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Excitation and deexcitation processes in slow collisions of
. Rydberg atoms with ground-state parent atoms

I
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The excitation and deexcitation processes in slow collisions of highly excited (Rydberg) atoms with ground-
state parent atoms are considered. A mechanism, based on the quasiresonant energy transfer within the
electronic part of the colliding system, is proposed for these processes. Both direct and exchange reaction
channels are included into the treatment. Expressions for the n~n transition probabilities are obtained in
closed form, Probability and cross section calculations for some transitions and level decays in the H*(n)-H
system are presented.

I. INTRODUCTION

The inelastic processes of highly excited (Ryd-
berg) atoms with ground-state neutral particles
(atoms and molecules} have recently received great
attention in connection with their important role in
various nonthermal and nonstationary laboratory
and astrophysical plasmas. ' The study of these
processes has been particularly stimulated in the
last several years by research in the field of laser
isotope separation as well as the development of
the neutral injection method for additional heating
(and refueling) of thermonuclear fusion plasmas
in mirror devices.

Accurate experimental investigations of the in-
elastic collisions between Rydberg atoms and
ground-state neutral particles have become pos-
sible because of the development of several effici-
ent and reliable methods for production and detec-
tion of highly excited atoms in strictly determined
quantum states. The results of the experimental
studies of these collisions have been recently re-
viewed by Stebbings. We note that most of these
data are related to the process of collisional de-
population and ionization of Rydberg atoms.

Most of the theoretical studies of atom (mole-
cule)-Rydberg-atom inelastic collisions generally
follow two main approaches. One of them is based
on Fermi's model, in which the inelastic effects
in the colliding system are described in terms of
the scattering parameters of the weakly bound

(Rydberg) electron on the ground-state atom.
Within this approach the neutral (perturbing) par-
ticle is treated as a short-range (5-function) po-
tential and the Rydberg electron is considered to
be quasifree. '

The other theoretical approach to the inelastic
collision process of Rydberg atoms is based on
the semiclassical approximation. "" The inelas-
tic transition within this approximation results
from the energy and momentum transfer from the

perturbing atom to the Rydberg electron.
One can show that both the Fermi pseudopotential

approach and the semiclassical approximation pro-
vide appreciable cross sections for inelastic pro-
cesses involving a considerable change of Ryd-
berg-electron binding energy only for collision
velocities v which are close to the classical velo-
city v„of the Rydberg electron. ' ' ' However,
for v «v„, neither the Fermi electron scattering
mechanism nor the classical atom-to-Rydberg
electron momentum transfer mechanism can pro-
duce inelastic cross sections which exceed the
cross section for the elastic electron scattering
on the perturbing atom. ' ' (We note however
that for the sublevel mixing processes the Fermi
mechanism provides cross sections of the order
of the geometrical atom-Rydberg-atom cross
s ection. 8' ")

In order to complete the presentation of the exis-
ting methods for calculating inelastic processes in
atom- Rydberg- atom collisions, we should mention
here also the quantum-mechanical two-state close-
coupling calculations of Olson' on the /-mixing
depopulation of Na(n D) by rare-gas atoms and the
calculations of the n-changing processes in the
field of an oscillating dipole' (n and f a.re the prin-
cipal and angular momentum quantum numbers of
the Rydberg electron).

In all of the above-mentioned theoretical methods
for treating the atom (molecule} —Rydberg-atom
inelastic collisions, the interaction of the loosely
bound electron with the perturbing atom (mole-
cule) is considered to be dominant in the system
and responsible for the inelastic transitions. In
the present paper we consider the opposite situa-
tion, in which the dominant interaction in the sys-
tem is that between the perturbing ground-state
atom and the ionic core of the Rydberg atom. This
situation occurs at low collision velocities v «v„
and for impact parameters much smaller than the
characteristic dimension of the Rydberg atom.
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II. QUASIRESONANT INTERNAL ENERGY CONVERSION

MECHANISM FOR INELASTIC PROCESSES IN SLOP(-ATOM-

RYDBERG-ATOM COLLISIONS

In order to demonstrate the main features of the
quasiresonant internal-energy conversion mechan-
ism, let us consider processes of the following
type:

A +(n) +A -A*(n') +A,
-A + A*(n'),

(1)

(2)

where A and A~(n') are the ground state and the
Rydberg atom [in the quantum state n, = (n, l, m)j, —

respectively. For 8' xn channel (1) describes the
direct inelastic processes, whereas channel (2)
describes processes involving an excitation trans-
fer. For n, '=n channels (1) and (2) describe the

Thus during the effective time of the collision the
perturbing atom and the ionic core of the Rydberg
atom may be considered a quasimolecular system
lying inside the orbit of the loosely bound electron.
The Rydberg electron interacts with this quasimo-
lecular ion as with a whole. For such collisions of
Rydberg atoms with neutral particles we propose
a new mechanism of inelastic electron transitions
in the system. This mechanism is based on the
quasiresonant energy exchange within the electron-
ic part of the colliding system, thus providing
large cross sections. Although this mechanism
of internal energy conversion is operative for a
large class of inelastic processes occurring in the
slow collisions of Rydberg atoms with composite
neutral particles, in the present paper we confine
ourselves to the excitation and deexcitation pro-
cesses in symmetrical systems (n-changing colli-
sions). The process of ionization and the inelastic
processes in asymmetrical systems will be con-
sidered elsewhere.

In Sec. II we qualitatively formulate the quasi-
resonant internal energy conversion mechanism
for inelastic processes in slow-atom-Rydberg-
atom collisions. In Sec. III we give a quantum-
mechanical formulation of the problem of excita-
tion and deexcitation processes in symmetrical-
atom-Rydberg-atom systems. In Sec. IV we intro-
duce a "decay approximation" which enables us to
obtain a formal solution of the coupled differential
equations for the problem. In Sec. V expressions
for the transition probabilities are derived in
closed form. Probability and cross-section calcu-
lations for the excitation and deexcitation pro-
cesses in the hydrogenic case are presented in

'

Sec. VI. Finally, in Sec. VII some concluding re-
marks are given.

Atomic units (m, = h =e = 1) will be used through-
out this work, unless otherwise indicated.

elastic scattering and the resonant excitation trans-
fer, respectively. We consider processes (1) and

(2) assuming that n is sufficiently high (n» 1, v„
-1/n«1), so that the energy difference I&a„-„-, I

= l~„-. -cu„-I between any two states with n'cn is
much larger than the sublevel splitting of a given
n level. The binding energy &„- of the Rydberg
electron is assumed to be smaller than the elec-
tron affinity of atom A. This assumption excludes
the possibility that processes (1) and (2) can occur
owing to nonadiabatic ionic-covalent coupling
transitions. We further assume that the collision
time r, -n /v is much longer than the characteris-
tic time r, -ns/

I nn I (bn = n,
' n0—0) for an inelas-

tic transition, i.e. , that the collision has an adi-
abatic character. Under this condition (v « I &n I /n-

I nnl v„), neither the Fermi mechanism nor any
direct energy transfer (from the incident atom to
the Rydberg electron) mechanism can produce
considerable inelastic transition probabilities.
Finally we assume that the collision energy Z is
much larger than the internal energy changes in-
volved in the inelastic process, so that a classical
description of the relative nuclear motion is
allowed.

