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The theory of Chang and Fano is applied to electron scattering by polar molecules. For collision energy
E &E in the problem can be treated accurately without numerical radial integration; the solution is presented
in a form suited to an R-matrix treatment of the molecular core. The value of E;„(in a.u.) is determined
through D Bj /E;„&8&1; when E &E;„=afew eV, more extensive calculation is required beyond the body-
frame Born-Oppenheimer region. For this purpose a generalization of the Chang-Fano theory is developed.
It consists of an adiabatic continuous transformation of frame, the frame used at each electron-molecule
distance r being determined directly by the dynamics of the problem. This procedure generates a
coordination diagram for the known solutions to limiting cases, a diagram analogous to that used in

quantum chemistry for conn'ecting the united-atom and separated-atom limits of molecular-orbital theory. A
new type of symmetry in the problem is made apparent. Preliminary discussion is made of the applicability
of this method to more general problems of close coupling in the asymptotic region.

I, INTRODUCTION

In this paper the problem of electron scattering
by diatomic polar molecules is treated by a frame
transformation theory. ' A frame transformation
treatment of the weakly polar CO molecule has
been provided by Chandra', the present application
is to the case in which the dipole interaction is
clearly dominant at intermediate and large elec-
tron-molecule distances r, a,s obtains in the alkali-
and hydrogen-halides. Considerable literature
exists dealing with the application of other methods
to this problem'; the use of frame transformations
in electron scattering by atoms and by nonpolar
molecules is also well known. '

The basic idea of frame transformation theory is
that different angular momentum coupling schemes
are appropriate in different regions of the distance

The equations of motion can be solved sepa-
rately within each region, and the solutions are
joined at the boundary between regions by applica-
tion of appropriate transformations. In electron
collisions with diatomic molecules the wave func-
tion at small z is best described in the molecular
body frame; at large ~, where the electron's mo-
tion becomes decoupled from the molecular axis,
a laboratory frame description is more appropri-
ate. 'The corresponding transformation theory has
been given by Chang and Fano, ' whose formalism
and notation are adopted here. The electron-mo-
lecule configuration space is separated into three
regions'. an inner region (r&r, ) where exchange
is important; Region A (r, &r&r, ) in which the
electron-molecule interaction is a static potential
and the Born-Oppenheimer approximation holds;
and Region B(y)r, ) in which the angular momenta
E and j of electron and molecule are nearly con-
served separately (see Fig. 1). The value of x, is

roughly equal to the electronic size of the mole-
cule, i.e., 5-10 a.u. 'The magnitude of r, is de-
termined by the requirement that the Born-Oppen-
heimer approximation have a specific degree of ac-
curacy within Region A; it is dependent on the dy-
namical variables of the problem and may be as
large as a few hundred a.u.

This paper will not deal in detail with the solu-
tion in the inner region. There the problem is es-
sentially many particle and requires a different
type of treatment than that appropriate in the outer
regions. %e shall develop here the solutions of
the equations of motion in Regions A and B, with
the solution in the inner region taken as input from
some other calculation. This approach conforms
to the general B-matrix philosophy of Burke and
others', the outer region solutions are cast here
in a form suitable for use in an g-matrix calcula-
tion, but can be easily adapted to alternative treat-
ments of the inner region. '

In Sec. G we start from the solution to the
Schrodinger equation at r= r, and propagate it out-
ward to r= r, . In this region the electron-molecule
interaction is a sum of electric multipole poten-
tials. Experience indicates, however, that the ef-
fect of higher multipole moments is most important
in the inner region and so only the electric dipole
term is retained in the outer regions. Then the
solution at y, can be obtained without numerical
integration, for the wave function in Region A is a
combination of known Bessel functions. ' The iden-
tification of the frame in Region A requires nu-
merical diagonalization of a matrix; the necessary
formulas are summarized in the Appendix. These
results have also been examined in other litera-
ture. '

In Sec. III we consider the propagation of the
wave function from r, to infinity. Here, too, a
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FIG. 1. Regions of electron-molecule configuration
space (after Chang and Fano).

formal solution to the equations of motion is avail-
able. It does not, however, admit easy evaluation
in general. We consider first the case in which
the solution can be obtained from perturbation the-
ory (essentially by a modified Born approxima-
tion). This completes the solution to the equations
of motion in Regions A and B for collision energies
E greater than a few eV; the low-energy limit to
this approach E „depends on molecular param-
eters through Ert. (29). The existence of this limit
can be inferred from other literature, "but its
origin and consequences have not received much
serious consideration. When E&E „avery con-
siderable amount of numerical work will be re-
quired to solve the equations in Region B.

In the remainder of the paper we develop a new
framework for analyzing the solution in Pegion B.
It introduces an adiabatic transformation of the
body frame into the laboratory frame; the frame
transformation is thus performed continuously in

r instead of at the point r, as in the Chang-Fano
theory. The applicability of this method has not
yet been evaluated in full, but the results obtained
thus far are of considerable physico-mathematical
interest in their own right. This type of transfor-
mation may be useful in more general problems of
electron collision physics, for it reduces the
strength of long-range interactions by an additional
power of the distance.

This last remark underscores the motivation as
well. as broader implications of the present paper.
Most of the extensive computational work on elec-
tron collisions with polar molecules has proceeded
by close-coupling techniques, whether in the lab or
in the body frame. " More generally, numerical
solution of problems involving long-range noncen-
tral interactions has become of considerable im-
portance throughout atomic and molecular physics
(e.g. , in atomic photoionization). The very slow
convergence of close-coupling calculations at
large r—of which the subject of our Sec. III is an
example —has been the cause of serious practical
and conceptual difficulty. While accurate calcula-

tions of the inner region solutions over wide ranges
of energy have become standard with present tech-
nology, the solutions in Region B need separate
calculation at each energy and require far more
computer time. It is, moreover, quite difficult to
unearth the basic physics of a wave function which
is only obtained by numerical integration of coupled
radial equations over hundreds or thousands of
Bohr radii. The strong noncentral interaction and
closely spaced final states of the electron-polar
molecule problem present an extreme case of this
phenomenon. Thus the developments of the final
section of this paper are intended as a first step
towards understanding more general problems of
close coupling at large distances.

