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Electronic states of swift channeled jons are studied in terms of a time-dependent effective-Hamiltonian
theory. These states are shifted in energy by the electric potential of the perturbed crystal, and transitions
among them are induced coherently by the oscillation of the potential. Calculated energies for low-lying
states of hydrogenic ions channeled in Au are in reasonable agreement with experimental resonant coherent-

excitation spectra.

. INTRODUCTION

Channeling, the passage of swift projectiles
through crystals by way of channels bounded by
strings or planes of atoms, has figured in many
studies in recent years.’ However, little atten-
tion has been paid to the internal degrees of free-
dom of channeling ions.? Recently, electronic
spectra of such ions have been measured®* using
resonant coherent excitation,® giving to the theory
of their electronic states new interest and impor-
tance.

A time-dependent effective- Hamiltonian forma-
lism is presented for channeled ions, which de-
scribes the energies of low-lying electronic states,
the coherent transitions between these states, and
the decay of coherence. Electronic wave functions
and energies are calculated for various one-elec-
tron ions axially channeled in Au, and the theoret-
ical resonant coherent-excitation spectra are com-
pared with experimental results.?*

Kutcher and Mittleman,? in a 1975 paper having
a 'similar title to the present one, presented a
theory of hydrogen-like ions channeling at high
velocity and predicted wave functions and binding
energies of He* and H channeling in Na at the high-
velocity (nonrelativistic) limit. Our treatment re-
sembles theirs in using an effective-Hamiltonian
approach and has the same high-velocity limit,
but there are basic differences, which are import-
ant for the present calculations. These differences
occur in the choices of P space for which the ef-
fective Hamiltonian is defined, in the retention in
the present case of the variations in the potehtial
along the channel direction, and in the treatments
of polarization of the crystal.

II. TIME-DEPENDENT EFFECTIVE-HAMILTONIAN THEORY

Consider an ion channeling at high velocity,
v>Zv,, where Z and v, are the atomic number
and the Bohr velocity, ® respectively. The nucleus
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is assumed to follow a prescribed classical tra-
jectory while the wave function for the remainder
of the system evolves according to the time-depen-
dent Schridinger equation

I .-
(zh‘a—t —H>\1!(ra,rc,t) =0, (1)

where ;n and ;c represent all the position coordi-
nates of the ion’s electrons, and the particles of
the crystal, respectively, relative to an origin
fixed to the crystal. The Hamiltonian H is the sum
of the Hamiltonians H, and H, of the free ion and
the unperturbed crystal, respectively, and the ion-
crystal interaction V:

H=H,(T,,0) +H,F,)+ V(T,, T,,0). @)

The time dependence indicated for H, and V arises
from their dependences on the position of the ion.

If the ion has a small enough radius, its inter-
action V(T,, T, ¢) with the crystal is approximately
the interaction, call it U(f,,?), of the equivalent
point charge with the crystal. Now the Hamiltonian
HO

Hy=H,(t,,t) + H(T,) + U(T,, 1) (3)
obtained from H by replacing V with U has the ad-
vantage of being separable in r, and r,, as well as

being a reasonable approximation to H. Therefore
a useful basis for solution of Eq. (1) is

E1= X1, 1) 0, (T, 1), (4)

where the y,; are an orthonormal set of wave func-
tions of a crystal perturbed by a channeling point
charge

5 .
(iﬁgt— ~H, - U)x,:O, (5)

and where the ¢, are normalized eigenfunctions of
H,, with eigenvalues ¢,. Let the ¢, be indexed in
order of increasing energy (¢; >¢; if j >4), and
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have appropriate time-dependent phase factors so
that '

Gﬁ% —H,,)¢, “( -H)P=0. (6)

These product functions form a complete set, and
satisfy a time-dependent Schrodinger equation with
Hamiltonian H:

s ‘ .
(ih’a—t—H()Eu=0. (7)

Exchange of electrons of the ions with those of the
crystal may safely be ignored.®

Consider the time evolution of a system in which,
at some initial time {,, the ion is in a low-lying
state, specifically some linear combination of the
lowest n ¢; functions, while the crystal is in some
arbitrary state x;,. Define time-dependent projec-
tion operators P and @

P@)= Z} £, ®)><£,0)]

=Z:|x;(t)¢,(t)><x,(t)¢¢(t)l (®)
and
Qt)=1- PO). (©)

The wave function ¥ will evolve in P space, and
will develop a @ component as time goes on, be-
cause of the influence of the term H’' = H - H,,.