With the above conditions of the atom-Rydberg-
atom collision, another approach to the inelastic
processes (1) and (2) can be proposed. Owing to
the long collision time, for impact parameters p
«r„(rH-n is-the characteristic dimension of the
Rydberg atom) the perturbing atom A spends a lot
of time deeply within the orbit of the Rydberg elec-
tron, forming with the ionic core A' of the Rydberg
atom a quasimolecular ion A'+A. The Rydberg
electron interacts rvith the subsystem A'+A as
with a whole. Owing to this interaction, any tran-
sition in the subsystem A'+A leading to a change
of its electronic energy will induce an inelastic
transition of the Rydberg electron. This energy ex-
change process within the electronic part of the
atom-Rydberg-atom system can take place in a
resonance manner. In order to simplify mathem-
atical derivations, let us assume that atom A

possesses an s-electron outside a closed shell.
Given that r„-n. » 1 (so that th-e valence electron
of atom A weakly interacts with the Rydberg elec-
tron) and that the collision is slow (v «1/n), the
state of the subsystem A'+A can be described as
a superposition of the first two low-lying states,
Z~ and Z„', of the molecular ion A2. The molecular
states Z, and Z„' are described by the corresponding
adiabatic wave functions 4., and 4'„, respectively.
The energy separation ~(R) =~„(R)—ur, (R) of these
two molecular states is known, ' and it exponen-
tially decreases with increasing R. The condition
for a resonant energy exchange between the Ryd-
berg electron and the inner subsystem A'+A is
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yR„-„-,» 1,
R„- „-,«nin(t + -,')1' "-=(r '&„, ,

IR —p I «p,

(4)

(5)

(6)

where —~y is the binding energy of the inner s
electron and (r )„, is calculated using the hydro-
genlike wave functions.

Condition (5) allows us to use the dipole approxi-
mation in describing the interaction of the Rydberg
electron with the subsystem A'+A. In the reaction
zone (6) for yR» 1 the dipole moment occurring be-
cause of the coupling of the Z, and Z„states of
A, molecular ion can be well represented as —,'R,
and hence has large values. Therefore the induced
Rydberg-electron transitions are expected to be
very intense. Outside the region (6) the Rydberg
electron interacts with atom A, which is weakly
perturbed by the field of ion A'. We assume that
for v «v„ this interaction is weak and that it does
not generate inelastic n- n' transitions with n'
4n.

%e finally note that the conditions yR -yp»1 and
8» I +„-R.l allow us to use a straight-line trajectory
description of the nuclear motion.

given by

cu(R„-„-,) = I ~„—„.I,
where u-„„-.=~„-.—(d„and ~„- is the energy of the
Rydberg state. Owing to the quantum-mechanical
character of the process, transitions occur also
in a narrow region around the resonance at R
= R„-„-,. The transitions (n, g) - (n', u), n' &n corre-
spond to the deexcitation processes, whereas the
transitions (n, u) -(n', g), n' &n correspond to the
excitation processes of the Rydberg atom. (In the
latter case, when n' represents a state in the con-
tinuum, the transition R -e„-.describes an ioniza-
tion process. ) Owing to the exponential behavior
of u(R) and to I~a„-„-,l

=
I hnl/n' being small for n

»1, it follows from condition (3) that the reso-
nance energy exchange within the atom-Rydberg-
atom system occurs at large internuclear dis-
tances R -„„-,» ro, where ~0 is the characteristic
dimension of the neutral atom A. This implies
that in describing the electronic motion of the
quasimolecular subsystem A'+A we can use the
asymptotic methods of atomic collision theory. '

Starting again from Eci. (3) a~d using the exponen-
tial dependence of ~(R), one can see that the re-
gion where the quasiresonance condition is satis-
fied in fairly narrow: IR -R„- „-. I «R-„„-,. Having in
mind this discussion and the general assumption
R —

p «r„, we can define the region of internuclear
distances and impact parameters where the quasi-
resonant energy exchange mechanism is operative
by the following inequalities:

III. QUANTUM-MECHANICAL FORMULATION OF
PROBLEM OF INELASTIC TRANSITIONS

A. General considerations

Let us place the center of mass of the Rydberg
atom A (n) in the origin of a fixed coordinate sys-
tem and take the z axis to be parallel to the vector
v of the collision velocity and the x axis to be per-
pendicular to v (see Fig. 1). Let us associate the
indices a and b with the centers of the Rydberg and
the ground-state atoms respectively and designate
by r& and r2 the position vectors of the Rydberg
(outer) and inner electron, respectively (see Fig.
1). The electronic motion in this system is des-
cribed by the time-dependent Schrodinger equation

i 4(r, ,—r„t) =H+(r, , r„t),at

where the electronic Hamiltonian H parametrically
depends on time through R = p +(vt) and is given
by

H =H) +H2+ V, (6)

IIX

FIG. 1. Geometry of A*(n)+A collision.

At this point we would like to add the following
remark. Although demonstrated on inelastic pro-
cesses within the discrete spectrum, the internal
ene rgy convers ion mechanism may control many
other inelastic processes in an atom (molecule)-
Rydberg-atom system, including ionization and
electron rearrangement processes. The resonance
(or internal energy conservation) condition (3) may
easily be generalized to include transitions involv-
ing changes of the vibrational energy. The restric-
tion to Rydberg levels above the ionic A'+A con-
figuration, made at the beginning of this section,
is also unessential to the mechanism itself. Being
operative in the region when the perturbing atom
is inside the orbit of the Rydberg electron, this
mechanism does not interfere with some other
mechanisms which may cause inelastic electron
transition in an earlier stage of the collision.
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V=1/Irf rgl . 1/I 1& —Rl . (9b)

The potentials U, «(r) describe the interactions
of the inner electron with the corresponding atomic
cores and asymptotically behave as —1/r

I et us divide the trajectory into three parts by
two points: t&')(& 0) and t' (& 0), located on the
time axis symmetrically with respect to the point
t =0.

For f. ~ t' ' the inner electron 2 is dominantly lo-
calized around the atomic core b, and the inter-
action of the Rydberg electron 1 with the atom A
is so weak that no inelastic transitions n- n'(Wn)
can occur. The eventual l transitions within the
same n are disregarded in our treatment, since
we average the transition amplitude for the n-n'
transition over the l, m quantum numbers. One
can expect that this averaging procedure will sig-
nificantly reduce the errors introduced in the
transition amplitude by neglecting the perturbation
in the region t &t' '. The function 4(t& t' ') =—4' ',

which will be determined below, can serve as an
initial condition in solving Eq. (7).

