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Cluster properties of multiparticle scattering operators defined in terms of a separation variable are shown
to be equivalent to cluster properties specified in terms of an angular variable. It is shown that these
formulations lead to a formulation of cluster properties in terms of an angular momentum limit. Finally,
using a spectral representation of the scattering operators derived from unitarity, the author shows that
scattering operators satisfy cluster requirements if the eigenvectors in the spectral representation split into
products of eigenvectors in the large-angular-momentum limit.

I. INTRODUCTION

Any theory dealing with particles for which the
interactions are of short range must have a sepa-
rability or cluster property. Separability means
that if a cluster of interacting particles is broken
into two subclusters and the two subclusters are
moved far apart from one another, there should
be no interaction between the subclusters. Such
a requirement is automatically satisfied for non-
relativistic theories with a local Hamiltonian, or
in a relativistic quantum field theory where the
interactions are mediated by local fields. ' How-
ever, in relativistic particle theories the con-
dition must be imposed separately. In fact, it is
easy to construct models involving multiparticle
processes that do not satisfy cluster properties. '

Attempts at constructing a relativistic particle
theory have had a long history. ' Recently, cluster
properties have been formulated for N-particle
systems with relativistic Hamiltonians. ' In this
paper, however, cluster properties will be dis-
cussed in the context of an S-matrix theory of the
type first envisaged by Heisenberg, ' in which there
are no equations of motion; rather, scattering
amplitudes are the basic theoretical objects and
the goal is to impose enough physical conditions—
such as relativity and unitarity —so as to fix to the
greatest extent possible the form of the scattering
amplitudes.

A variant of this point of view forms the back-
ground for this paper. The theory under con-
sideration is an operator-S-matrix theory, in
which physical conditions are expressed as op-
erator conditions on the scattering operator. It
is clear that unitarity can be expressed as an
operator condition and in a previous paper' the
notion of a crossed scattering operator was in-
troduced to express crossing relations as operator
relations. Further, Coester' has shown how clus-
ter properties can be formulated as operator re-
lations with the help of a "separation" operator.

J

—s'~. aIf P is the momentum operator, then e '

translates the wave function p by an amount a.
To separate a cluster of particles into two sub-
clusters let p be the relative momentum operator
of the two subclusters, so that e '~ ' separates
the two subclusters by an amount a. Then a way
of formula. ting a cluster property as an operator
relation is to demand that as ~a~ gets large,
e"SB.Ae ' " should tend towards SB,A, S SB~
where S» is the channel scattering operator for
the A--8 reaction, andA, andA, are subclusters
of the initial cluster A, while 8, and 8, are sub-
clusters of the final cluster B. The sense of the
limit is a strong operator limit and will be dis-
cussed more fully in Sec. II. By ranging over all
possible subclusters of A and 8, a set of dis-
connected operator S~,&, &,&, is formed, so
that S~ & can be written as a sum over discon-
nected operators plus a remainder, which is the
connected operator.

Because the cluster property is formulated as
an operator property, no definite set of variables
for the wave functions are singled out. But part-
ial-wave variables are of interest because they
are the simplest variables in which to express
the content of unitarity. In the previous paragraph
the relative momentum operator of the two sub-
clusters was used to define the separation operator
U-, =e ' '. But the relative momentum operator
does not commute with the relative orbital angular
momentum operator. Hence, in using partial-
wave variables, it is convenient to replace ~a~

by the relative orbital angular momentum, this
is what is done in nonrelativistic scattering theory
in going from an impact parameter to an orbital
angular momentum. But the orbital angular mo-
mentum is in general not a diagonal variable of a
multiparticle scattering amplitude, so what is
used in its stead is the total angular momentum.
The goal of Sec. II is to show that cluster proper-
ties of the channel scattering operators, ex-
pressed as a strong operator limit in a multi-
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particle Hilbert space as ~a~ gets large, implies
a cluster property for the channel scattering op-
erators as a strong operator limit in so-called
partial-wave Hilbert spaces, when the total angu-
lar momentum gets large. As an intermediate
step it will be shown that the strong operator limit
as ~a~ gets large is equivalent to a strong operator
limit with respect to an angular variable Z. 2
occurs in the spherical Bessel function jz(Pa) and
is thus related to the separation of two clusters
of particles with relative momentum P as a gets
large.

Using the parameter Z, it is possible to formu-
late the main result in a more group-theoretical
language. I et a set A. of noninteracting particles
1, . . . , N be broken into subclusters, with sub-
cluster A, containing particles 1, . . . , M and sub-
cluster A, particles M+ 1, . . . , N. Couple all of
the particles in cluster A, together (i.e., take the
M-fold tensor product of the wave functions of
particles 1, . . . , M) and all of the particles in
cluster A, together. The tensor-product reduction
is naturally expressed in terms of partial-wave
Hilbert spaces because in the reduction there will
be a set. of labels that can be thought of as parti-
clelike labels of clusters A, andA„' that is Ay
and A, ca,n be thought of as "particles" with a
given mass, spin, momentum, and spin projec-
tion, along with additional labels that specify the
internal configurations of the subclusters. ' If
these two "particles" are coupled together, then,
as their relative orbital angular momentum gets
large, cluster A breaks up into two subclusters
A, and A, . It will be shown that in this limit the
parameter 2 becomes identical with the total
angular momentum so that as 2 gets large, the
total angular momentum gets large. In fact, it is
not even necessary to refer to the relative orbital
angular momentum for the parameter Z is identi-
fied not only with the total angular momentum,
but also indicates which set of particles are being
separated —that is, which particles go into clus-
ter A, and which particles go into cluster A, .