An equation for the evolution of the P-space part
of the wave function of the above system may be
derived, if Eq. (1) is written as two equations

7]
Péﬁ?t_ - )(P+Q)\I/=0, (10)
2]
ofir - H)P+@u=0 GE
and use is made of the commutators,
[P'h’a]—[ 'h’a-PH (12)
> 2 5}' =-1Q,1 9t ‘[ s o]'
The solution of Eq. (11) for ¥, subject to the ini-
tial condition @ ¥=0 at time ¢, is
Q¥ (?)

= [ Gt @umEPE )/ s (1)
to

where GQ*Q is the retarded Green’s function which

satisfies the equation
a +
(i-a—t - (H°+QH'Q)/<77)GQQ(Z’ t)=I6(t—t') (14a)

with initial condition
Gso(t,t')=0 if t<¢’, (14b)

where I stands for the unit operator.” With the
above result for Q ¥, Eq. (10) takes the desired
form,

o]
(iﬁa—t— H,,,)P\J!:O (15)

in which the effective Hamiltonian is

Hoff=H0+PH’P_')é_iﬁr1 (16)

where the last term is
%mr:Pme dt' G SQH' P/, (17)
to

where the time argument ¢/ is understood for the
operand of G*, as in Eq. (13). The effective Ham-
iltonian is nonlocal both in space and in time, be-
cause of I,

A calculation discussed in Sec. IV shows that the

Hermitian part of the last term, -3i# T, in H,,, is
negligible compared with PH’P for Z = 6, and
v>Zv,. In addition, we argue that, at high ion ve-
locity (v>Zv,), -4i# T is mostly absorptive. The
term in question involves a P-Q interaction at
time ¢’/ <¢, a propagation in @ space from ¢’ to ¢,
and @ - P interaction at time ¢, summed over all
t’<t. Since the limit of G,u(f, ') as #’ approaches
t from below is -il, the contribution to the right-
hand side of Eq. (17) from the time element d¢#’ run-
ning from ¢ -dt’ to ¢t approaches -iPH'QH’'Pdt’' /7
=_i(QH'P)'QH’'Pdt'/% for small d¢’. This contribu-
tion is all absorptive, as the operator multiplying
-7 is positive. (We note in passing that it is local
in time.) It follows that the Hermitian part, if any,
of -5 7T requires interactions at times ¢’ and ¢ re-
moved from each other. We argue below that at
high enough velocity, separated interactions are
negligible, compared with those occurring closer
in time, so that the Hermitian part of -34#T de-
creases relative to the absorptive part.

The operator H’=V — U has the following repre-
sentation in coordinate space

1 1
H=_ eq|w—e — ———=rr
; qc[lrc" r,l lrc—R(t)I],

where ¢q, is thg charge of the cth particle in the
crystal, and R (f) is the (prescribed) position of
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the ion. In a multipole expansion with respect to
the ion position, the leading term in H’ at large
distance is the dipole term,

_Ze(;a —ﬁ)-ch(i"c- R)/IT, - RI®.

Thus, at large distance I;c - ﬁl from the ion, H’,
considered as a function of the coordinates of the
crystal’s particles, falls off as the square of the
distance. Therefore, the disturbances of the crys-
tal which are caused by H’ are localized, at the
time they occur, near the position of the ion. At
high enough velocity such that the ion quickly out-
runs the disturbance, that part of QH’P which in-
volves a transition y; = x,(k #I) in the crystal con-
tributes to essentially only the absorptive part of
-4i#T. Those interactions QH’P with that part of
@ space in which the ion is excited, but not the
crystal, require separate consideration. We as-
sume that n,the number of ion states included in
the definition of P space, is chosen to be suffi-
ciently large that ions excited to ¢, (m >n) will
soon excite the crystal® (through QH’Q in the pro-
pagator), the result being absorption from P space
as above.