For t ~ t ' the inner electron 2 can be dominantly
localized either around the atomic core b [in reac-
tion (1)] or around the core a [in reaction (2)].
However, analogous to the previous case, we
neglect the perturbations of the Rydberg electron
by the potential of the ground-state atom A. The
function 4'(t ~ t") —=4"describes the system when
all relevant n-n'(cn) transitions are already
finished. The determination of the structure of
the function 4""is the subject of our investigation.

In the region t' '~ t- t", where the inelastic
n-n'(wn) transitions effectively take place and
where condition (6) is fulfilled, we represent the
solution of Eq. (7) in the form

4 =kg+Qg~~ $ p. exp] - t[()&p t —p'g(t) —g'g&)])

+ 4'g Qq. g& ex —2 (dq. t + p'g t + g'g0

where &I/„-(r&) is the wave function of the Rydberg
electron and

t 0 (&0

&l(t) = ~(t)dt, r/, = ~(t)dt = ~(t)dt.
0 ~OO 0

In the asymptotic region yR»1 the function
0', „(rz, R) can be represented in the form'

4g «=2 (p«+9«))' (12)

2 2
ff& ————,'V& —1/r&, H& ————,'V&+ U«(rz)+ U,( Ir& —RI),

(9a)

where V&«»(r&, R) is the wave function of the inner
electron, dominantly localized on the center a(b}
and perturbed by the Coulomb field of the atomic
core b(a). For R -™the functions (/&, «(r&, R) go
over into the unperturbed atomic wave functions

p,' «(r&). We assume that the process of delocali-
zation of the inner electron takes place already
at t =t' ' —5t (5t is a small positive number), so
that the previously defined wave function 4' ' has
the form

y(-& 2-& /2&y (i/2)(&n &(&+ y -( /&2 n&«(()]
Q

where

n (13)

a„'-". "'=2 ' 5„—„., (5—,=—5„„,5„,5,) . (15)

l.et us now turn to the function 4"'=4(t ~ t-
Since at t ~ t" the inner electron is dominantly
localized on either of the atomic centers, we rep-
resent 4' ' in the form

&+& (+&
=+&r&+ +(»& ~

where

(16)

+(r)= 0'~ &n ~ n e (17a)

(+) ~ QB(I&)(t) &t& e ) Mg (t ~ t'(+)
(»&

g(I~ ») 2 i /2[ (g) Hn0 (1/2&hv)
n' ~ia„, e

(g & "f [qo- (1/ 2) d n (+&]g
+Qp, e

(17b)

(18}

where

an"(t)= 5 ~(l&(l, (19)

with I bq' 'I «1 (see Appendix A) and the signs +
and —are associated with the indices I and II,
respectively. As it can be seen from Eq. (17a) the
amplitude B„-',"(t- ~) —=A„-&„'-) for n' en describes the
inelastic processes in reaction (1) and for n' =n
describes the elastic scattering channel.

In the case of the rearrangement channel (2}, the
coefficients B„-","(t -~) cannot be interpreted as
transition amplitudes. The reason is that the func-
tions 0„-,, which appear in 4&', ~» (see Eq. 17b), are
centered on the fixed center a, while in reaction
(2) the Rydberg electron is bound to the moving
center b. In order to determine the transition am-
plitudes in the rearrangement channel (2), one has
to reexpand the function 4&») over an electronic

t
/&.q' (t) = ()/(t)dt, t & t

«(&0

Given that I t&r/' 'I «1 (see Appendix A), the contin-
uity condition for the wave function 4 at t =t' ' gives
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(20)
$mj' m'

For n'=n, P„'„" and P„'„"' are the averaged proba-
bilities for the elastic scattering in channel (1) and
for the resonant excitation transfer, respectively.
One can infer that for n'4 n the probabilities P„'„"'",
within the adiabatic approximation, should be
close to one another. This fact will be proved in
Sec. V.

B. Coupled equations for expansion coefficients

By substituting Eq. (10) into the Schrodinger
equation (7) one gets the following system of
coupled differential equations for the coefficients
a„-'. ' and a-'"'

(s)
i " =g(n', g I V In",g) exp(i&d„-„„-,t)a„-"„'

at

+g (n', g I V I n, ', u)

&& exP[i((u„-„„-,i q(t) —Plp)]a„-'"„', —
(u)

i "' = (n', ul V In", u) exp(iso„-. , „-,t)a„
8$

(21a)

+g (n', u I V In",g)
n"

& exP[i(«i„„t+r&(t) +-„R-,p)]a-„"„', (21b)

basis set in the coordinate system comoving with
the center b, i.e. , over the functions

«, t/i„-, [r& —R(t)] exp(ivr, ) .
The corresponding coefficients A„-'„-'." in such an ex-
pansion, taken at t = t", can be then interpreted
as proper transition amplitudes in channel (2). For
n'=n the amplitude A„-'„-""describes the process of
the resonant excitation transfer. However, under
the conditions for which the quasiresonant energy
exchange mechanism is expected to be efficient,
there is no strict necessity to perform the re-ex-
pansion procedure. Namely one can show that
under the simultaneous fulfillment of the conditions
v «v„and R„-„-,(n [the latter is consistent with
condition (5)], the transfer of the Rydberg electron
to the other center takes place in an adiabatic
manner, i.e. , without change of the principal quan-
tum number. The condition R„-™.= n provides that
the characteristic distance at which the resonant
process dominantly occurs does not exceed the
characteristic distance of the change of the Rydberg
electron wave function.

If the amplitudes Ann' and Ann' for the n-n
transitions in channels (1) and (2) respectively are
known, then one can define the probabilities
P„'„""' for the n-n' transition in the corresponding
channel by the relation

(n
'

I ri R/p'i ln") =$„-,„-„(pC„-'*.„-'" + viC „-"-„'-), (23)

where the geometry of Fig. 1 and expression (9b)
for V have been taken into account. By S„-,„-., and
C„-,„-„ in Eq. (23) we have denoted the radial and
angular parts of the matrix element, respectively.
Note that C„-,„-„provide the fulfillment of the dipole
selection rules: l" =l'+1, C„-',"„'-„10for m" =m'
+1, C„",„'„e0for'm"=m'. Inserting Eqs. (22) and

(23) into Eq. (21) the system of coupled equations
becomes

(Zg ti)

=~ —p(R-, -„(C-,-„+—C, „)e' n n-~ dai' ~ ~ (x) Ut (z) i co-„-, t

/( (I, M) &|I, g) ~&&I« tiII&pi&x an -an™II II I & (24)

with the initial conditions in the form of Eq. (15).
The system of coupled differential equations for

the expansion coefficients a„-'g'"'(t} (where n' may
be also n) completely defines our problem in the
dipole approximation of the interaction potential.
We note that the equations of system (24) are
coupled with respect to the indices (n', n") and

(g, u) . .Our next task is to simplify this system of
coupled equations on the basis of some physical
grounds.