Section III will discuss a coupling scheme that
does not refer to the relative orbital angular mo-
mentum. The variables that replace the relative
orbital angular momentum L and the total intrinsic
spin j of the two subclusters are the spin projec-
tions of the two subclusters. Such variables are
appropriate for investigating the relationship of a
cluster property with the unitarity equations.
More specifically, unitarity can be used to spec-
trally represent channel S operators. ' Combining
the spectral representation of the channel S op-
erators with the formulation of a cluster property
in terms of large angular momentum suggests
conditions that the eigenvectors of the projected S

operators should satisfy. The main result of Sec.
III is to show that if the eigenvectors of the pro-
jected S operators factor into two parts as the
angular momentum gets large, the cluster prop-
erty in terms of large angular momentum is
guaranteed to hold.

~B,A BS~A p (2 &)

where S is the total scattering operator acting on
the full Fock space 3C.

The goal of this section is to analyze the re-
.action A. -B when A is broken into two subclusters
A, and A„which are spatially separated so that
only the subreactionsAy By andAz B2 can pro-
ceed; here B, and B, are two spatially separated
subclusters of B, whose union is B.

To define a separation operator, it is most con-
venient to replace the momenta of subclusters Ay
andA&, P, and P, with the total momentum P

Py + P2 and a relative momentum p, defined by
P =8 '(P)P„.B(P) is a boost Lorentz transforma-
tion defined in Appendix A. (P will stand for both
a four-vector and the magnitude of a three-vector;
the context should make it clear which meaning
is intended. ) For the four-momenta P, P„and
P„ invariant masses are given by s = (l;;,zP;)',
s, = (2;,,„,P;)', and s, = (Z;,z,P;), respectively.

As discussed in the Introduction, the action of
the separation operator is given by

(2.2)

where + is an element of X& depending on p. The
remaining variables in + will be specified after a
transition to partial-wave variables is made. In
any event, U-, acts only on p and leaves all the
other variables untouched. It would be possible
to define a separation operator that moves only
one cluster, leaving the other cluster fixed; how-
ever, moving both clusters involves the relative
momentum p, which can be transformed to a rela-
tive orbital angular momentum that is symmetric
with respect to both clusters.

The scattering operator of Eq. (2.1) is cluster
decomposed by considering U-, S»U-, in the limit
as ~a~ -~. As in Ref. 7, this limit is given a

II. CLUSTER LIMITS

I et X& denote the Hilbert space of a cluster A
of free noninteracting particles. so that 3C„=~&+,
where ~~ is a projection operator from the full
Fock space K to 3'&. X& is formed out of a tensor
product of single-particle Hilbert spaces. If 3C~

=~& is the Hilbert space for a cluster B of free
particles, then the projected or channel scattering
operator for the reaction A -B carrying elements
from 3C& to X& is defined to be



I866 W. H. K LINK 20

precise mathematical sense by taking the strong
operator limit:

(S „f)(Psfs,B) g=S( ss;B,A)f(P fssA), (2.4)

s-lim U-, S»U;=S» (SS~+

means

ifm ll(U-', s, „U-, s'p
II

= o,
t

for all + in 3e„and for all directions a = a/Ial.
This strong operator limit can also be written

s-firn ll(S, „S')U-,ZII =O,
Ia]-

since U-, commutes with the disconnected scatter-
ing operator

The main point of this paper is'to show that the
limit of spatial separation lal -~ of Eq. (2.3) im-
plies a cluster property expressed in terms of a
limit of large angular momentum. Because the
limit involves angular momentum, it is convenient
to introduce partial-wave variables. Now partial-
wave variables can be thought of as variables that
treat a cluster as though it were a particle of
"mass" P s, momentum P, spin J, and spin pro-
jection 0, along with any other var iables that are
needed to describe the internal configurations of
the particles in the cluster. Thus one can write
an element of 3C„asf (PsJo, A), where f will de-
note angular-momentum-type wave functions and
A any set of variables that specify the internal
configuration of the A cluster of particles. For
example, if A is a two-particle cluster, the mo-
mentum wave function F(p„p,) becomes f (PsJa),
where P = p, +p„s = (P,+P,)', and J,o come from
a spherical harmonic transform of P„ the direc-
tion of particle 1 in the two-particle center-of-
mass (CM) frame. Then the action of S)s z on f
can be written

(U-, F)(p, s,J|o,A„s,J,g,A, )

= e ' P
' 'I''(p, s,J,o,A „s,J,a,A, ) . (2.5)