It follows that I' is asymptotically a positive op-
erator, local in time, at high velocity, so that
-3i%T is asymptotically purely absorptive. The
Hermitian part of -3i%Z T’ decreases with velocity,
both in an absolute sense, and relative to the ab-
sorptive part, and relative to PH'P.

We may write P¥ in a separated form

P =ypf, , (18)

where f is an unknown function of the coordinates,
;a, of the atomic electrons, and p projects onto
the space of » atomic bound states, i.e., is given
by Eq. (8) with |x,>and<y,| omitted. Then, Eq.

(15) reduces to Schrédinger-like equation for pf,

)
75— nef =0, (19)
where the effective atomic Hamiltonian, %,,, is
har= Hy+ p(Xi| H' XD =57 (4, | TX )P » (20)

in which the integration implied by those scalar
products notated with parentheses extends only
over the crystal coordinates. Now, (x,lH’x,) is
given by

(X’]H'Xl) =E[—€(X1 lzqc'r:a— ;c! Xl)
+e(x; |ch|§— r| X:)J

= aZ[_e@(;a,t) +e<I>(§,tﬂ .

where qx(;,t) is the expectation value (with respect
to the perturbed crystal wave function yx,) of the
electric potential at point T and time ¢ in the crys-
tal, and where the explicit time dependence arises
from the change with time of x,. That part of (x,!
H'y,) which depends on the coordinates of the ion’s
electrons is, therefore, -¢%,®(T,,t). The other
term is irrelevant to the ensuing work, as it is a
function of time alone. Omitting that term, the
effective Hamiltonian becomes

he!l:Ha_epq)p_;_iﬁYy (21)

where y= (xLII‘x,). Here and in the following, &
means 2,®(r,, t).

Let us express the above results, Eqs. (19) and
(21), in an interaction picture. In order to avoid
secular terms in the Hermitian part of the inter-
action matrix, first linearly transform the basis
to the (time-independent orthonormal) one which
diagonalizes that part, p(H, - e®,.)p, of kyy which
is time invariant and Hermitian.

pH,-e® )PP =Eb;, i=1,2,...,n, (22)

where &, is the time average of &, measured
relative to the nucleus of the moving ion:

lim 1

(I)Dc(;,) = TewowoT

. .
f ate[R@)+r,1],
0
Then, upon expanding pf as follows,
n
pr= 2 0™, (23)
7

the effective Schrodinger equation, Eq. (19) be-
comes

..dc . .
Zﬁ_d,}izi[“e<’|q’Acl]>

i=1

5yl BTEIMC 1,2, n, (24)
where ®,,=® - ®,,, and where matrix elements
are in the ¥ basis. : '

The interpretation of the above result is simple
and direct. Consider the effective Hamiltonian
her (Eq. 21). The potential -ep® ,op (Which is con-
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stant in time) mixes the » atomic states of p space
and perturbs their energies. The new states are
the ¥, with energies E,. The oscillating potential
-ep®,.p causes coherent transitions between these
states, and -3i%y causes loss of coherence and
lifetime broadening.

The spectra of ions passing through solids may
be observed in emission, if the radiative lifetime
is much shorter than the time the ions spend in the
crystal. This has been done by Bell et al.® for the
(1s2p) 'P, - (1s?)'S, transition in helium-like sul-
phur, §'*  inaluminum. The projectiles were not
channeled, in which case the time average &, .
of the static potential is zero, and the ion’s elec-
tronic energies (Eq. 22) are perturbed by only the
polarization potential. Such an interpretation was
offered by Bell ef al.® and by Jakubassa®® for the
observed line shift.

III. RESONANT COHERENT EXCITATION

The oscillating potential &, of the crystal it-
self may be used to resonantly excite swift ions in
single crystals. It follows from Eq. (24) that re-
sonant coherent i-j transitions may occur when
one of the angular frequencies w, of ¢|1® . 17) is
in resonance with the energy difference, i.e., when
both the resonance condition

wy~(E,—E,)/ I (25)

and selection rules* are satisfied.' This possi-
bility was predicted by Okorokov,® for axially
channeled ions. References to other work are giv-
en in Ref. 4.