IV. APPROXIMATE SOLUTION OF SYSTEM OF

COUPLED EQUATIONS

The use of the dipole approximation implies that
the matrix elements in Eq. (24) are different from
zero only for those n" which are optically coupled
with n'. On the other hand, within the proposed
mechanism of the process, the strongest coupling
takes place between those (n', n") pairs of states
for which the condition e(t}= I &d„-„R, I is fulfilled.
For different n" levels this condition is satisfied
at different characteristic internuclear distances
R„-,„-„. Keeping in mind the initial condition (i.e. ,
the fact that at the beginning of the collision pro-
cess only the level n is populated) and the above-
mentioned resonant selectivity of the (n', n "}
coupling, as well as the dipole selection rules, it
follows that the main contribution to amplitudes
a„'-g'"' in Eq. (24) comes from the term n" =n,. This
means that during the collision (or effectively for

with the initial conditions in the form of (15). With-
in an accuracy of O(1/yR) one can, using the dipole
approximation, transform the matrix elements of
Eq. (21) into the form

(n', gl V In", g) = (n', u I V In", u) = —,'(n'I r&R/r& In"),
(22a)

(n', g I V In", u) = (n', u I V In",g) =- —,'(n'
I r&R/p'i In"),

(22b)
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(g, u)

x(a„-""'-a„-'"'"exp]Ti[rI(t) + q, ]j), n' 4n, ,

(25a)

x (a-„'f'"' -a„'-",'" exp[+i[(7(t) + q, ]}), (25b)

with the initial conditions (15). The approximation

t' '~ t & t") each of the n' states can be resonantly
coupled either with the initial state n or with states
which are optically not coupled with n (and there-
fore little populated during the collision}. These
arguments show that if the total decay probability
P„of the initial. state is not too large, then the
cascading (or other higher-order) transitions can
be neglected. On the basis of this discussion the
system of equations (24) is reduced to

(g, u)

i = —,pQ. „-, „- C„-,„-+—C„-,„- exp(i(d„-„-,t)
~ +n' 1 (x) V (S)

(25) of the system of coupled equations (24) shall
be referred to as "decay approximation. " Note
that if we neglect the changes of the coefficients
a„-""', which corresponds 4o the first Born approx-
imation, then the system of Eqs. (25) completely
decouples and can be solved exactly. Our aim is
however to go beyond the first Born approximation,
and therefore we shall follow another procedure
in solving Eqs. (25). To proceed along this direc-
tion and to make more explicit the role of the reso-
nant energy exchange mechanism in producing in-
elastic transitions, let us transform the system of
coupled differential equations (25) into the form of
coupled integral equations. Dif ferentiating Eq.
(25a) by part in the interval (t' ', t' ') and taking in-
to account the relation [which follows from Eq.
(25b)]

(g, u) ~ (u, g)~~n d+n +i &r)(t)+g ) (26)df df

we obtain [up to 0(—,'A(7'")]

~«')ig('» —~,e'«p-~~ »» ' g& )~g«»+ n& g)
n' ~% li P Ze

nn P (d nn
(27a}

(g, u)g~(+Q 2..-i /2+ ~ vi(pp-Art + /2) P n'n C(x)~~(g, u)+ &(u, g)q V g(c) g~(g, u) + ~(u, g) q

RAn (dRR P nn

where

(27b)

and

(+)" &&g, u) +&&u~ g) (g, u) (u, g)

2 ' 2 ~ t=t

t (+)
(u, g)

a„'-"'" 1+2i " g'exp i (d„-„-.t +q t dt,
t

0'-, -'"' = 0(~'"'(n' —n, g—u) .

(28)

(29)

fn Eqs. (27} the effects of the (g, n) -(u, n') and

(u, n)-(g, n') transitions are sepa. rated from those
corresponding to the (g, n)-(g, n') and (u, n)
-(u, n') transitions. The latter are included only
in the 0„-"„-'"'terms, and, as will be seen later on,
this term contributes to the resonant excitation
transfer amplitude only. The transitions (g, A)

-(u, n') and (u, n) —(g, n') are included both in
0„'-'„-:"'and P -„'-"„'". However, only the 4 „-'„"-'"term
contributes dominantly to the inelastic amplitudes,
a fact which will be proved later on too. Let us
therefore examine in more detail the structure of
the integrals 8 „'-"„-'". Since co„-„-,=&„-,—uR may be
both positive and negative, two groups of inelastic
(g) =(u) processes are described by Eqs. (27):
(i): (g, n) - (u, n '), (u-„„-.& 0, (u, n) - (g, n'), (d„-R, & 0
and (ii): (g, n)-(u, n'), +RR, &0, (u, n)-(g, n'),

&d„-R. & 0. For these two groups of transitions the
phase y = &@„„,t wq(t) appeari-n-g in 8 „'-'„-,

'"' can be
represented as p«& ——+( I v„-„-, It —(7) and p((()
=a( I(d„-„-,l t+ q), respectively. Since q(t) is posi-
tive [see Eqs. (11) and (A3)] and since the region
where y' = 0 gives the main contribution to the in-
tegral 4R'"„-'", it is obvious that the integrals con-
taining q «, ) are always negligibly small with re-
spect to those containing y«&. (An exception is
the region only of very large impact parameters,
where p is extremely small and therefore all in-
tegrals are exponentially small. This region is
obviously of no practical interest. ) We have thus
shown that the processes of group (i) for which
the resonance condition y'=0 can be fulfilled are
the dominant inelastic processes occurring in the
system The proc. esses of group (ii) are strongly
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nonresonant; for their occurrence a considerable
amount of energy transfer from the nuclear to the
electronic motion is required, In our further
consideration these processes will be neglected.

Within the decay approximation the coefficients
a„-' '"' are not allowed to vary strongly with time.
Using this fact, one can represent the integral
'I„'-"„-'," in the form (we replace y by y«&)

t (y)

g (u, g) 1 (u, g)
I ——-0 —.c' nn ~ nn &}'exp]+i[ I &@„-„-,If —q(t)]jdf,

(30)

where n„'-"„-'."has a finite value. The representation
(30) is valid only if the integral on the right-hand
side does not vanish. This, however, can always
be achieved by slightly changing the integration
limits, for instance. It can be easily verified
that, within the decay approximation, n „'-"„-.'"de-
pends on ~„—„, only weakly. If, further, the varia-
tion of q(t) on time is such that the relation I&}'I

» I
lna„-'"' 'I holds, then the coefficient e„-'"-„',"ha, s

the meaning of a certain mean value of a„-""'from
the interval (t' &, f' '} [see Eq. (2S)]. Therefore
n „'-"„-'."cannot exceed the initial value of a„'-"'". In
the case in which the decay of the initial state is
so small that the Born approximation is valid,
the following identity holds:

V. CALCULATION OF TRANSITION AND DECAY,

PROBABILITIES

A. Calculation of transition amplitudes

All our previous considerations are of a quite
general form and allow one to take into account
the deviations of the atomic field from the pure
Coulomb one. In particular, one can use the pre-
vious results to treat the l-mixing collisions. In
the rest of the present paper, however, we shall
confine ourselves to the case in which the above-
mentioned deviations are small and in which the
states of the Rydberg electron may be considered
hydrogenlike. The matrix element S„-„-, then can
be transformed as'