To find the action of U-, on the total angular, mo-
mentum wave functions, we transform p to a rela-
tive orbital angular momentum I-ol. and then
couple I. to the total intrinsic spin j to get the
total angular momentum J. Equation (A11) gives
the connection between the momentum wave func-
tion of Eq. (2.5) and the various angular momen-
tum wave functions defined in the Appendix:

where S( ) is the kernel for the Ss „operator.
That S does not depend on I'ando, and is diagonal
in s and J, is a reflection of the relativistic in-
variance of S~ &. In fact, since both S~ & and U-,

do not change the total momentum, the label P will
be suppressed in the subsequent discussion; fur-
ther, since both S& ~ and U, are diagonal in the
total invariant mass )) s, we will as a matter of
convenience assume that all wave functions f are
sharply peaked about some value of Ws,

To examine the consequences of an angular mo-
mentum limit it is necessary to examine the
variables in Eq. (2.2) somewhat more carefully.
Separating subcluster A, from A. , suggests first
coupling all the A, particles together, all the A.,
particles together, and then coupling the two sub-
clusters together to give the state of the entire A
cluster. That is, the remaining variables that go
into the function + of Eq. (2.2) can be chosen as
s„J„O„the "mass", spin, and spin projection
of subcluster A„and other variables (denoted by
A,) necessary to specify internal configurations of
subcluster A„along with a similar set of variables
for subcluster A, . Thus Eq. (2.2) can be written
more precisely as

(U-, f)(sLof, , s,Jp,A„s,J~,A, )

21 + 1) x/2

dp Da, B(P)e "'I'(p 'i JpiAi) &.J.&BA.)
4m

dP Y~, (P)g i j~(j)a)1~„(P)Y*„(a)PY*, , (P)f ( I. ', ,Jp,A„,Jp,A,)

2 i Y* (s)j

(ps)(L'aflak

JRLo~)(L'GIGOLO) f(sL'o~, s,J„o,A„s,J,o,A,),
sar~
I 'oI'.

(U-, f)(sJfJLj, s,J,A„s,J,A, )
= 2 ( J~ILpLP+)(L'&'s l&~Lvz, )(L'OIZOLO)i~ Y* (a)j (pa)(J'o'll'o'f jm) f(sJ'o(L'j, s J A, z J A )

al. m
pl~ I

= 2 i jz (Ps) Yz~(a)l (2L'+ 1)(2J + 1)]' '&(jLJ'2; JL')(J'o'I &SRJa)(L'OISOLO) f(sJ'o'L'j, s,J,A„s,J,A,),
CQK

(2.6)
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so that

(U, f )(sJaLj A)

xW(jLJ'2;ZL')

x (L'OIZOL0) f(sJ'o'L'j A)

(2 7)

= 2 f'j (Pa)I'* (a)(Z'v'IZ8il Jo)
J'a'

x (R~~f)(sZ'o'LjA) . (2.8)

By using the operator 8 it is possible to show
that the strong operator limit as IaI-~, Eq.
(2.3), is equivalent to a strong operator limit as
the angular variable 2 gets large. Now the sphere
is compact so that the strong operator limit of Eq.
(2.3) can also be obtained after integrating over
all directions B. Then

S~ ~ —S" U, E

(2 9)

here use has been made of the orthogonality prop-
erties of the spherical harmonics Yz~(a) and the
Clebsch-Gordan coefficients (J'o' IZ Jtl Jo) . In fact,
the operator R was defined in Eq. (2.7) so as to
make use of the orthogoriality properties of these
functions. Appendix B shows that the limit as

j (pa) is a spherical Bessel function and p is con-
nected with the total invariant "mass" of cluster
A by Ws= (s,+p')'~'+ (s, +p')'~'; &( ) is a Racah
coefficient. "

Now one expects the limits as IaI-~ to be
connected with the limit as the relative
orbital angular momentum of the clusters get
large. But in order to express this limit in terms
of a diagonal quantity like the total angular mo-
mentum J, it is necessary to couple j, the total
intrinsic spin of the two clusters, to the orbital
angular momentum L. Then, when J gets large,
the Clebsch-Gordan (or Racah) coefficient in-
volving J, L, and j will force L to get large,
which means that the large J limit controls the
separation of the A, and A, clusters by forcing
their relative orbital angular momentum to get
large.

In working out these limits it is convenient to
express the action of U-, on elements in 3C& in such
a way as to distinguish between parameters and
internal Hilbert-space variables. To that end,
define the operator R by

(R f)(sJ'a'Lj A) =—g [(2L'+ 1)(W+ I)]'~'

IaI -~ is equivalent to the limit as 2 —~; that is,

»m Il(~, -S')U;f II=0
t ~1-

is equivalent to

»m Q Il(ss, ~ S'-)R"fII=0,

(2.3)

(2.10)

for all f in K~. To arrive at a limit involving
the total angular momentum it is necessary to
broaden the class of Hilbert spaces by defining
new Hilbert spaces Xp, » called partial-wave
Hilbert spaces. A partial-wave Hilbert space is
labeled not only by the cluster A, but also by the
momentum P, mass Ws, and angular momentum
and projection Jo of this cluster. The norm for
elements of a partial-wave Hilbert space is given
by

Ilfy...ll'=) lip:.&
)I'& (2.»)

lim S~ g -S 8 g„=0,
Z~'a'

f~, c ~~...„, from which it follows that

»m Il(~s, ~ S')R"f~o II =-o,

(2.10)

