

Q l sinh J Jv e '

dgJ', 2' sing I

Qx
1T p (g j

X dl 8"'el Sinh e-&~ria~ 12T1 COl 2

2g -. 2T
(s.18)

2 j7f nfG(22) = e" "'g(l) dl .
(3.19)

(3.20)

Define

1 )2 2 2Q2T
S(q) = —

~

(2T)"' exp —,+
8 ij~v + ) ~' ST

2 2

x —cos —4g sin
T

Then G(n) + G(-n) =S(g+ vn) +S(g —vn) and

(3.21)

d S +nm +S -nw +8
0 n=1

S d =2 S d (3.22)

Thus Eq. (3.13) becomes

dxJp(2px) =Q, , ( 1)"

p = (v v/(o) Q sing. (3.24)

To evaluate W we still have to do two integrals
and one sum, but there are no Bessel functions
and the sum converges much faster than the sum
over Bessel functions (3.13). This expression is

218vZ r,N, N~u) (, 2),
(2xT) ~, 'p ST

d J'0 2 v sin S

(3.23)

We now use the expansion for Jp(2') from Ref 20.
to obtain

4TZr'N N)
" d " T

2 (-1)" vQ'sin'g&"~ 2n+1 (nt)' (s.25)
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For a general potential, the integrals would have
to be done numerically; however, for a Coulomb
potential, we can do one more (the Q) integra. l
analytically.

If we define

trons have a Maxwellian distribution in the canoni-
cal momentum, is obtained using Eqs. (3.6)-(3.8).
Thus

NR 11
Pl P2 (2~T)3/2

Be' =/+iso/2T, tang = /11/2T(,

I„=q [((d/B) tang]" "/' r(n + -2')

x[tang cos(n+ 2) 8- 2 sin(n+ —,') 8] .
Defining

(3.26)

(3.27) where

(NR= WvQ. e coso, .
A(g) =2 g . 2 2 sin'(

~
I„, (3.28)

1

then
4TZ»~ ~pr 8 8 s

7T 0
(3.29)

In this form it is easy to evaluate the expression
numerically. The "standard" expression is the
term in Eq. (3.28) which is proportional to v.
Thus the correction P„„to the standard expres-
sion is the ratio of the sum to the first term in
the sum. In the form (3.28) the expression ap-
pears to be a function of both v and v/T. For
practical purposes, the correction factor is es-
sentially a function of only v/T. This fact is dem-
onstrated in Figs. 1 and 2. The parameter v/T is
proportional to the ratio of the electron jitter en-
ergy to its thermal energy.

One can obtain a slightly different form by ex-
panding the Bessel function in Eq. (3.13) [and us-
ing (3.17)] in powers of its argument. This is the
procedure adapted in Ref. 15. For the Coulomb
potential this leads to

Defining the same variables as before [Eqs. (3.11)
and (3.12}], we find that several integrals can be
done, which yields

16Z'r'. N, ¹

Q2/ag eo

( 2p T)1/2 Q 0 (q2 + 2)2

x singdge ~ /2@'r
$ sinh

2T
' (3.3.1)

If we approximate

sinh"nh2T -
2T (3.32)

then the integral over Q separates from the others.
Note that for the classical approximation the inte-
gral over momentum transfer requires a shielding
factor for convergence. For the analogous quan-
tum-mechanical case [see Eq. (3.14)], the integral
is finite without the shielding factor.

The high-field correction factor, defined as

W/v
lim„, (W/v) ' (3.33}

is given by
16K,N,- Z x,

(27/T)'/

w n ( 1)3+1 (2+)~
2m+1 n! n! (n+l)l (n —l)!

da dg g cos e exp—
1T p -l

(3.34)

v l !" ~l . &dlx
( K„, sinh

24) j 2T

Unfortunately, the modified Bessel functions are
all singular for small values of their agrument
and large cancellations take place. It is possible
to exhibit this cancellation for the Coulomb poten-
tial, but it will probably prove quite difficult for
other potentials. The loss of accuracy is such that
it is not possible to directly evaluate the expres-
sion.

C. Energy absorption rate for Maxwellian

distribution and classical nonrelativistic
cross-section approximation

The energy absorption rate for the classical non-
relativistic approximation, assuming that the elec-

This correction factor is obviously a function of
v/T.