&Il„--„, =u„„r„„,, -r,„„(-n-,'=—l'I&'Inl), (32)

where

c-("-) + -c( Bg
nn' nn' nn'

P nn '(dnn

(33)

where the radial matrix element r„-„-. can be exact-
ly calculated by Gordon's formula. ' Using Eqs.
(32) and (30) and expression (27) for a„'-", "' in Eq.
(18), we obtain the following expression for the
inelastic amplitude in reaction (1):

(u, g) (u, g)g+(-g &-f /2

t( +)

g'exp I~„„,lt —q t dt.
t

(34)

The introduced set of time-independent coefficients
n„-'„"-'.g' is equivalent to the initial-state amplitude
a'„-"'". Their determination, of course, should be
done simultaneously with the determination of
a„-". "'. However, the advantage of their introduction
into the treatment is that Eqs. (27) are reduced
to a. system of algebraic equations. Instead of
going into a procedure of direct solving such an
obtained system of algebraic equations, we shall
first calculate the transition amplitudes of the
processes involved in reactions (1}and (2), con-
sidering n„'-"-„'. ' known. The determination of
a„-'"„-'."will be postponed to the end of Sec. V and
will be performed by using the detailed-balance
principle and the probability-normalization rela-
tion. With these remarks in mind we can consider
Eqs. (27) as being a formal solution to the system
of differential equations (25).

+ s slngp (35)

To obtain the transition amplitudes in the rear-
rangement channel (2), one, in principle, has to
reexpand the function &1 «, '» of Eq. (17b) over the
Coulomb basis set associated with the moving
atom. Within the dipole approximation, it is not
necessary, owing to the adiabatic character of
the collision, to perform such a reexpansion pro-
cedure. By inserting Eqs. (27) and (18) into Eq.
(17b) [and keeping in mind Eqs. (30) and (32)], one
obtains

The amplitude of the elastic scattering in the direct
channel (1) can be obtained directly from Eq. (18)
(by setting there n, '=n) and reads

(g)+ (u)
B-'"=A -'-"= 2' " " cosycos'gp

les

+&+& « ~«» ~ &~„&+&«&-&-,
( II) ~ a nn'

n' (Wn) n t~t
(38)

where
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a ~a
(II) . 1 /2 (u g) (x)

Ann' ~,2 pnn'+nn'nn' C nn'Ann' + 4 ~ nn'
p nn' +nn')-

(g) (u) &(g)+ (u)

cosy, +i '" " sinr),
2 0 2 0

z„-„-,=rR„-.[(u„„,(pc„'-"-„!+vt'Ic„'-'„-!)+tvc'„'„-!]-.

n 4 n p (3"l)

(38)

(39)

The first term in Eq. (36) describes the inelastic
processes in the rearrangement reaction (2)
(A„-'„'-,"being the corresponding transition ampli-
tudes), whereas the second term describes the
"elastic scattering" (i.e. , the resonant excitation
transfer process). It is important to note that
the amplitudes A„'-„'-.' and A„'-„-'." for the direct and
rearrangement inelastic processes are essentially
equal. This fact is a consequence of the adiabati-
city of the collision and was asserted at the end
of Sec. IIIA on the basis of general arguments. It
is also worthwhile to note that the same expression
[Eq. (39)] for the coefficient Z„-„-, can be obtained if
one expands

(g„-(r —R(t")e' "
I g„-$r))

in a power series (over z =vt" and p) and retains
only the first two terms. Such an expansion gives
us the condition for the adiabaticity of the electron-
ic transfer from the fixed to the moving Coulomb
center in a more precise form: v ~ (2/n)', which
is consistent with our general condition v «vn.

Let us now examine in more detail the elastic
and resonant excitation transfer amplitudes. Note
first that the phase r/, [see Eq. (11)] is the same as
that which determines the elastic and charge ex-
change processes in the slow A'+A collisions. '
In the Born approximation (a„'-"=a„-'"'=2 '/2) the
amplitudes of the elastic and the resonant excita-
tion transfer channels are respectively given by
An'-n'-'=COSg0 and An-'n'-"-B„-'"'=i Sing0. We See frOm
here that in the Born approximation the elastic
and the resonant excitation transfer processes in
atom-Rydberg-atom slow collisions are essential-
ly determined by the elastic and the charge ex-
change processes in the subsystem A'+A. The
same remains true also in the case for which
a„'-"(t")ca„'-"'(t' '), with the difference that a lower-
ing of the corresponding elastic and charge trans-
fer amplitudes takes place and that some interfer-
ence effects appear. Thus the decay of the initial
Rydberg state both decreases and mixes the ampli-
tudes of the elastic and charge exchange processes
in the subsystem A'+A.

B. Expressions for transition probabilities

Having the expressions for the amplitudes
A„-'„-". and A„'-„'-.".at hand, one can immediately con-

struct the transition amplitudes P„'--„"=P'„-„'-,"or the
averaged (over l and m) amplitudes P„"„'.=P'„'„,"
[see Eq. (20)]. Before doing this we make the fol-
lowing remark. Owing to the adiabaticity condi-
tion v &n and conditions (5) and (6) (or p «n

r„},-on which our quasiresonant energy exchange
model is based, it follows that the inequality v/p
« I (d„„.l always holds. Therefore the terms in
expressions (33) and (37) for /4'-„'„-', '" connected with
the component C„'-'„-'. of the angular matrix element
are much smaller than the other terms and can be
neglected with respect to them. We have retained
them in the structure of A„'-'„-*,"' only to indicate
that, although not important within our model, the
transitions connected with C„'-'„-', do exist and, for
small impact parameters or very large n or both,
they can give an appreciable contribution to the
transition amplitude. The integral 4„„, [Eq. (34)],
which aLso appears in the transition amplitudes
A„'-'„-", ", can be evaluated analytically (see Appen-
dix B), and the result is

3/4 5 /2 (0)
@nn' ~ IXnn'I "~nn' s

4/4
l

l1/ 4/3 (2 2)

(40)

xAi(p4 /3 4 /st 2/3) n ) 0 (41a)

1/4 Xp 2 ~ ~X
&/2 exp —~

IXnn I 3 Xp Xp)

~x
xA~I 4/3 — i/3 ~ 4~x- 0~

(Xp Xp
(4lb}

where the following notations have been intro-
duced:

2p ~ ~p' 2p &(p)
y ) v ' '

y v
(42a)

p, = ln(X,/ IX„„,I)/~X, (42b)

and Ai(z) is the Airy function. We note that J„'0',
~ 1 for all values of Xnn, and X,. The equation
4X =0 defines a critical impact parameter p, such
that for p ~

pnn, the inelastic n-n' transition is
energetically allowed and for p & pnn, it is energet-
ically forbidden. The behavior of J„'„,' as function
of p is illustrated in Fig. 2.

Using the above results one can write explicit
expressions for the probabilities P„-'-'„', =P„'-„'-.".
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C. Determination of coefficients dnn
t

I et us first note that within the framework of
the proposed model the following relation is valid:

(g (I)~ 2 + (g ( II)
~

2

O.I = Ia'"(f")I'+
I
a'"'(f") I' (48)

0.2

7.0 7.5 8.0 8.5 9.0

p (ci, )

FIG. 2. Behavior of (g„'~9( as function of impact
parameter p.