(2.i2)

for J,J', o' arbitrary but fixed. Now the coupled
angular momenta Z, J, and J' are related to each
other by J =C -J'+ k, 0= 0, . . . , 2J' for C large, or
S=J+J'-k. Therefore, for fixed J', the limit in
2 is equivalent to a limit in J. And for fixed J'o'
it is clear from the definition of R f~, [Eq.
(2.V)] that R f~, is an element in the partial-wave
Hilbert space K~, ~. More importantly, R fq,
spans ac&, &. It therefore follows that

»m Il(~s, ~ -~')&z. ll
= 0, (2.12)

is a sum and/or integral over the internal
variables of theA cluster. It is clear that K~ can
be written as a direct integral of partial-wave
spaces, aC& =Z« fd'pe aCy, « ~. More important-
ly, there are elements of the partial-wave spaces
that are not elements of X&. This can be seen
most readily by noticing that if f H X„has as one
of its variables the total angular momentum, then

I f (J)I must go to zero as J gets large, whereas
elements of partial-wave Hilbert spaces for which
J is large do not in general tend to zero. As stated
previously, the subscripts P and s can be dropped
because none of the operators under consideration
involve these variables. Thus we are interested
in analyzing the cluster properties of scattering
operators as they act on sequences K«g of
partial-wave Hilbert spaces for large J.

To be more precise about these limits, note that
Eq. (2.10) can be written in terms of partial-wave
spaces as
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for all I'~, in BC~, &. However, it is important to
stress that Eq. (2.13) is not a strong operator
limit. Equation (2.13) is valid only when R~ acts
on elements of K& whose variables are obtained
by coupling together particles in A. , and in A„and
then coupling these two subclusters together. If
other subclusters formed out of cluster A were
coupled together, or if variables other than those
of Eq. (2.6) were used, R would have a different
(albeit unitarily equivalent) form so that the limit
in J' of Eq. (2.13) would not hold. Thus the angular
momentum limit in Eq. (2.13) is valid only when
variables are used that refer to the subclusters
being separated. In contrast, Eqs. (2.3) and (2.10)
are genuine strong operator limits, valid for any

choice of variables for elements of f in X&.
Also, the strong operator limit in the separation

variable lal, Eq. (2.3), is equivalent to the strong
operator limit in the angular variable Z, Eq.
(2.10). But while these strong operator limits
imply the angular momentum limit, Eq. (2.13), it
does not seem possible to go in the opposite di-
rection without some further control on the vari-
able J. That is, the limit ll(Ss & —S")R fll =0 as
2 —~ for arbitrary but fixed J does not imply a
limit Z~ll(Ss z —S )R fll =0 as 2 —~, now summed
over all J, so that the angular momentum limit,
Eq. (2.13), does not imply a strong operator limit
in the separation variable lal, Eq. (2.3).

As examples of a cluster decomposition we con-
sider one-line disconnected and 2- N disconnected
terms, as they are of interest in Sec. III, where
cluster decomposition properties are combined
with unitarity. A one-line disconnected operator
means that A, -B, consists of just one particle
not interacting with any other particles; hence,
in writing S»-S~,~, &~,, the action of S&,~,
(3S», on elements in 3'.& can be given as

(Sa ~ @Se&,)f (sJoLj, s,J„s2J,B~)

S(s2J,;B,A,)f (sJoLj, s,J„s,J,A,), (2.14)
A2

where Vs, is the mass and J,(= 0) isthe spin of the
single particle. The orbital angular momentum L
goes to infinity as J goes to infinity. Then ele-
ments of 3C&- 3C& should split into 3C~ 3C~,
—~~. gC~ . But there remains the intrinsic spin2
label j=J,SJ,. In the next section it will be shown
that L and j can be replaced by o, and 0„even
in the limit when L gets large. . With such a change
of variables, further Kronecker 6's occur in the
kernel, Eq. (2.14); these 5 functions (in s,J,o,)
express, in partial-wave variables, the fact that
the direction and energy of the particle in the A,
cluster does not change in the overall reaction.

A similar result holds for the 2-N disconnected

xf (sJoLj, s,J„s,J,A, ) (2.15)

where 6' "(s,J„B,) is the partial-wave amplitude
for the 2-X(A, —B,) reaction. Again the Lj vari-
ables can be converted to o,o, variables.

The results that have been obtained in this sec-
tion are of course not restricted to relativistic
systems. Since we have chosen canonical spin
as .a spin-projection variable (see Appendix A),
it is straightforward to carry out a nonrelativistic
limit of the above relativistic variables. But in
a nonrelativistic theory one has a Hamiltonian
that includes potential terms. These potential
terms are usually functions of magnitudes of dif-
ferences of position variables, V;, lx; —x, l. So
to derive cluster properties for nonrelativistic
systems means dealing with position, rather than
momentum variables, and then checking strong
operator limits of the potentials with respect to
the total angular momentum. "

For example, in a three-body cluster decom-
position the relevant matrix elements are
(p,p,p, lV, , lp', p,'p', ). For V» there is no difficulty
in separating off particle 3. However, the proper
limits become important when particle 1 (or 2)
is to be separated. Then it is necessary to go to
a (free-particle) coupling scheme of the form
1 (23). If the matrix element is written as

(p,(p„p,) I V„Ip', (p'„p,')&
P

d'x, d'x, d'x, e' g (p,'. -p,') x, V»lx, -x, l

and both momentum and position variables changed
to relative momenta and positions, the same sorts
of Bessel functions and Clebsch-Gordan coef-
ficients appear as in Eq. (2.10). Only in the case
of potential scattering, whether or not the matrix
element (2.16) goes to zero strongly as the angu-
lar momentum goes to infinity, depends on the
nature of V»(lx, —x, l), rather than on the assumed
limit, Eq. (2.3).