II. BODY-FRAME TREATMENT IN REGION A

(
d2

, +k' —(r' —2Dt:Ds8')r ) 8=0,di2 (2)

where 2k'= E is the total energy. In this approxi-
mation the projection A. =B' 1 of the electronic an-
gular momentum upon the molecular axis is a con-
stant of the motion.

Ertuation (2) may then be solved rather simply in
two steps.
(i) Find the eigenvalues N(N+ 1) and the eigenfunc-
tipns Qz pf the operator 1' —2Dcos4',

( I' —2D cosh')Ar~'=fir(N+ 1)A ~' (2)

(ii) With g(r) =Z„~Or„"'g~r"'(r), solve the radial
equations

(
d, N(N+ 1))
dr2 (4)

The Hamiltonian for the electron-molecule sys-
tem in the outer regions A, B is (in a.u. )

H= —~V'+ V(r, 5)+Bj'+h~~, (1)

where V' operates on the electron coordinate y; R
is the molecular internuclear coordinate, B the
molecular rotational constant, and j the molecular
angular momentum. We shall not consider pro-
cesses involving vibrational excitation" and so take
the molecular vibrational energy h„„to be con-
stant. Only the dipole term in the interaction
V(r, It) will be retained; the contribution from
higher multipole terms dies off faster with in-
creasing r, and its short-range effect is primarily
accounted for in the inner region. Thus we set
V(r, It) = -D cosa'/r with 0' the angle between elec-
tron position and molecular axis.

In these units one has typically B 10 '-10-' and
D-1-4. Thus for moderate values of r(r&r, ) the
rotational energy of the molecule may be disre-
garded in comparison with V. This defines Region
A; the SchrMinger equation in that region is thus
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By expanding the eigenfunctions Q~~' in spherical
harmonics

~S - Q +PE Flh(

the eigenvalues N(N+ 1) and coefficients A~+", ' are
readily obtained by diagonalizing a tridiagonal ma-
trix explicit formulas are given in the Appendix.
The eigenvalues N(N+ 1) depend on both IA I

and

D; for D=O they are given by N=E= IAI IA I+1
For sufficiently large l the dipole term of (3)

may be treated perturbatively,

N /+0(D /l ) ~

The first few eigenvalues for 5=0, 1, 2 are shown
as functions of D in Fig. 2. Note that the lowest
eigenvalue for each A decreases monotonically
with increasing D, whereas the higher eigenvalues
increase at first near D= 0; in other words, the
dipole interaction is effectively repulsive for high-
er partial waves.

When N is known, the solution of Eq. (4) is im-
mediate:

g~ '(r) = n'„~'j gkr) —P'„~'ygkr),

where j~(kr) = k'~ 'rj gkr) and jN(kr), y„(kr) are the
regular and irregular spherical Bessel functions;
the Wronskian W{j~,y„}=1. For sufficiently
strong dipole moments, the eigenvalues N(N+ 1)
will become negative. When N(N+ 1) & ——,', the
"centrifugal" potential of Eq. (4) becomes attrac-
tive; this occurs when the dipole moment is great-
er than a critical value, D&D,(A). Then N= —~

+ ip, and the definition of j»y„must be revised
to keep g real and W=1:

j «(kr) = (2 mr)' '[I/sinh(-, '-mp) ] Im(J, „(kr))

y~(kr) = (~mr)'~'[-1/ cosh( 2vp)] Re(Z, „(kr)) .
The analytic properties of these functions are dis-
cussed by Greene et aE."and we have a computer
code to evaluate them numerically. In this con-
text the D, of interest are D,(A = 0) = 0.639 a.u. and

D,(A= 1)= 3.79 a.u. For polar molecular ions the
same treatment is applicable: the angular func-
tions Q~~' are the same, and the radial functions
(6) are given by replacing j„,yN by the Coulomb
wave functions &N~ G

The ratio between the constants n, P of Eq. (6) is
determined from the Azpger region solution; on the
other hand, their actual magnitude depends upon
boundary conditions imposed at large r (i.e., nor-
malization of incoming or outgoing waves). Since
at this stage we are dealing onl.y with the solution
in Region A, it is not yet appropriate to specify 0.
and P. Instead, we use them to construct a trans-
formation, diagonal in & and P, which expresses

( g~~'(r) ) j„(kr) -y~(kr) ( n'„~' )

where primes denote the radial derivative. More
generally,

(g(r) i j(kr) y(kr-) ' ( n)
(g'(.))

= j'(k.) -y (k.)
where g, n are to be understood as column vectors
whose elements are the g~~~'(r) and n~z~', respec-
tively; j,y are diagonal matrices whose elements
are jgkr), y~(kr). By applying the transformation
(8') at r= r, and its reciprocal at r=r„we obtain

(8')

)l j(kr, ) - y(.kr, ) ~

y'(kr, ) -y(kr, ) (g(r, ) )
!

q'(kr, ) -q(kr, ) !,g'(r, )j '

The determination of g and g' at x, is obtained
from the inner region solution. If the wave func-
tion is expanded in spherical harmonics

(9)

g(r) = g f, (r)&„(6,q ), (10)

N(N+1} vs D

FIG. 2. Eigenvalues N(V +1) of Eq. (3) as a function of
dipole moment. The solid lines are successive eigen-
values for A =0; the dashed and chain dotted lines cor-
respond to A =1, 2, respectively.

the values of each radial function (6) and its deriv-
ative at r=z, in terms of their values at r=r, .