Summing them over the quantum numbers /', m'
of the final state and averaging them over the
quantum numbers l, m of the initial state, we ob-
tain the probability for the n-n'(wn }transition in
both reaction channels (1) and (2) in the form

la„(t") I + QP
n') n

(49a.}

where A„'-'„-'"' are the elastic amplitudes in channels
(1) and (2). It can be also easily verified that
within our model the total n, -R.' (n' &n) probability
cannot exceed the change of la„'-"(t) I in the inter-
val (f' ', t' '). The same is true of the total n-ii'
(n'&n} probability with regard to la„'-"(t)(2. With
these remarks and relation (48) in mind, the
normalization of the total probability to unity gives
(after averaging over the f, m quantum numbers)

1/2 ( (3 5/2
3 j2 ' nn'' P I i

y(0)~2d(u g)
nn'

y 'U
nn' nn' nn' (43)

(t'((f(+)}
I

2 P QP
n' (n

(49b)

L, =~ Q((+1)(r'„',' ') +pl(r"„'", ')),
&=0

where d„'„"'"is defined as the mean value of
I a„'-"„-.'"t over all the possible transitions within
n-n', namely,

( g))2) C( ))2&nn &nn' nn

d (u, g)
nn'

I r„-„-,C „'-"-„,'I
tm, & m

and the indices u and g correspond to n' &n and
n' & n, respectively.

It is also useful to define the total decay proba-
bility of the initial state n due to all excitation and
deexcitation processes,

Pn = Pnn
n' (Wn)

(48)

Thus our task is now reduced to the determination
of the coefficients d„'"„'". However, before pro-
ceeding to this goal, we note that these coefficients
possess the following symmetry property:

(u, g) (g, u)
dnn' d n'n ~ (47)

In other words, as a consequence of the detailed-
balance principle for the n-n' transitions, the co-
efficients a„'-„"-.'" satisfy the equality I

n„'-„"-'."I
= (a„'-,'„-'"'I, from which relation (47) immediately
follows.

Using relation (47) in Eq. (43), one concludes
that the probabilities Pnn. and Pn, n also satisfy the
detailed-balance principle: P „„./P „.„=n

'
/n

Iu,", "'(t")I'=~+(a„'-'"'(t") I'
lm

(50)

ecu, g) ~ Pnn'
~n =~&(u, g) r

n' ~nn'
(51)

where the index u (g) corresponds to summation
over n '& n (n'& n), one can show that the most
general and, at the same time, most physically
meaningful representation of d„'„"'"should be

(„1 1
d u, g)

nn'
2 y + (g f u)s ( uy g) r

~nn' n

Q(go u)
(g, u) ~n'

~nn' g(g, u)+ g(u, g) ~

n' n

(52)

(53)

Since in the decay approximation S'„g('„"') cannot be
greater than one, it follows from Eq. (53) that
0» I(„c,„","'» 1. The coefficients d„'"„,'", chosen in the
form (52), have the following properties: (i) they
satisfy relation (47), which provides fulfillment of
the detailed-balance principle; (ii) they have a

and P„„, is given by Eq. (43). Equations (49) show
that in the decay approximation the excitation and
deexcitation processes for a fixed initial state n
are completely decoupled. If n is considered a
variable, then the system of equations (49), to-
gether with condition (47), can serve to determine
the coefficients d„'",'~' and (a'„'"'(f")

I . Solving
such a system of equations is equivalent to solving
the system of equations (27) after introducing in
them the coefficients n„'-„"-',"by relation (30). How-
ever, within the decay approximation, one can
avoid the solving of this difficult problem. Intro-
ducing the quantity
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correct upper limit (d„'"„',"=-,') when either n or n'
is sufficiently large [then P„„. n-', see Eq. (43)];
and (iii) they satisfy the inequality la„'"'"(f")

I

&d„'"„',"~ ia„'"'I(f' ') I . Note that the values K„„'."'=0
(corresponding to the Born approximation) and
y'„'„,'"'=1 (corresponding to the so-called "normal-
ized Born approximation") respectively give the
highest and the lowest values of d„'"„',"and conse-
quently the upper and lower limit of P„„.. One can
show that for n» 1 and I nn I «n (which corres-
ponds to considering the Rydberg spectrum as
equidistant) v'„'„,'"' can be approximately given by

(54)

0)2- n=S
E =0.3eV

Pnn

'0.$

0.08

0.06

ON

0.02

I

/
I

I
I

where bn(«n) is a certain mean change of the
initial state n due to the collision. If one calcu-
lates P„„,and P„by setting x„'~', "'= —,

' in Eq. (52),
then the corresponding errors do not exceed
3(&n/n) and O(nn/n), respectively, provided
S„""'~1. Analogous estimates can be obtained al-
so for the case of nonequidistant Rydberg spec-
trum. If bn sn~~2 (which for n» 1 is practically
always fulfilled), then the approximation g'„'„', "'

= —,
' introduces an error in P„of O(1/n). Noting

that the adiabatic character of the collision im-
plies R„„.-p„„.~ n, we see that the above accur-
acy is compatible with the general degree of
accuracy of our method, which is O(1/yp„„, ).
However, in the calculations where one needs ful-
fillment of the detailed-balance principle [with an
accuracy higher than 0( In' n l /n)], one sho—uld

use for v„"„'"'expression (52). In our calculations
of H*(n)-H inelastic collision processes, presen-
ted in Sec. VI, we have used the value ~'„'„'."'=-,'

throughout.

VI. PROBABILITY AND CROSS SECTION CALCULATIONS

FOR H~(n)-H COLLISIONS

In this section we give the results of our calcu-
lations on the probabilities P„„,, P„and the decay
cross sections o„ for the case of H*(n)-H colli-
sions. Owing to the proper Coulomb character of
the Rydberg states in this case and their angular
degeneracy, no additional restrictions should be
imposed on the theory developed in Secs. IV and V.

In calculating the transition probabilities P„„,
we have used Gordon's formula~ for evaluation
of the radial matrix elements r„-„-,. Figure 3
shows several typical examples of the dependence
of P„„, on the impact parameter (for n= 10; nn
=+I, +2; and 8 =0, 3 eV). It can be seen from
Fig. 3 that the probabilities P„„,have a strongly
expressed maximum at p =p„„,, which corres-
ponds to fulfillment of the resonance condition
&u(R„,„.) = l&u„„,I. For p & p„„,, P„„decreases ex-,
ponentially, whereas for p & p„„,, P„„,oscillates

OQO
65 7 7.5 8.5

FIG. 3. Dependence of the P~ transition probability
on impact parameter p for n=10 (&n=+1, +2 E=O 3
eV).