III. INELASTIC UNITARITY AND CLUSTER PROPERTIES

In this section constraints imposed by unitarity
on the scattering operators will be combined with
cluster properties involving the angular momentum
limit discussed in Sec. II. Now S~ & =A~SA&, the
projected or channel scattering operator, does not
by itself satisfy an operator relation of the form

term; as J- S~,~-S~ ~ @S~~ w

is a 2-N reaction. The action of the tensor prod-
uct is given by

(Ss „SSs& )f (sJaLj, s,J,B„s,J,B,)

8' "(s,J„B,)S(s,J„B„A.,)
A2



20 CLUSTER DECOMPOSITION OF MULTIPARTICLE SCATTERING. . . 1869

SS =S S=I. But, though S~ & is not even a normal
operator, it is, as shown in Ref. 9, closely as-
sociated with a normal operator and hence can be
spectrally represented.

Before discussing the spectral representation
for S» it is necessary to be somewhat more pre-
cise about the variables used in elements of the
Hilbert spaces. Thus far X& has denoted the
tensor product of single-particle Hilbert spaces,
the tensor product being taken with respect to all
the particles in the A cluster. In partial-wave
Hilbert spaces elements are labeled by parameters
that include the invariant mass v s, the total mo-
mentum P, the angular momentum J, and spin
projection o of the cluster, along with other vari-
ables needed to specify the internal configuration
of the cluster. Now if 3Cp, & & is split into two
subspaces corresponding to two subclusters of
particles in A, A y

A Ag:'Op A y
U A, =A, then each

of these subspaces should have a similar set of
partial-wave labels of the form s;, P;, J;, and

o;, along with other variables needed to specify
the internal configurations of the subclusters. But
P, and P, can be replaced by the total momentum
P and p [see Eq. (2.2)]; then p can be replaced by
s, L, and o&, the relative orbital angular momen-
tum and orbital-angular-momentum projection of
the two subclusters. When L is coupled toj, (the
spin angular momentum of the two subclusters),
the variables J ando result, which, along with s
and P, indeed give the partial-wave variables
needed in ~&. In obtaining the variables of

X&,&, & in this way, the variables +y &p Jy Jp,
L, and j become part of the set of internal vari-
ables. But when the limit for large J is taken
and K& splits into X&, and 3.'&, , two of the partial-
wave variables, namely o, and o„do not occur
as labels in X, « ~ and +, « ~» respectively.
What is needed is a change of variables from L,j
to o„o,. But, because of the Clebsch-Gordan
coefficients connecting J, L, and j, it is not clear
what happens to the change of variables when J,
and hence L, gets large.

We will show that, even for large values of J,
the change of variables for L, j to 0„0,is well
defined, and in particular the Clebsch-Gordan
coefficients remain finite. This is most easily
seen by first making a change of variables,
J(Lj)-J(fj), defined by J=j+L —I with I

=0, . . . , 2j. Then, according to Eq. (A10), it is
possible to write

f (sJcr, s„Jp,A„s,J,o,A, )
ii+~2

g & jml Jp&Jga&&JolL0jm&
&=0

xf (sJo, Lj, s
~J,A „s~J,A, ,),

(3 1)

dP y 'Oyez' dy (3.2)

where the spectral measure d p, (y) is unknown

except that y= 1 corresponds to a true eigenvector
e, , which is proportional to the 2- B partial-wave
amplitude. The proportionality factor is 1/(1
—q')'~~, where q is the inelasticity parameter,
When the angular momentum of the 2-B partial-
wave amplitude gets large, g-1 so that the 2-B
partial-wave amplitude goes to zero, as is to be
expected for a connected amplitude. g„= 1 for
y o 1 and equals rl for y = 1. Including y = 1, (eel
'spans X~ but the e„are not in general orthogonal
in K3. That S~ „is not a normal operator is re-
flected in the fact that the set $dsf also spans Ks
but does not coincide with (eel; also dp is propor-
tional to the B-2 partial-wave amplitude, again
with the proportionality factor 1/(1 —rp)'~' All of.
the statements made for the B cluster also, of
course, hold for the particles in theA cluster.

We now ask whether the convergence of S~ &

to ~,~ SS», for large J implies any conditions
on the eigenvectors of S~ & converging to the
eigenvectors o &,~, &~,. That is, if a se-
quence of normal (bounded) operators (labeled by

I

J) converge to a limit normal operator, under
what circumstances will the eigenvectors of the se-
quence of normal operators converge to the cor-
responding eigenvectors of the limit operators
Reference 12 states some conditions under which
eigenvector convergence takes place. In our prob-
lem, however, very little is known about the spec-
tral measure dp(y), so these theorems are of

where L =J—j+t. For fixed J, and J, the sums
here are clearly finite. What must be investi-
gated is the limit for large J of &Jm~J- j+I 0, jm&.
This limit is given in Appendix B, Eq. (B7), and
is clearly well behaved. Thus we conclude that

. the spin-projection variables o, and o, can replace
L and j and the limit in J still makes sense. This
means that the coupling scheme, and not the use
of the variable L, determines which clusters will
be separated when J gets large.