D. Energy absorption rate for Maxwellian distribution and

classical relativistic cross-section approximation

The energy absorption rate for the classical
relativistic approximation, assuming that the
electrons have a Maxwellian distribution in the
canonical momentum, is obtained using Eqs. (3.8),
(3.9), and (3.13). Defining the same variables as
before [Eqs. (3.11) and (3.12)], we find that sev-
eral integrals can be done, yielding

(2vT)"2, (Q'+ p,')', 1/

x dp exp — 2 — 4sinh a . (3.35)
0
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If we approximate

sinh"nh2T -
2T

the relativistic correction factor can be written as

E,",,
= 3, d d d p — & I2~I

Bt
=rfo ~

Taking

ya=-
v3

(4.4)

(4.6)

where

cosn[y ——', s( v cosn(1-y') sing]
1+ ~ vcos &

(3.37}

(3.38)

the correction factor, for linear polarization, de-
fined in Eq. (3.33) is identical to the result in Eq.
(3.34). The published curve' is for circular polar-
ization and is not the same as that obtained from
Eq. (3.34), which is for linear polarization.

8. Kidder approach

In Kidder's approach, ' the electric field used in
the Boltzmann equation and in the calculation of
J E is taken to be the laser field. Furthermore,
the collision integral is approximated by an effec-
tive collision frequency. Thus the Boltzmann equa-
tion to be solved is

Bf e& laser ' &rrf
Bt m

(4.1)

where y is the standard Coulomb momentum trans-
fer collision frequency, and the energy absorption
rate is

W=Ne d'v v v A„„, (4.2)

where the angular brackets indicate average over
a laser period. To lowest order in y, the dis-
tribution function is Maxwellian in the canonical
momentum, i.e.,

f,(v) = exp [-(v eA}'/2T] /(2m')—"' (4.3)

IV. PLASMA CALCULATIONS

A. Introduction

The other method used to derive the correction
factor is a plasma-physics approach. ' '' There
is also extensive literature regarding this ap-
proach. The plasma approach has two major steps.
First, the Boltzmann equation (or some approxima-
tion to it) for the electron distribution function in
the laser fieM is solved simultaneously with Max-
well's equations which determine the net electro-
magnetic fields. The rate at which plasma elec-
trons gain energy from the laser is then given by
th4 average of Z. Z, over a laser period. Here J' is
the net electron current and E the net electric
field. The approximations involved in this ap-
proach are related to the specification of the col-
lision term in the Boltzmann equation and to the
approximation used to solve it. Below we discuss
two representative solutions and their relationship
to our results.

C. Damson-Oberman approach

In the model of Dawson and Oberman, the elec-
trons are scattered by infinitely heavy ions. The
equations solved in this approach are

Bf Bf e Bf
laser

+v ——(E —Vrt)) ~ =0
Bv

(4.6)

and

v ' e = err, J rr 'sf ( v ) —.as F s (r —r ) . (4 'f)

Equations (4.6) and (4."I) are solved by linearizing
f about a Maxwellian distribution in the electron
canonical momentum; i.e. ,

f =f,(v-eA)+f, . (4.8)

Solving for,f in this approximation and calculating

8'=eN, d'v v vE„„, -V (4.9)

V. NUMERICAL RESULTS

We have evaluated the previous expressions for
ranges of parameters of interest. Where there is
any significant deviation between the numerical
results from different formulas we have displayed
the deviation in a graph. The numerical results
were obtained for two wavelengths, A. =1 p and
X=10 p. ; intensities from 1.5x10'~ to 5x10"

one obtains a result for W that is essentially the
sa, me as Eq. (3.13). The results differ only in the
representation of the shielding and the necessity of
introducing a high-velocity cutoff. The Dawson-
Oberman results include both electron and ion
shielding while the results quoted in Sec. III in-
clude only electron shielding. The representation
of the shielding will affect the value of the cross
section, but the strong-field correction factor is
relatively insensitive to it. Thus the Dawson-
Oberman approach gives numerical results for the
strong-field correction factor essentially the same
as Eq. (3.13).
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FIG. l. Intense-field correction factor E for the inverse-bremsstrahlung absorption rate as a function of v/T (v/T
is 2 (v~, )~vth) for two values of the electron temperature. Wavelength equals l.