Equation (6) and its derivative can be expressed
as
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at y -yp then the inner region. solution specifies a
homogeneous relation between the f» and their
radial derivatives at x= yp.

" In terms of the B
matrix of Burke' (with I) = 0 and a= r,),

f»(r, ) =r, g R', ",,'(r, )—f»r

The equivalent expression for (11) in terms of the
dipole radial functions is thus

g(»)(r ) R(») (r ) g (»)d

1'p

(12)

where

R»'„'(ro) = ro g A»('A»')'R)( (ro) ~

where R is a matrix block-diagonal in P whose
elements are the R'„»„',(r,) of Eq. (13).

Since partial waves with sufficiently large N do
not penetrate the inner region, the elements of F7

will tend to

R»'» (ro) = 6»» ~&+1 (15)

as N increases. The dimensionality of the systems
of Eqs. (9), (14) is thus determined by the range of

N, A over which R is significantly different from
the trivial form (15). The partial waves which do
not penetrate the inner region can be treated inde-
pendently, by setting P(»»)= 0 in Eq. (6).

Substitution of Eq. (14) on the right-hand side of
Eq. (9) yields on expression for the radial functions
g„'~' and their derivatives on the surface r= r, in
terms of the derivative vector g'(r, ) From the. re-
sulting expr ession

(g(r,)} A, A, fg'(r, )}
(16)

(g(r, )j
=

A, A, (g'(r, ) j'
one can obtain the R matrix at r„defined analo-
gously to that of Eq. (12) by

g (»)(r ) R(») (r ) g(»)d

The matrix R(r, ) is then

R(r, ) = (A, +A, )(A, +A, ) ',
where the matrices A are constructed from pro-
ducts of R(r, ) and of the matrices in Eq. (9).

In the matrix notation of Eqs. (8') and (9), Eq.
(12) is equivalent to:

t'g(..)) R o (g(.)~
(14)

At this point the calculation in Region A is com-
pleted. Much previous work has taken the elec-
tron's motion in Region B to be that of a free par-
ticle; when this is appropriate, Eq. (16) can be
used to generate the body-frame S and E matrices.
We shall not carry out this development just yet,
as the Region B solutions require specific exam-
ination. This is provided in Sec. III.

III. LABORATORY-FRAME TREATMENT OF REGION B-

@'& = Q Y', (8, y)F „(8,$)(lmjM-m ~lj JM).

The arguments of the spherical harmonics are the
angles of the electron position and the molecular
orientation in a laboratory-fixed frame. It will be
convenient to employ a single index I. to denote the
set of indices ljJM; the results of this section do
not depend on M.

%e shall obtain a formal solution to the equations
of motion in r&r, using the phase-amplitude meth-
od of Chang and Fano (CF). The electron-molecule
wave function is written as

g F (r)@()')

and we introduce new dependent variables f~(r),
f~(r) through

F) (r) =f~(r)j~(r) f~(r)y ~(r), —

&if i=Tifi (18)

where j~(r) = r(kJ)' 'j,(k~r) and ok~= —', k&= —,'k'
Bj(j + 1). -This representation is analogous to

that of Eq. (6) for the body-frame solutions, ex-
cept that the coefficients of j,y vary with r. The
Hamiltonian of Eq. (1) is then equivalent to a sys-
tem of integral equations for f,f, in accordance
with Eq. (32) of CF:

The boundary r= r, of Region B is defined by the
condition that the rotational energy of ihe molecule
be no longer negligible in comparison to the dipole
potential energy. This definition will be made ex-
plicit at the end of this section. For the moment
we will consider the laboratory-frame solution of
the equations of motion in Region B, without re-
striction on the actual value of z, .

Since molecular rotation is to be taken into ac-
count and, presumably, / and j are nearly constants
of the motion, the appropriate basis of angular
functions consists of the C ~'~' of Chang and Fano'
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P~(r)=fz(r)-2DE (krkr')'~'(kIco k'kIk') f dPP (k~P)(fr, jr(kikl fr, -yr(ki P)]
L'

r
fz(r) =fz(r, ) —2D g (kzkz, )' '(I, Icosa' IL') dpj, (kzp) [fzj,, (kz p) fz-y, , (kz p)] .

gl tl

(19)

t'F(r, )'i a 0 t' g(r, ))
E, '(,)j o

E, '(,)) ' (22)

where B is the square matrix B»-—A~~'U&~ "', the

U&~
"' being the standard frame transformation co-

efficients of C F:

Here (L )
cosy' (L') = (lj JM

I
eos3 )lj''J'M') is diago-

nal in J,M and independent of M. From the lin-
earity of Eq. (19) we may write

(f(r}) (W(r;r, ) W(r;r, ) l f f(r,)l
v~;~, v ~;~,

(20)

where, as in the body-frame treatment, f and f
are to be understood as column vectors whose

components are the fz(r), fz(r); and W, Vare
square matrices to be evaluated below. As z- ~,

fz(r) and fz(r) become constant; withfz, fz
= lim„ fz (r),fz (r) we have f~ = tan 5+z, where 5z is
the phase shift in the radial function of channel I..
Thus this representation leads us directly to the
laboratory-frame reactance matrix K as follows.

Equation (18) yields

f f(r,)) y'(r, ) -y(r, ) I I F(r, ) )
(f(r~)j j'(r ) —j(r ) I( F'(r ))

in the vector notation utilized previously; j,y are
again diagonal matrices with elements jz(r, ),yz(r, )
The functions Fz(r, ), Fz(r, ) are expressed in terms
of Z„(r,),g'pz(r, ) by transforming the dipole body-
frame angular functions Q~~' into the lab-frame
angular functions @~&„. Thus

p(«n) ( 1) .z][1+v(-1)' ' ']
[2(l + 6~o)]'~'

x(2j+1)'~'
( ) .