For the remainder of this section —when dis-
cussing inelastic unitarity —it will be assumed
that spin-projection variables are used. The
reason is to see how eigenvectors of S& ~ break up
into eigenvectors of S~, ~, and S~, &, and the
variables used in each of these eigenvectors should
be of the same type, namely of the formsJo, needed
as labels for the partial-wave spaces.

Reference 9 shows how the unitarity equations
SS~ =S~S =I can be written in terms of the channel
scattering operators, Eq. (2.1), to give a spectral
representation of the form
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little help.
But the converse is of considerably more in-

terest as far as physical applications are con-
cerned. For in trying to build an operator-S-ma-
trix theory in which the eigenvectors are the
fundamental theoretical objects, what is of interest
is to find conditions on the eigenvectors that will
guarantee that the cluster requirements are satis-
fied. The relevant theorem here states that if
the eigenvectors of a sequence of normal operators
converge to the corresponding eigenvectors of
the limit operator, then the operators themselves
converge to the limit operator. Thus, if we as-
sume that

B
y ( J;s~Jp~B~, s2J~2B,)

(3.3)

as J-~, then S& ~ Sz z SSz& . y = y~y2 means
that the spectral measure can be written as a
product measure so that as J gets large e&,&,
splits into ey'ey, '. The splitting into products is
assumed to hold for all subclusters so there will
in general be many different ways in which the
spectral measure y breaks into a product mea-
sure, depending on the scheme used to couple
two subclusters together to form the variables
for the entire cluster. Note that the e& and d&

are elements of partial-wave spaces only, since
as J gets large they do not tend to zero.

Two cases of particular interest involve the
splitting of a cluster into one particle plus the
remainder, which generates the one-line dis-
connect'ed form of Eq. (2.14), and into two parti-
cles plus the remainder, which generates the
2 Bdiscon-nected term of Eq. (2.15). For the
one-line disconnected term, Vs, becomes the
mass of the noninteracting particle, while J,=O,
since we are considering only spinless particles
in this paper. According to Eq. (3.3), this means

ez (sJ; s,J,B,)- e& '(s„J„B,) as J-~, so there
is no splitting of the spectral measure for the
one-line term.

For the two-Line disconnected term, in which
the reactionA-B is cluster separated into the
A y By and A, —B, reactions, with A, a two-parti-
cle cluster, Eq. (3.3) implies that

- constx &~ d&2(s, J„A,),
0

as J—~. For p, isproportionaltothe2-B, par-
tial-wave amplitude, and forcing d„",„, to pick out
the term in y, equal to 1 guarantees that the operator
associated with the A- B reaction will cluster de-

compose into the tensor product S~,&,SS~,&„
where the kernel of the S~,&, operator is the 2
-B,partial-wave amplitude, as given in Eq.
(2.15).

IV. CONCLUSION

In building an operator-S-matrix theory it is
important that the theory satisfy cluster require-
ments. For an operator -S-matrix theory in which
the basic theoretical objects are the eigenvectors
appearing in the spectral representation of the
channel scattering operators S& ~, this means
that the eigenvectors must satisfy certain condi-
tions that will guarantee that the cluster require-
ments hold. In this paper these conditions were
obtained in two steps. First, starting with a more
or less intuitive notion of separability in which a
separation operator U-, moves a subcluster of
particles away from other particles in the cluster,
a cluster property was formulated in Eq. (2.3) as
a strong operator limit as ~a~ gets large. Section
II then showed how the strong operator limit in the
separation variable ~a~ was equivalent to a strong
operator limit in the angular variable Z [Eq.
(2.10)j. From this it was shown that cluster prop-
erties could be expressed as a limit as J, the
angular momentum, gets large. This limit cannot
be a strong operator limit since J is a relativistic
invariant and does not single out one subcluster
of particles over another. Bather, a definite
coupling scheme, involving certain variables that
describe the subclusters, must be used in con-
junction with J to correctly formulate the cluster
property in terms of an angular momentum limit.

The second step introduced unitarity in the form
of a spectral representation for the channel scat-
tering operators. It was argued that if the eigen-
vectors appearing in the spectral representation
split into products of eigenvectors corresponding
to the eigenvectors of separated channel scatter-
ing operators, that the cluster requirements
formulated in terms of large angular momentum
would be guaranteed to hold. And such a formula-
tion can only be made in partial-wave Hilbert
spaces, where elements, such as those eigen-
vectors, do not go to zero as the angular momen-
tum gets large.