W/cm', and temperatures from 100 eV to 2 keV.
Our conclusions based on the numerical results
are summarized below.

A. Summary

(a) For practical purposes the standard' or low-
field bremsstrahlung absorption rate should be
multiplied by a numerical correction factor. This
factor is plotted in Fig. 1.

Note: The calculations performed by Brysk
result in a correction factor j' presented as a func-
tion of the variable x (see Fig. 1 of Ref. 15). These
results agree with ours if x is identified with v/2T.
According to Brysk's definition (see discussion on
pp. 1260 and 1262),

0 14
I X T

3&&10"W/cm' 1p. 1 keV

or

x = v/8T.

This disagrees with our relation by a factor of 4.
This error can be traced to the work of Osborne. "
Brysk makes use of Osborne's results. Osborne's
Eqs. (15) and (16) are in error (see Refs. 7 and 2),
and the argument of the Bessel function in Os-
borne's Eqs. (15) and (16) should be 2Wti x instead
of Wii x. Thus Osborne's results and hence Brysk's
numerical results apply to an intensity of 4 of that
quoted by Brysk. Use of Brysk's results will un-
derestimate the effect of intese fields on brems-
strahlung absorption.

(b) The correction factor is quite significant in
the lower-temperature range at moderate intensi-

ties (1.5&&10's W/cm2). For the higher intensities
of some recent experiments (1.5&&10"), absorp-
tion is reduced by a factor of 2 even at a temper-
ature of 2 keV, (see Fig. 2).

(c) The correction factor is, in principle, a func-
tion of two variables v/T and T. For all practical
purposes, at A, =1-10 p. the correction factor de-
pends only on the variable v/T (This ap.proxima-
tion has not yet been verified for shorter wave-
lengths and should be checked before it is used
for X&1@.) The variable v/T is proportional to
the ratio of the electron jitter energy to its therm-
al energy. That is, v/T is given by

v 2( v,'„)

where (v,'„) is the time average of the electron
oscillation velocity in the laser field and v,'„equals
kT.

The correction factor obtained using' formula
(3.29) is plotted as a function of v/T for two ex-
treme temperatures in Fig. 1. The variable v is
given by

(5.1)

where E is the maximum value of the local electric
field, r, the classical electron radius, m, the elec-
tron mass, X the laser wavelength, and c the vel-
ocity of light. To obtain the correct deposition
rate, the local electric field should be used in Eq.
(5.1) to obtain v. For a traveling wave the electric
field is related to the intensity I by E' =8'�/e~,
where e~ is the group velocity. For a plasma with
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FIG. 2. Comparison of the classical and quantum-mechanical intense-field correction factor E for inverse-brems-
strahlung absorption rate as a function of electron temperature for several laser intensities. Here we have assumed
a traveling wave and co& «co. Wavelength equals 1p, .

vg =c(1 -(o~/(o')"' we have

2.19422, I
/ (1 m*, /m') 3 x10"W/am* \1 )

and

v I I2I2 I A.
2 T

T v' (1 —&u~/v2) 3&& 10"W/cm I 1

(5.2)

(5.3)

where co~ is the plasma frequency; In relating v

to intensity in our calculations, we have taken
Vg =C.

(a) The assumption that the scattering is instan-
taneous compared to the period of the wave (the
classical approximation or the Kidder approach)
which leads to the expression (3.34) gives results
for the correction factor which are accurate to
better than 10%. In Fig. 2 we compare the classi-
cal result (3.34) to the quantum result [(3.29) or
(3.13)] for several values of the intensity. For the
lower intensities the results are indistinguishable.
The fact that the instantaneous approximation is so
good may be significant in trying to incorporate
strong-field effects into the usual corrections to
the bremsstrahlung absorption coefficient (such as
non-Born approximation effects, multiple scatter-
ing, etc.}.

(b) For longer wavelengths (10 y, ) the correction

factor reduces the bremsstrahlung absorption co-
efficient by a large amount. Since the weak-field
result is also substantially smaller for longer
wavelengths, it is likely that inverse-bremsstrah-
lung absorption plays a very minor role in electron
heating at 10-g wavelengths.