By combining Eqs. (22), (21), and (16), and de-
noting W(r, ) = lim„„W(r, r, ), etc. , we have

(23)

(24)

(25)

By eliminating the g'(r, ) in Eq. (24) we then find
the reactance matrix K, defined by f =Kf:

K= (K, + K,)(K, +K,)-'. (26)

Of the quantities occurring in Eq. (25) all are
either standard functions or are computed in Re-
gion A, except for the matrices TV, 8', 7, V. These
are determined entirely by the equation of motion
in Region B; a pure body-frame treatment is
equivalent to setting them equal to zero.

A formal expression for these matrices may be
obtained by solving the integral Eq. (19) by itera, -
tion. With Mzz, =2D(L Ieos6'IL'), one finds for
8'l~, the series

(K, K, 'I (g'(r, ))
f)-I(K, Kj I,(r)j

where

)'Z, M.) ( (k ( )Wr(r, )])
y' K.j ( &(,) V(,))

1+

/y'(r, ) -y(r, )) (& 0]I It A, A, )
xI -.,

( j'«) -3(r )) ( o &j (A. A, j '

Pr~r(r;r, )=-M~r jdkr, lpga)j (k&P)'(k&k&)'~' PM+Mr.
1 I tp

r
dp dp yr(kzp)y, -(kz„p)j g„(kz,.pp)j, , (kz, p') (k k2„k, )'z'+

~1 ~1
(2V)

where each successive term involves an additional
integration. The expansions for 5', P, V are the
same up to changes of sign and exchanges of j and

Though the convergence of this series is formally
guaranteed, actual evaluation in the general case

I

is a substantial numerical task. At each additional
iteration the number of terms in the sum over
intermediate L," increases by a factor of 4, and
an additional multiplicative factor of D is intro-
duced. Each product of Bessel functions in (2T)
can be separated into a sum of oscillatory terms



1880 GHARI, KS %. Gl ARK 20

DBj /E & 56 ' . (29)

When this criterion holds, the methods of Secs.
II and III provide the solution to the scattering
problem with minimal numerical calculation (i.e. ,
without radial integration) beyond that for the inner
region. For a given required accuracy, Eq. (29)
implies a lower limit E „to the range of energies
over which this treatment is valid. If, for ex-

with radial frequencies k, = k& +0&, . We consider
the case in which the total collision energy is much
greater than the difference in energy between typi-
cal molecular rotational states, so that k, = 2k and
k is small (it will be seen below that this restric-
tion is consistent with the results). The term
with k, then converges rapidly in successive inte-
grations. The dominant contribution to W(y, r, )
comes from the integration of oscillatory functions
of long wavelength 1/k, modulated by inverse pow-
ers of z. These converge rather slowly; by eval-
uating TV~~, to first order only we find" that

(28)

Thus the contribution to the scattering matrix from
Region 8 vanishes only as the inverse of the frame
transformation distance y, .

This slow convergence is not due to a poor choice
of representation, but is an essential consequence
of the slow "beat" frequencies between wave func-
tions of adjacent l&. This same phenomena arises
in a variety of electron collision calculations, in
which adequate convergence of phase shifts is ob-
tained only after numerical integration out to very
large r, as mentioned in Sec. I.

Since the frame transformation theory in its
present form is not adapted to deal with the
coupled Eqs. (19) in the general case, we consider
the circumstances in which the Region B solution
may be obtained from perturbation theory, i.e. , by
evaluation of W(r, } to first order only. This is
equivalent to applying a modified Born approxima-
tion" in Region B; the fractional error introduced
is then of the order of the typical value of the ma-
trix elements W(r, ), W(r, ), etc. Thus to obtain a
given accuracy 5' in the Region B solution we must
have x~&r, =D/5'(2E)'~', from Eq. (28). This cri-
terion must be reconciled with having r, small
enough so that the methods employed in Region A
are accurate.

As is well known, "the body-frame propagation
matrices are accurate to order 5 if (hk)r, &6.
Here b,k is the variation of k& over the range of j
in the problem. If the total energy E is greater
than the spacings between molecular rotational
states so that bk=(2Bj/E)'~', we must have r,
& 5/(rM) = 5(2E)'~'/(Bj) —Then in or. der that r, &r,
we must have

TABLE I. Values of E„.„=, and x& for some typical. pol.ar
molecules at 300'K.

Molecule Emin (eV& &g (a.u.)

LiF
KCl
CsF
KBr
HBr

5
2.7
2.2
1.6
1.6

40
92
71

114
10

IV. ADIABATIC FRAME TRANSFORMATION

In recent years there have been successful ap-
plications of adiabatic methods to a number of
problems, "" in which adiabaticity was not in-
dicated at the outset, as it usually is,~ by the
existence of intrinsically different time scales in
the problem. The principal value of the adiabatic
classification of states in these problems seems
to have been in providing a scheme for interpolat-
ing the character of solutions between limiting
cases of solutions between limiting cases of known
symmetry.

In the remainder of this paper an adiabatic-dia-
batic approach to the problem of electron scatter-
ing from polar molecules will be developed. The
full range of applicability of this method, in the
sense of providing an accurate description of the
electron radial motion, has not yet been tested
adequately. However, it generates a coordination
diagram for the angular wave functions between
the limit r=0 and y= ~. In those two limits the
problem admits known solutions with specific sym-
metries. Another definite symmetry in the adia-
batic solutions appears at one intermediate value
of r = (2B} '~' a.u. It will be shown that although
symmetries exist strictly. only in these three

ample, a total error of 10%%uo is regarded as toler-
able, then 5-0.1 and 6'-0.01. For some typical
polar molecules at room temperature we find the
values of E „and 'y, listed in Table I.