In a previous paper' we have shown how cross-
ing can be formulated as an operator requirement
on the channel scattering operators. Other physi-
cal requirements that are being investigated in-
clude causality and time-reversal invariance. The
goal in these papers is to express physical re-
quirements as operator conditions on the channel
scattering operators and then translate these op-
erator conditions into conditions that must be
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satisfied by the eigenvectors. For example, there
is reason to believe that causality can be trans-
lated into conditions that the spectral measures
must satisfy. In any event, representations for
the channel scattering operators that automatically
satisfy physical requirements should provide a
convenient starting point for both phenomenological
investigations of multiparticle reactions and in-
vestigations into a fundamental-particle theory.
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APPENDIX A: MULTIPARTICLE POINCARE STATES

In this Appendix the various one- and two-parti-
cle states that are needed for the cluster decom-
position will be defined. We will generally follow
the discussion given by Werle, "except that
canonical spin rather than helicity states will be
used.

A one-particle state ~pg&, of momentum p and
spin projection o, transforms under a Lorentz
transformation A as

UAI p, g& = Q B'..(P, A)IAp, g'&,

where (P, A) is a Wigner rotation defined by (P, A)
=B '(AP)AB(P) andP is a four-vector satisfying
P P = s, the invariant mass of the particle (sys-
tem). B(P) is a boost which we choose to write
as B(P) =R(P)A, (~p()R '(P), where A, ((p() is a
pure Lorentz transformation along the z axis
such that the rest-frame four-vector (Ws, 0) be-
comes (E, O, O, P). R(P} is a rotation R(p, 8, 0),
in which the Euler angles (p, 9) are specified by
the momentum direction P. The boost B(P) pro-
vides the meaning of the spin index 0 of the one-
particle state and, from the definition given here,
indicates that 0 is a canonical spin index. This
can be seen by restricting A, a general Lorentz
transformation, to R, an arbitrary rotation. Then
the Wigner rotation becomes

(P, R) =B '(RP)RB(P)
= [R(Ri)A.(lpl)R '(RP)] '

x RR(i)A. (lpl)R '(P)

(A2)

Here use has been made of the fact that
R ~(RP)RR(P) is some rotation R, about the z axis
and hence commutes with A, (~p~). Thus for canoni-
cal spin we have the well-known transformation

~ lpg& =D'. .(R)IRpg'&.

Clearly, under a Lorentz translation a the mo-
mentum state transforms as

To find the action of a and A on a square-in-
tegrable wave function we write (following Werle,
p. 213) a general element of the Hilbert space as

+j

le)= Z f z e$, ~)Iw),

d'
V(p, g)D'. .(P, A)IA pg'&A

cp(A 'p', g)D', (A Q', A)
a, a'

so that

x ip'g'&,

(~.V)(i, g)=ED'.. (A 'P, A)V(A 'p, g'), (A2)
0

llvll'= Z j ~ lofti, ~)l*&"

Similarly, (U,p)(p, g) =e' 'p(p, g). The normali-
zation of the states ~pg) is given by (p'g'~p, g)
='«'(p' -p)~. .

Two-particle states are defined by going to the
overall cm frame of the two-particle system.
That is, if P= p, +

poland P =B (P)P„ then the
two-particle state

~
P=0, p, g~g, & is defined as

~P=O, p, g,g, & =Nag, &( —pg, &,

~
P, p, g„g,) —= Us&» ~

P= 0, p, g,g,&, (A4)

where N is a normalization factor. N is fixed by
defining an equivalent two-particle state

~ Pspg, g, &,
where s, the invariant mass of the two-particle
system, is given by s = (P,+p,)'= (s,+p')'~'
+ (s, +p')'~'. We want

~ Psjgp, & to be normalized
like a one-particle state of momentum P and en-
ergy E = (P'+ }'s~'; that is,

(P 8 p gig2i PSpgi(T2&

=5 (P' P)5 (p -p')5-

This then fixes the normalization factor ¹ it is
given explicitly by Werle in Ref. 13.

It is now possible to define the various angular
momentum states that are needed for the cluster
decomposition. We begin with the orbital angular
momentum state, defined as

with p an element of the one-particle Hilbert space
satisfying
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IP=o f. ,o,o, )-=(' '(
J(di D'.,".

( P)[ P

X/2

IP=OsJgg, g, ) = Q (yml Jp, Jp, )2J+ 1

= 0 sPa~ap& s

I P, st of a,a, &
= Uf3&P}l P=o sLaLap2& s (A5)

so that

x&Jg, +a, l jmLO&

x
I P=osJaLj), (AS)

which satisfies

Uzl P=0sLazap ,&' i/2
2I +].

I PsJaap2& = Z (Ja, +a2ljmLO)2J+ 1

DG G ADGG ADGG A

x
I
p = 0 sLa 'v 'a,' ) . (A6)

x&jml Jp , J2v2&-IP'sJaLj) .