(c) Relativistic effects. We evaluated the expres-
sion (3.37) for the correction factor including first-
order relativistic effects. These effects were insig-
nificant for A, =Ip. . For A. =10'., there was a small
effect at the highest intensity of 5x 10"W/cm'.
Roughly, there is no correction until v exceeds
unity. In this range, the inverse bremsstrahlung
absorption coefficient is so small that bremsstrah-
lung processes are probably no longer of interest
for this application.

(d) The dipole approximation [A(x, f }=A(t)],
which is typically used to obtain the nonrelativistic
formula, is a good approximation. Evaluation of
the fully relativistic formula (2.19) indicates that
the validity of the dipole approximation [neglect
of V, terms and neglect of Ik in Eq. (2.17)] is
doubtful for the absorption of many photons. How-
ever, in calculating the energy absorption rate,
the integration region where this approximation
could be in error was strongly suppressed. Thus
the dipole approximation is quite good.

(e) The approximate form for the correction
factor

Z=, (1+ -', (v.'„)/v,'„) .
"'



1944 L. SCHLESSINGER AND J. %81| HT

or

p=(1+ v/6T) "'
which is used by Faeh1. and Roderick' to address
the absorption rate in a standing wave is in agree-
ment with our correction factor (Fig. 1) to within
about 10%.

VI. DISCUSSION OF RESULTS

Our approach to this problem has two major
steps: (i) ca,lculation of the rate (or cross sec-
tion) at which an electron of energy E, makes
transitions to energy E, in the presence of a laser
field and (ii) calculation, using the rate obtained
above, of the rate at which a distribution of elec-
trons absorb energy from the laser beam.

The assumptions we have made for the first step
are as follows:

(a) The laser field can be described as a classi-
cal plane electromagnetic wave.

(b) An electron interacts with a single, infinitely
heavy ion via a static, shielded Coulomb potential.
Ion-ion correlations have been neglected.

(c) The Born approximation is used for the scat-
tering of electrons from the ions.

Assumption (a) is well satisfied in the intense
coherent electromagnetic wave of the laser. 4 As- .

sumption (b) concerns specification of the approp-
riate potential to include in the calculation of the
cross section. A better model than used here
would include the effects of partial ionization and
ion-ion correlations. These effects, for cross
sections at low intensity, are presently being ad-
dressed, and it is expected that they will contrib-
ute significantly to the cross sections. However,
our results suggest that the high-intensity correc-
tion factor may not be sensitive to the form of the
potential whenever the weak-field Coulomb cross
section depends only on the momentum transfer.
In general, the cross section depends on both en-
ergy and momentum transfer. However, the Born
approximation cross section depends only on mo-

mentum transfer. The correction factor obtained
using the instantaneous approximation is a good
approximation to the exact result. Furthermore,
the correction factor obtained using the instantan-
eous approximation is independent of the form of
the potential as long as the Born approximation is
valid or the cross section depends only on momen-
tum transfer. These results suggest that the cor-
rection factor may be relatively insensitive to the
form of the potential.

Assumption (c) concerns the validity of the Born
approximation. There are important regions of
electron temperature for which the Born approxi-
mation is in error by more than 50/q even for the
weak-field case." Within the framework of the in-
stantaneous approximation, Kroll and Watson' have
derived a formalism for the intense-field correc-
tion which can be used for short-range potentials
when the Born approximation is not valid. How-
ever, for pure Coulomb potentials or long-range
potentials, the low-frequency theorem used by
Kroll and Watson is not valid and there are impor-
tant corrections even in the weak-field limit. "
Thus to calculate the intense-field effects in cases
dealing with lorn electron temperature or partially
ionized atom scattering, where the Born approxi-
mation is not valid, new approximation techniques
which specifically include the effects of the long-
range Coulomb potential must be used.

For the second step of the calculation we have
assumed only that the electron distribution func-
tion is Maxwellian in the canonical momenta. If
the electron distribution is a sum of Maxwellians,
a correction factor can be applied for each effec-
tive temperature. If the distribution is noniostrop-
ic, the integral in Eq. (3.10) must be evaluated
with the appropriate distribution functions.
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