On the other hand, for many applications (e.g. ,
magnetohydrodynamics (MHD) kinetics" and per-
turbation of Rydberg series") one needs to deal
with energies considerably lower than these. Since
r, decreases with decreasing energy, the calcula-
tion in Region B becomes more important. The
structure of the equations of motion in the labora-
tory frame does not offer much of a hint toward
the essential physics in this region. In the re-
mainder of this paper we shall develop an approach
towards a more general qualitative understanding
of the problem, by introducing a continuous trans-
formation of frame.
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cases, a quasisymmetry of the adiabatic solutions
can be traced in an unambiguous manner through-
out the entire range of electron distances. This
suggests an approximate separability of the equa-
tions of motion. " An analogous quasisymmetry of
the type to be described has emerged for the colli-
sion of polar molecules, which also involves a non-
central interaction. ~

The meaning of "adiabatic" used here in accord-
ance with general collision theory" "contrasts
with the meaning of the same term. in much of the
specific literature of electron-molecule collisions.
In this field the term "adiabatic approximation"
generally' denotes various calculational schemes
in which the molecular axis is regarded as fixed
in space during the time of the collision. These
schemes may be regarded as variants of the body-
frame approximation of Sec. II. In the following
development, however, the adiabatic frame is gen-
erated by the instantaneous dynamics of the prob-
lem. It nearly coincides with the body frame at
small r and with the lab frame at large r. At
intermediate distances it does not have such simple
geometrical interpretations, but is nevertheless
defined unambiguously. "Adiabatic approximation"
amounts here specifically to disregarding certain
velocity-dependent terms in the equation of mo-
tion; this term has also been so used in a recent
calculation of electron scattering by N, ."

Near avoided crossings of adiabatic potentials,
the nature of the adiabatic channels changes sud-
denly, thus violating conservation of some approx-
imate symmetry. For sufficiently high radial
speeds the conservation rule tends to prevail, and
the system changes from one adiabatic channel to
another. This behavior is called diabatic. For
example, in the first case of Sec. VA, diabaticity
results from separate conservation of / and j.

As in the problem of atomic collisions, the
adiabatic approximation gives elastic scattering
only, because the system exists in the same chan-
nel that it enters. This is also the case if the col-
lision process is perfectly diabatic at particular
crossings. On the other hand, there is substantial
inelasticity in electron scattering from polar mol-
ecules. In the context of this paper, inelasticity
may be considered as being produced by two dis-
tinct mechanisms. Near the avoided crossings of
adiabatic potential curves, the motion of the elec-
tron will be neither entirely adiabatic nor entirely
diabatic. There are a finite number of these points
at which inelastic transitions may occur. Away
from avoided crossings the adiabatic and diabatic
approximations are identical. In this case there
may be a cumulative failure of the approximation
due to interchannel coupling by velocity-dependent
terms.

The Hamiltonian to be considered is that of Eq.
(1) of Sec. II,

H = 2 p'+ Bj' -D(cos&'Ir') (in a.u.),
where p is the electronic momentum; B, j, and
D are defined as previously. We shall proceed
without neglecting any terms; the appropriate
Schrodinger equation is then

(30}

where

V= l'+ pj'-2Dcos8', (31)

where p= 2Br'. The diagonalization of V at fixed
r provides a complete set of angular functions

y,.(II;r):
Vy»(II; r) = e»(r)y, (II; r)..

Whereas in Secs. II and III the angular functions
for electron and molecule were chosen according
to the prescription of Chang and Fano, we shall
now refer all angular functions to the basis of
eigenvectors of V. These eigenfunctions reduce
to the body- and laboratory-frame basis functions
of Chang and Fano in the limits r = 0 and r= ~.
Setting P= Zb»(r)P»(Q;r} the Schrodinger equation
becomes

(32)

where @',.=(dldr)p~ and the brackets denote as
usual integration over all angular coordinates.
The adiabatic approximation disregards the right-
hand side of (32). Since the resultant equation then
admits standing-wave solutions confined to single
adiabatic channels, the scattering process in this
approximation is entirely elastic.

The total anguiar momentum J'and the parity
»I(-1)~ commute with V. For each J&0 there are
then two families of states which do not couple,
corresponding to»)= a1 (favored or unfavored, re-
spectively}. ' The component M of J along a fixed
direction is also a constant of the motion, but
since cosB' is a scalar with respect to J the value
of M does not enter the problem. V is most easily
studied in the basis of functions ~lj»IJM):

Section V details the construction of the adiabatic
potentials and the characteristics of the adiabatic
states. In Sec. VI the applicability of the method
xs discussed

V. ADIABATIC AND DIABATIC POTENTIALS AND

EIGENSTATES
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It will prove convenient to relabel the subscript by
a single index,

X F,~(6, y) F~„~(8,y),
&

t+g@,(!g)
J'N

(33)
Q J4.2

a J+3-p

~ ~ 0 ~ ~ 0
an( J+1 g)+&

The choice of phase j'+& standardizes the signs of
matrix elements of tensor operators. " It is con-
venient to write the set of vector components rep-
resenting a superposition g =Q» a» ljriJM) in a
tabular form Se.tting p = ~(1 —q), we arrange the
components a» in a rectangular array

~ ~ ~ ~ ~ ~
J+& 2( J+& ) ( &)(J+ )

(34b)

~ 0 0 0 0 0a p+1, J+1 af+n, J+n

a y+j. , J-1 a p+2, J
a /+2 J 2

In the basis thus defined the matrix of V can be
arranged as a tridiagonal array of submatrices
D(f) and T(f)

(34a) T(j ) Do) 0 0 ~ ~ ~

~ 0 4 ~ ~ ' ~a J+~, pa a J+n, f +n

The elements of each column of (34a) have an equal
value of E+j; those of each rom have equal /-j.