0.4
E=0.3eV

0.2-

0.0
6.5 7

I

7.5 8.5 9 9.5

p (n, }

FIG. 4. Decay probability P„of the:Rydberg levels
n =10,12,14, 16 as function of impact parameter p (E
=0.3 eV).

with decreasing amplitudes. The observed mutual
displacement of the structures of P„„,]~„] and

P„„]~„]results from the nonequidistant character
of the low-lying Rydberg states. For larger val-
ues of I~n I this displacement is more pronounced.

It is also seen from Fig. 3 that for the same
value of I &n I the magnitude of the transition prob-
ability for deexcitation, P„~~ ) is bigger than
that of the probability for excitation, P„,„.]/,„~.
This is a result of the properties of the x„-„-, ma-
trix elements as well as the presence of the factor

in expression (43) for P„„,. For higher
Rydberg states and for I 4n I «n the dependence
of P„„,on the sign of 4n should become negligible.

Figure 4 shows the total decay probability P„of
the levels n=10, 12, 14, 16 at F. =0.3 eV due to all
n-n' transitions in the discrete spectrum. In the
region of p shown in the figure, only the transi-
tions with I 4n I

~ 5 contribute to P„. For p ~ 6a()
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v„=2m P„pdp
0

in the form

(55)

'.= ~.N. +2 f (56)
f'on

In our calculations of o'„we have used Eq. (56),

the transitions with I &nl ~ 6 also become impor-
tant. In this region, however, the main contribu-
tion to P„comes from the transitions caused by
the angular components C„'-'„-', of the dipole matrix
elements. The contribution of the angular transi-
tions to P„(or P„„.), as discussed previously,
cannot be properly accounted for in our asymptot-
ic treatment of the problem, and therefore the
calculations of P„„,and P„were restricted to the
region p~ Gao.

An important feature of the decay probability
P„ is its oscillatory structure for p & p„*, where
p„* is the impact parameter at which the biggest
maximum of P„occurs. The weak oscillations in
P„are a result of the superposition of the P„„,
probabilities, and therefore their amplitudes do
not change much with varying collision energy
(see Fig. 5). As seen from Figs. 4 and 5, the
weak variations of P„with p in the region p& p*„

can be averaged and the decay probability can be
represented by a certain mean value P„. A formal
inclusion of the angular transitions in the calcu-
lation showed that the mean value P„of the decay
probability can be extended down to a few Bohr
radii. On general physical grounds one cannot ex-
pect drastic changes in P„ in the region of small
p in the considered energy range. In any case,
this region of p does not contribute to the decay
cross section to any considerable extent. There-
fore we can represent the decay cross section

determining p,„as the point in the region p & p„
at which P„(p,„)=P„. Since for' p & p,„, P„decreas-
es exponentially, the second term on the right-
hand side in Eq. (56) gives a negligible contribu-
tion to o„. The results of our calculations of o.„
for n = 10, 12, 14 are shown in Fig. 6. As seen in
this figure, the magnitude of o„ for n not too
large and for v& 106 cm/sec is of the order of
10-15-10-i6 cm2 At this point we would like to
make the following remark. Since for the hydro-
gen case (y =1) the function ~(R) decreases very
rapidly at large R, the resonance for a given
la„„.l is reached at relatively small R„„,, and the
corresponding critical impact parameters p,„are
also relatively small. For example, for n =12
p,„=9ao (at E =0.3 eV; see Fig. 4). For atoms A
with a smaller binding energy of the valence elec-
tron (y & 1), the function &u(R)-exp(-yR) at large
R decreases less rapidly, and consequently R„„,
and p,„(for the same values of Ie„„,I and E as in
the hydrogen case) have larger values. This re-
sults in an increasing of the value of the decay
cross section v„. The preliminary calculations of
P„and a'„ for the Li*(n)-Li system (y —-0.63)
have confirmed the above conclusion. For ex-
ample, for n = 12 and E = 0.3 eV in this system,
p,„=18ao and (T„ is. larger by more than one order
of magnitude than in the case for hydrogen.

Another remark we would like to make now con-
cerns the velocity dependence of o„. In the low-
velocity region, when the phase q(t) is comparable
to ~„„.t, the dominant dependence of v„(or P„„,)
is given by the explicit v factor in Eq. (43). In
this velocity region the function I J„'„',I depends
weakly on v (like v '~ ). At higher velocities,
however, the phase q(t) can be neglected with re-
spect to (d„„.t, so that Ig „'„'. I' depends on v as v ',
and the v dependence of o„ is o„-v . The charge
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FIG. 5. Decay probability P„(n =10) for E=0.1,0.3,
and 0.5 eV as function of p.

I

FIG. 6; Decay cross section a„(n=10,12, 14) as
function of relative collision velocity.
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of the velocity dependence of v„(or !4„'„'I ) can
be obtained directly from the cor res ponding
asymptotic expansions of the Airy function, con-
tained in 4„'0,'. In Fig. 6, the change in the char-
acter of the velocity dependence of o„,can be
noticed at the end of the considered velocity range
(at v = 12.10 a.u.).

VII. CONCLUSIONS

In the present paper we have proposed a reso-
nant-energy exchange mechanism for the inelastic
transitions in the discrete spectrum which occur
in slow collisions of Rydberg atoms with their
parent ground-state atoms. The main idea of this
mechanism lies in considering the transitions of
the Rydberg electron as being resonantly coupled
with the transitions in the quasimolecular sub-
system A'+A. The nature of this coupling is ra-
diative: photons emitted (absorbed) in the transi-
tions between the states of the quasimolecular
system are absorbed (emitted) by the Rydberg
electron, which undergoes optical transitions. It
is obvious that the internal-energy conversion
mechanism should be also operative for many
other inelastic processes in atom (molecule)-
Rydberg-atom collisions (e.g. , l mixing, ioniza-
tion, electronic-to-vibrational energy transfer,
etc.), provided the conditions for resonant energy
exchange are met. We have considered in the
present paper the n-changing processes in the
discrete spectrum, since at v «v„ they cannot be
properly described either by the Fermi's mech--
anism or by using the semiclassical approxima-
tion. The physical conditions at which the quasi-
resonant-energy exchange mechanism efficiently
produce inelastic transitions in the atom-Ryd-
berg-atom systems are, in a certain sense, oppo-
site to those at which the Fermi's mechanism
works. Therefore these two mechanisms should
be considered complementary.

We have succeeded in simplifying the problem
of inelastic processes in atom-Rydberg-atom
collisions by introducing the decay approximation,
i.e., by neglecting the cascading and other higher-
order transitions. In this approximation, which
is essentially based on the dipole approximation
for the interaction of the Rydberg electron with
the inner subsystem A'+A, the excitation and
deexcitation processes in the system become de-
coupled. The decay approximation presumes that
the total decay probability of the initial state is
not too high; i.e., we are not too far beyond the
conditions where the Born approximation is valid.
Our final results on the inelastic transition proba-
bilities are in fact, a sort of properly normalized

Born approximation.
In our treatment, especially in the procedure

of determination of the normalization coefficients
d„'"„'", we have essentially used the condition

I AnI/n«1. This condition implies that the group
of Rydberg levels around n, within which we cal-
culate the transition probabilities, is considered
part of an equidistant energy spectrum. This
means that the initial Rydberg level should be
rather high (in the case of hydrogen n- 15, for
example). The use of any unsymmetrized form
of the normalization coefficients d'„~ ' will intro-
duce an error in the P„„, probabilities of the or-
der of I Enl/n Ho.wever, as we have seen at the
end of Sec. VC-, the errors introduced in the total
decay probability P„are only of 0( Inn I /n ), and
therefore the total decay cross sections of the
present theory can be reliable even for the low-
lying part of the Rydberg spectrum. For nonhy-
drogenic atoms, however, the problem of the
transitions between the low-lying Rydberg states
becomes complicated by the effects of the quantum
defect.