(A 10)
The boosted orbital angular momentum state has
the same rotational properties as the P=0 state
because of the fact that RB(P) =B(RP)(P,R)
=8( RP)R for canonical spin boosts, and is norma-
lized so that (P's'L 'gLa,'v2I PsLa~v, a, &

=5 (P' P)5f. L, 5-,t ~ 5, 5,;o . From the ro-
tational properties of the orbital angular momen-
tum states it is clear that a total angular mo-
mentum state can be defined by coupling together
the intrinsic spins J, and J, and then taking the
resulting &pin j and coupling it to I to form the
overall angular momentum J:

I PsJaLj& = P &JaILarjm&&jm IJ, p, J2a2& (A7)
Ggm
GyG2

x
~
P, sLa~a, g, &

One other total angular momentum state is
needed for the cluster decomposition, in which
the degeneracy parameters 4 and j are replaced
by the spin projection o, and o,. Such a state is
defined by

) 1/2

IP=Osdaaa, ) =—( ) f dPD. .. (P}

x Us(~ql P=o(oop)a, o, &

(2J

Finally, it is necessary to find the connection
between wave functions in different variables in
order to compute the action of the separation op-
erator on the total angular momentum. A
straightforward calculation following the lines of
Eq. (A3) gives

f(Psoa a) P, )=D „(p)f(PPLa a a,);

f (P sLaf a p, )

jm4gl. Jg J~o~ J2g2 jm PsJgLj

X/2

f(Psltsa, )= E ( d ) D',;. ;(P)D"., ;(P)
t I

GgG2

x D,', (p)f (P sJva', v'2) . (A11)

APPENDIX B: VARIOUS LIMITS

In this Appendix various limits will be con-
sidered that are needed in the analysis of the
cluster decomposition. The first comes from Eq.
(2.9) and can be written

»m 2 j,'(pa) I f~ (p) I
= o .

a-+~ 2 =p

We want to show that this limit is equivalent to
writing

xD'.a.,(p) I
P = Ospa,'a,'&, »m If~(p)l =0 (B2)

which transforms under rotations as

U„IP=OsJavp, ) = g D, D(R)l P=osJa'ap, ) .
Gl

(A8)

(S3a}

To show this two properties of the spherical Bes-
sel functions jz(Pa) are needed:

P j '(Pa) = 1 for all Pa,
Z=o

As with the orbital angular momentum states,
I PsJvv, a, ) =Us&»l P=osJaap&& and has the same
rotational properties as the P=0 state.

The connection between the two angular momen-
tum states can be obtained from Eqs. (A7) and
(A8):

(Mb)

If+ (p)l &ke when a &2, . (B4)

j (pa)= sin(pa ——,'Zw)/pa for pa»2 .

It is easiest to begin by assuming Eq. (B2) and
showing that Eq. (Bl) follows. Now Eq. (B2)
means there exists an e and an 2, such that
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If M~ denotes the maximum of l f~(p)l for 0 ~2
& C„ then we can write

2 i,'(ps)lf, (p)l+ ~ j,'(p~)lf, (p)l
Z=o

& M~ j '(pa)+ —& —+ —=(,
2 2 2

(B5)

for Pa»C &2,. Here use has been made of prop-
erty (B3b) of the spherical Bessel function, while
the bound on the second term in the sum in Eq.
(B5) makes use of property (B3a). Thus, Eq.
(B2) implies Eq. (Bl).

Going in the other direction is a little more
complicated for it might seem possible to pick a
subsequence 2„ in Eq. (Bl) for which the terms

jz (pa) are very small, so that lpga (p)l need not

go to zero for large 2„. But one other property
of the sum can be used to show that such a sub-
sequence cannot exist. Namely, for fixed P as a
gets large, the zeros of j (Pa) change. This can
already be seen from Eq. (B3b), where an asymp-
totic form for jz(Pa) is given. Because the neigh-
borhood in which j~(pa) is small changes as a
changes, it is impossible to find a subsequence
2„ for which j (Pa) remains small as a varies.
Hence Eq. (B1) implies Eq. (B2).

The second limit we want to compute involves
the Clebsch-Gordan coefficients (jml OlJm) in
which J and L get large for a fixed value of j and
m. The easiest way to compute this limit is to
make a change of variables in which j+L —l =J
and I, = 0, . . . , 2j, when L ~ j. Then

(j)m; J+L —j, 0lJm)

L(2J+ 1)(2J+L —2j)!(J+m)!(J -m)! (J+ L —j )! [(2j —L)!L!(j -m)!(j -m)!]' '
~ (2J+L+1)!(J-j+A)!(J-j+A)! (J+L-j-A)! A!(L —A)!(j-m —A)!(j —L+m+A)!(-1) '

(B6)

The terms in the Clebsch-Gordan coefficients have been so arranged that the first terms all involve J,
which will get very large, while the last terms involve only j, L, m, and ~, which remain finite. Further,
the first terms are so arranged that their ratios can be readily computed for large J. Thus

(J+ L —j)!
(2J+ L —j —A.)!

= (J+ L -j) ~ ~ ~ (J+ L —A+ 1)-J

L(2J+ L —2j)!
k (2J+ L+ 1)! (2J+ L+ 1) ~ ~ ~ (2J'+ L —2j+ 1) l~(2J)'@+'

since A. & j+m,

= [(J+m) ~ ~ (J+A. —j+ 1)!]''- (J " ~)' '
(

(J+m)! l
(J+ A. —j)!&

+ ~ -j) (J -m+ 1)]-' '-A ~ ~
~

Combining these terms gives

(j,m; J+L -j, olJ
2j i ~ &!(L —&)!(j-m —A.)!(j—L+m+ A,)!

X=r+m-j
as J gets large.

(B7)
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