D(& ) T(2) P(2) 0 o e ~

0 D(2) T(3) D(3) 0

The T"' are themselves symmetric tridiagonal
matrices, the D"' are diagonal. The diagonal
elements of T'" D"' are

(36a)

(36b)

Tq"~, = D([(lq —jr+ 1)——P] [(lq jr+1) ——(J'+1) ] /[( 2lq +2) —1][(2jq) —1]j

T'„*&=I,(I,+1)+pj,(j,+1),
Dq'q" = Df [(lq+j—q+ 2) —Z ] [(lq+jq+ 2) —(8+ 1) ]/ [(2lq+ 2) —1][(2j + 2) 2 —1)p ~ 2,

where in the notation of (34b) (t —l)(J+ 1 —p)+ 1 & k &t(J+ 1 —p) and the values of l„and j~ are determined
from the correspondence between the single index k of (34b) and the double index lj of (34a). The off-diag-
onal elements of T(" are

A rough indication of the variation of the off-
diagonal matrix elements (36b), (37) over the (in-
finite) range of allowed lj values may be seen from

D~~"= —D cos'(~ g), T~"~„=—D s in'( —,
'

P)

for (I,j)» l. g is the angle shown in Fig. 3—note
that g - 0 as t ~. This relation indicates that the
total strength of dipole interaction on a given state
(fj} is relatively independent of its position in (34).
With reference to the lattice of amplitudes (34),
the terms (36b), (37) couple each lattice point to its
erst nearest neighbors It shou. ld also be noted
that the interaction terms (36b), (37) are invariant
under interchange of l and j. This operation to be
denoted by 8 amounts to a reflection of the lattice
(34} through a line bisecting its columns.

A. Limiting cases

In order to categorize the symmetries which
arise in this scheme, it is useful to examine two
limiting cases.

and

g,(p ') =&p,(p)

N, (N, +1) =. p .'N, (N,+1).
P P

(38)

(39)

The radial motion of the electron in this case will
be completely diabatic. Since E and j are con-

D= 0. %hen there is no interaction between elec-
tron and molecule, $ and j are separately con-
served. The eigenvalues of P are linear in p—if
they are denoted N, (N, + 1), then N, (N, + 1)= l(l + 1)
+ pj(j+1). The eigenvectors of V are of the form

a, = 5,&
[in (34b)]. The first ten eigenvalues of V

in this ease, for /=4, even parity, are shown as
functions of p in Fig. 4(a). For arbitrary J the
figure remains basically the same, except for a
change in the slopes of the l.ines. If the symmetry
operation B is exploited, it is only necessary to
plot N,.(N, + 1) in the interval 0 & p & 1 because if

P,.(p) is the eigenvector of V corresponding to the
ith smallest value of N,.(N,.+ 1) at p, then
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FIG. 3. Angle 0 indicating the strength of the dipole
matrix elements (36b), (37).

served quantities, the many curve crossings in

Fig. 4(a) do not influence the radial motion at all.
Each line (/j) in Fig. 4(a) will cross a finite

number of other lines (/'j') between p= 0 and p= ~.'
The number of such crossings will be less than or
equal to (J+1 —p)'. In particular the curve of Fig.
4(a) corresponding to a state (/j) will eventually
cross all those corresponding to the states (/'j')
lying within the shaded regions indicated in the
diagram:

~ ~ ~ ~ ~ ~ ~

(/j)
(40)

which are right triangles with hypotenuses on the
top and bottom rows of (34). Of principal interest
are the crossings which occur at p= p, = 1. Since
[I/, V(p, )] = 0 and (usually) //g, 0 p, it is seen from
(38) and (39) that at p, each eigenvalue N, (N;+ 1) is
doubly degenerate (except for those corresponding
to states with /= j}.

This enumeration of properties of V for D= 0
does not shed any new light on the solution of the
free-particle problem. It has been made in order
to set the stage for consideration of the general
case D &0. In this limiting case, as in the next ex-
ample, simple knowledge of the eigenvectors and
eigenvalues of V suffices to solve the equations of
motion.

B=0. When the rotational constant B vanishes,
p vanishes irrespective of-r. In this limit, which
corresponds to an infinitely large moment of in-
ertia of the molecule, a system of electronic co-
ordinates fixed in the molecule (body frame) is

appropriate. As is well known (and shown in Sec.
II) V is then diagonal in A, the projection of I upon
the direction 8'= 0. The eigenvalues N, (N, +1.) of
V coincide then with the N, (N, + 1) of Sec. II;
from Eq. (32) it is apparent they generate poten-
tial. curves for which the adiabatic approximation
gives an exact solution to the equations of motion
[e,=N,(N, +1), and (dldr) $,=0 everywhere]. In
analogy with molecular-orbital theory the eigen-
states of V for arbitrary D may be identified by
their /A designation at D=0 (see Fig. 4). The val-
ue of E —4 represents the number of nodal sur-
faces, 8'= const, of the /A eigenfunction. In order
of increasing i,r(q, +1), the eigenstates are so, pv,
po, dh, dm, dg, . . .etc. These results are indepen-
dent of the value of the total angular momentum J;
except for the implied restriction p, & A ~ J.

B. General case

V'= I' —2D(r) cos8',

D(r) = Dl (1+2Br') . (42)

Thus the eigenvalues and eigenvectors of V' are
the same as described for B=0, provided one sub-
stitutes for D an effective dipole moment D(x).
These eigenvalues are those for A= J in Fig. 2. It
is also seen from that figure that the adiabatic po-
tential curves generated from these eigenvalues
are always well separated.