A concluding remark we would like to make con-
cerns the efficiency of the inelastic transitions in
the region of small impact parameters. For p
«p„„.-R„„.the asymptotic method, applied in the
present paper for description of the electronic mo-
tion in the subsystem A +A, loses its validity.
In other words important contributions to the in-
elastic transition amplitude in this region come
from the angular component of the dipole matrix
element. Its inclusion in the treatment represents
an overestimation of the accuracy of the asymp-
totic method. However, in the velocity region
considered in the present, work and for Rydberg
states not particularly high (say, n —50), it can-
not be expected that the rotational transitions will
prevail over those caused by the radial part of
the dipole matrix element. Therefore, as in the
theory of the resonant charge transfer at low en-
ergies, the introduction of a critical impact pa-
rameter p,„(the so-called "radius". of the inelas-
tic process) such that for p ~ p,„ the process takes
place with constant probability seems to be mean-
ingful. This idea lies in the basis of the so-
called "dense-target" approximation or "absorb-
ing-sphere" models of atomic collision theory.

ACKNOWLEDGMENT

We would like to express our gratitude to
Professor I. C. Percival for bringing to our atten-
tion the symmetry properties of the coefficients
d„'„","' and their connection with the detailed-bal-
ance principle.



I902 R. K. JANKV AWD A. A. MIHAJI OV 20

APPENDIX A

The adiabatic energy splitting of the symmetric-
al and antisymmetrical states Z, and Z„of the
quasimolecular system A'+A at large distances
(yR» 1) has the form~0

S"
~nn' = 2X p .exp s +2 I X„„.Is —'g s s

S

(B2)

&(R) =C R ' ' exp( —yR —1/y), (A1)

a(p, t) = &@,exp(-yv't /2p),

where

(A2)

where C is a "normalization" constant in the
asymptotic form of the radial part of the electron
wave function.

For large values of the impact parameter
(y p» 1) and for R -

p [see Eqs. (4) and (6)], the
internuclear distance R(t) =[p +(vt) ] can be
expanded in a Taylor series -around the distance
of the closest approach. Retaining only the first
two terms in such an expansion, &o(R) can be ob-
tained in the form

S

2I(s) =X, exp(-s )ds
0

and s'" corresponds to t'". Since the integral in
(B2) contains symmetrical limits ( is' 'I =s"), it
is evident that the sign in front of the phase func-
tion y' (s) =[IX„„,ls —q(s)] plays no role in the
calculations. Therefore we consider it as posi-
tive.

Taking into account that ~g"'«1 for s ~1, we
may set Is' 'I =s '=1. If we now expand the
function 2I(s) in a power series around s =0 and
keep the first two terms only, it becomes evident
that the phase function /p' '(s) can be replaced by
an approximate one,

/p(s) = ns + —,
' ps 2 . (B4)

s = vt(2p/y) '/'. (A4)

The phases 62I'"(t), defined by Eqs. (14) and

(19), can now be written in a unified form ( It' 'I

=t
OO 2 i /2

a2l'"=y, exp(- s )ds, y, =—' — . (A5)
ISI V

Majorizing the erfc( Is I) function appearing in

(A5), ' we obtain the following inequality:

The phases 21(t) and BIO defined by Eqs. (11) can be
now put in the form

S

2I(t) =~, exp(- s')ds, 2l, =~~, (A3)
v 2p

where

By appropriate choices for the constants n and

P, the function p(s) can give a good representa-
tion of the' true phase function in the interval
(s' ', s' '). In the region outside of this interval,
which does not contribute to g„„,, the function
cp(s) increases rapidly enough to allow one to ex-
pand the integration region in (B2) to infinity.
Keeping these remarks in mind, expression (B2)
for g„„, can be written in the form

~nn' gX p exP —S' +»S + —,
' s' dS ~ (B5)

Expanding the function exp(-s ) into a Fourier
integral and then changing the order of integration
in (B5), we obtain

(a)( exp( —s')
10 1/2[Is

I +( 2+4/ )2/2] (A6)
4„„.= —,'7/' X, exp(- aX )Ai[- (X —b)]dx,

OO

It can be easily verified that for p„-„-, -R„- „-, , defined
by the condition e(p„-;,.) =

I &u„- „-, I, the inequality
Aq'"«1/(yp„-„-, ) is satisfied already for s & v 2 even
for q, of the order of unity.

where

a= —,'P, b=nP '

and

(B7)

APPENDIX 8

We estimate here the integral P„~, defined by
Eq. (34). In terms of the variable s [see (A4)]
and using the notation

(B1)

J„„,can then be written in the form

Ai(x) =— exp[i(tx+ ,'t ))dt-
27r

(BB)

is the Airy function. The integral in (B6) can be
calculated exactly, and one gets

2 1 3 b . 1
g„„.=22/a X, exp ——+—Ai —+b . (B9)3 4a 4a 4a

We choose the constants n and P in (B4) from the
conditions
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FIG. 7. Comparison of
exact phase function y" (s)
(solid curves) and approx-
imate phase function y(s)
(dashed curves) for three
values of X,/ ~ x~ ~.

,(c) x~=—x„„1

q '(0) =9 ". '(0), %'(so) = &' '(so),

where s', =In(X,/ IX„„,I ). These conditions provide
a correct behavior of the phase function cp in the
region of s = 0 and in the resonance region.

The values of n and P, determined from condi-
tions (B10), have the form

(810)

(B12)

Inserting (Bll) and (B12) into (B7) and using then

(B9), we obtain the expression for p„„; given by
Eqs. (40) and (41).

In order to investigate the degree of accuracy
of the approximation (B4) with respect to the cor-

rect phase function y' ' in the region (s' ', s"),
we have numerically calculated p' '(s) for three
values of the ratio X,/ IX „„,I. (X„„.is taken to be
unity. )

The comparison of p' '(s) with y(s) is given in

Fig. 7 (the full curves represent p' '), where it
can be seen that in the region of s giving the main
contribution to J„„, the approximate phase P
represents y' ' quite well. We note that the maxi-
mum of the maximum of the P„„, probability cor-
responds to a phase function y' ' lying somewhere
between cases (a) and (b) in Fig. 7. For this
phase function the a,pproximation (B4) is even
more successful than for the (a) and (b) cases.
The phase function y' '(c) in. Fig. 7 corresponds
to the case of the energetically inaccessible re-
gion for the n-n' transition.
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