From (42) it is apparent that the effective dipole
moment is nearly constant at small r and so the
adiabatic solution to the equations of motion is
essentially the same as that in the body-frame
approximation of Sec. G. At large r the effective
dipole moment falls off as r"'. Since the eigen-
values of (42) are even functions of D, the asymp-
totic expansion of the adiabatic potential s,/rm of

Thus in two extreme cases D= 0 and B=0 it is
seen that the diagonalization of V at each r pro-
vides exact diabatic and adiabatic solutions, re-
spectively. The angular functions generated in
these hvo cases are just those of the laboratory and
body frames of CF. This separability of the equa-
tions of motion should persist to a certain extent in
the general. case. In the remainder of this section
the plausibility of this hypothesis is verified by
tracing the evolution of the symmetries of the
eigenstates of V away from the two limiting cases.
Consider first the simplest, "one-dimensional"
solutions for J'= 0 and for J= 1 even parity.

Longest J; Both sets of conditions, J= 0 andJ= 1, g= -1 require the values of l and j in the in-
dices of (34a) to coincide. Then

V= (1+p) I' —2D cos8'= (1+p}V' (41)

with
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(J'+ 1 —p)th lowest, for which adjacent rows are
of opposite sign. The next eigenstate is sym-
metric within each column, but has a node be-
tween the first and second columns. The pattern
then repeats itself until the number of nodes along
rows is again exhausted, at which point a second
node breaks across columns, and so on. As an
example the signs of the a» for successive states
are indicated below for J= 4, g = -1:

First Second Third

~ e ~ + + ~ ~ ~ + + ~ ~

~ ~ ~

Fourth

~ ~ ~ + + ~ ~ ~

Sixth
(44)

+ + '~ ~ ~ + ~ ~ ~ + e ~ ~

+ ~ ~ ~ + ~ ~ ~

(tAn)4i- ~ iA JN (46)

where X~~"' are the body-frame wave functions of
Chang and Fano. The components a» may be
placed in an array similar to (34),

p,+1, g+1 p+2, y.+1

(46)

When J+1 —p is odd the central row vanishes for
all states odd under A.

This nodal pattern persists to arbitrary values
of p, though it is not so easily described. The
symmetry between l and j in V at p, makes the
pattern "rectangular. " Values of pal alter the
relative weight of j' and l2 thus distorting the nodal
lines —much like the pattern of water waves would
change in a rectangular canal of uniform depth,
if the depth varied. However, the components g»
of the lowest channel are always of the same sign
for arbitrary p, and the number of nodal lines in
(34) always increases by unity between successive
states or the direction of the nodal line changes.

Small values of p correspond approximately to
B=0. It is then appropriate to expand the eigen-
states of V in the basis ~lAJM) employed in Sec.
II+

whose rows correspond to constant A. A nodal
pattern emerges from this representation as well.
The components of the lowest eigenvectors lie pri-
marily along a single row, reflecting the near con-
stancy of A. Their structure is the same as that
shown for J3= 0 —in increasing order, they are
basically so, pm, per, dh, , dm, dp, . . . , where now l -4
gives the number of sign changes between succes-
sive components in the row corresponding to A.
This order is eventually broken in the higher
states, when the term pj( j+ 1) is comparable to
D.

It has not been possible to identify uniquely an
"effective" dipole moment D(r), as was done for
J= 0. However, the asymptotic form of the adia-
batic potentials is the same as in (43),

/r' —2Bj.,(j,+1)+ .[I,..(l,.+ 1)/r'j

+ P,(D'/Br')+0(r '), (4V)

where the pair l„j, identify the ith adiabatic chan-
nel in the large-r limit. The values of P& will only
be of practical interest for small l values. The
first one, P, , for which l, = p, is always positive
for p. = 0 and negative for p, = 1. Thus the effect of
the dipole on the electronic s wave is always re-
pulsive at large distances, except for J=0. The
magnitude of a given P falls off with increasing J
roughly as 1/J.

In conclusion, the adiabatic (or diabatic} chan-
nels provide a well-defined basis which reduces to
known solutions for limiting values of the param-
eters. The strong identity of the channels, main-
tained for arbitrary variation of the parameters,
suggests a quasi-separability of the row and col-
umn indices in Eqs. (34) or (41).

VI. VALIDITY OF THE ADIABATIC APPROXIMATION

The principal theoretical difficulty in the under-
standing of the electron-polar molecule interaction
has been the coupling between electron partial
waves of small l at large distances. Thus the mo-
tivation for this work has been to determine wheth-
er the interaction at large distance can be compre-
hended from an adiabatic point of view. We now
examine this question, which was first raised in
Sec. I.

The equations of motion for electron scattering
from any atom or molecule reduce at large r to a
form in which the interaction between electron and
target may be expanded in inverse powers of r.
The expansion coefficients depend upon the choice
of the basis of target and electron angular wave
functions; in the laboratory frame (33}these co-
efficients are just the electric multipole moments
of the target. The leading power of y in the non-
central part of the long-range interaction will al-
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ways be r"' in this frame.
How'ever, if the equations of motion are written

instead in the adiabatic frame, as in (32), the off-
diagonal terms are just the P matrix elements de-
fined in (48) below. As we shall see for our par-
ticular example, the leading power of r in the non-
central part of the interaction in the adiabatic
frame is then r '. This substantially improves the
speed of convergence of numerical solutions at
large r.

Thus there is some qualitative utility in thinking
in terms of an adiabatic basis rather than of a
fixed one, even if the adiabatic approximation to
the solution of the Eqs. (32) is inaccurate. The
remainder of this paper is given to showing how
the reduction in the strength of the long-range non-
central interaction takes place in the electron-di-
pole problem. The discussion of the influence of
the avoided crossings of adiabatic potential curves
on the electron motion is deferred to further
study, without implying it is unimportant. ""

The inhomogenous part of Eq. (32) may be written
as 2P„b,' -—Q„b, with

Q)y=(4')l4'g')= E»P~»P»~+drP&~'
(48)

S'"ce also Po=(»s ~&) '(y& IdV/dr

P~~=4B&&; —&~) '(y~ 13'le,) (49)

The P and. Q matrices are most easily evaluated
for J=O or P= 1,g= -1. In this case the P matrix
becomes

P„=(c,—»,)',), (y, icosa ly, ), (50)

where», = &,/(1 —p)-l, (l, +1) as r-~. Neverthe-
less the off-diagonal 5' dies off less rapidly than
the diagonal polarization term of (43). Similarly
(48) shows that Q provides a diagonal term ol or
der r ' and off-diagonals with a leading power r '.
In this case the inelastic contribution' to scatter-
ing, i.e. , m'olecular rotational excitation, will be
due to the smooth off-diagonal coupling induced by
the P and Q matrices. Since there are no avoided
crossings, localized nonadiabatic transitions are
not likely to occur.

The special case of J=O differs from that of
larger J in two Mays. For J=O there are no
avoided crossings of the adiabatic potentials, and
each potential curve corresponds to a different
final-state value of j at r= . When J&0 there are
many avoided crossings, and each value of j at r
= ~ corresponds to a number (&J+1 —p, ) of differ-
ent adiabatic potentials. Thus the P matrix ele-
ments for J'&0 are not monotomc like those (50)
for J=0; near each avoided crossing they generally

have a local maximum and their sign may reverse
between two crossings. Nevertheless, in the limit
of large r their form will be seen to reduce to that
of (50). Thus for any value of J the off-diagonal
coupling in the adiabatic basis goes as r ' at large
ro

Consider first the interaction between two chan-
nels j and jp which correspond to different molecu-
lar rotational states j„j,at r= ~. Equation (49)
may be rewritten

Pt» 4Br-—(e» —»()

x [y,. ~

(2Dcos3' —l') p
'

lg»].
At large r, e, -l,(l, +1)+pj,(j,+1) and (p, l

I'lp»)
vanishes because j& W j~; therefore

(49')

P'.- &j(j+1) ', ."« Icos~'I&.)
-, 8aar

(51)

e~= ll~A&+ g (D/p)"r",.ll„j„&.
nt, n

Since j&=j~ and I'", =0 unless j,+j +a= even, only
even powers of Dl p will be retained in the expres
sion for &,~,

P,» [hl(l+ 1)] '[4D'Br/(2Br')']F&»

where I',~ is just a geometrical coefficient.
Sample numerical integration of the equations of

motion in the adiabatic approximation has been
performed, and the results compared with those
obtained from direct integration of the coupled
equations in the body frame. In these "experi-
ments, "which involve rather low angular momen-
ta, moderate to large dipole moments" (8&10,
D-1 —3) and collision energies E &1000B, the
adiabatic approximation gives quite reasonable
agreement with the exact solutions. A quantitative
comparison of the results and investigation of the
behavior of the radial wave functions near the
avoided crossings are currently in progress.

Thus it is apparent that the val. idity of the adia-
batic approximation at large r should not depend
strongly on the value of J, except perhaps indi-
rectly through differences in allowed rotational
thresholds and the strengths of the effective dipole
moments. If the adiabatic approximation can be
shown to yield solutions of reasonable accuracy—

at large r—compare with (50). For channels con-
verging to the same j, but with different l, the sit-
uation is similar even though their separate adia-
batic potential curves draw together at. ~. Then in
(49)»» —», goes to l»(l»+ 1) —l,(l, + 1) and so

P„-4Br[~l(1+1)] '(y,
l
j'ly»). (52)

At large r, p, and P» can be expanded in inverse
powers ot' D/p:
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which is the goal of future work —it will provide a
substantial qualitative understanding of the effect
of long-range forces in this problem.

VII. CONCLUSION

The use of an adiabatic frame transformation en-
ables one to trace the character of solutions be-
tween body and laboratory frames and reduces the
magnitude of off-diagonal coupling by a factor r at
large distances. These considerations do not de-
pend on classical criteria for the use of adiabatic
approximations: i.e. , there are no distinct "fast"
and "slow" motions. The origins of the approxi-
mate separability of the problem are not yet ful. ly
understood, but are similar to those arising in
other cases.

I
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APPENDIX: CALCULATION OF THE BODY-FRAME

EIGEN FUNCTIONS

The eigenvalue Eqs. (3) and (5) are equivalent to

/(/+ l)A~( —2D Q (/A
~
cos8 ~/'A)A ~).

gl

= N(N+ 1)A'„,i.
The matrix elements T'„'= (/A ~cos& ~/'A)= &', ,

'

are then

T,~ ', = f[(/+ 1)'-A'] l(2/+ 3)(2/+ 1)j' '.
Mittleman and von Holdt' have shown how to calcu-
late N(N+ 1) and A„, by iterative methods. This
procedure can be easily carried out on a pro-
grammable pocket calculator to an accuracy of
eight or nine decimal places. The convergence
of this system is so rapid, however, that one can
use any standard matrix diagonalization code.

The diagonalization is performed separately for
each value of A. If one wishes an accuracy of
about 10 ' for the first m eigenvalues, truncation
to a 2m dimensional system will usually be ade-
quate (i.e. , /= A, A+ 1,. . . , A+ 2m).

The eigenvalues so obtained are independent of
J,M and of the total parity t/(-1)~. We have used
as a basis functions 1',~(d, y) which do not corre-
spond to definite J, g; but it can be shown that these
coefficients AN~' determine an eigenfunction of
JM and g by

where X~~~" is as defined by Chang and Fano. This
procedure is thus consistent with the frame trans-
formation of Eq. (22).
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