The present treatment applies not only to both
axial and planar channeling, but to projectile tra-
jectories in arbitrary directions. Channeling is
therefore not a necessary requirement for reso-
nant coherent excitation. This is a good place to
note that a long coherence time is necessary for
sharp resonances. Coherence times increase with
increasing velocity and increasing atomic number,?
and are longer for channeled ions than for unchan-
neled ones.

The angular frequencies w, of ®,., for an ion
moving with velocity ¥, are determined by the
crystal symmetry and lattice parameters, and take
only the values

wg=E- ¥, (26)
where g is a reciprocal-lattice vector. For gold,
which is face-centered cubic, with lattice constant

a, take the conventional cubic unit cell and Cartesi-
an basis. Then these vectors are

g= @2rnh/a, 2nk/a, 27l/a), (27

the integers 1, k, and ! taking all values restric-

ted such that no even integer is combined with any
odd integer in the same vector.!?

It follows that the p-space electronic spectra of
channeled ions may be measured by observing at
what velocities resonant coherent transitions oc-
cur. Sections IV and V contain calculations of
these spectra from the above effective Hamiltonian
theory, and comparisons with experimental values.

IV. CALCULATIONS

Calculations of electronic energies E; of one-
electron ions moving along trajectories centered
in the {100) and (111) axial channels and in the
{100} planar channel of Au will be described.

These channels are illustrated in Fig. 1, which
gives different views, all to the same scale, of a
simple face-centered cubic lattice. Only the 1s,
2s, and 2p hydrogenic states are included in P
space. The energies are the five eigenvalues of the
operator p(H, - e®,.)p as discussed above, the
Hermitian part of the remainder -+i#T" of the ef-
fective Hamiltonian being negligible (see below).

We require matrix elements of expectation val-
ues CI’(;, t) of the electric potential in a crystal
which is interacting with a moving point charge (at
the location of the channeled ion) of charge Q. The
fact that stopping power varies with the charge @
approximately as @° suggests that a first-order
perturbation calculation of ¢ is adequate for the
present purposes. Accordingly, take

<b=<po+<p1’ (28)

SOME CHANNELS IN A fcc CRYSTAL

%a0p®  adefofe
@Q o0 Lo Q%Qgé?g@
a2a?0%0
o»0 0 0® 55000,
53300 9gAgke
§°8°%°

<100>

<111>
{100}

{110}

FIG. 1. Perspective drawings, to the same scale, of
a simple fce crystal, showing (100) and (111) axial
channels, and {100} and {110} planar channels. The
distance between centers of adjacent (100) strings of
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where &, and ¢, are the expectation values of the
unperturbed potential, and of the polarization po-
tential (first order in U), respectively.

The potential &, is taken to be a sum of atomic
potentials, averaged over vibrations. Au is face-
centered cubic, and we take the conventional cu-
bic unit cell. The origin of space coordinates is
the center of one of the atoms, and orthogonal «,
v, and w axes are directed toward other atoms at
distances a, the lattice constant, from the origin.
Thus, &, as a function of position T is

®,(r) = Y 2,(2)e'*T, (29)
2 .

where the sum is over reciprocal-lattice vectors

g, defined by Eq. (27). The coefficients ®,(g) are
single-atom factors &,(g) (proportional to electron
scattering form factors) multiplied by Debye-Wal-
ler factors:

3,(2) = ®,(g) e, (30)
where
®,(g) =§%"§ f:smm)%_(y) v dr, (31)

where &, is the expectation value of the electric
potential in a single Au atom, which we take from
a Hartree-Dirac-Slater calculation with Wigner-
Seitz boundary conditions (radius, 3.011 Bohr ra-
dii) described by Tucker et al.'* The last factor
in Eq. (30) arises from averaging the potential
over lattice vibrations, assuming independent iso-
tropic Gaussian probability density distributions
for the atoms.- The exponential factor M is found
to be

M =31, (32)

where 2 is the mean-square atomic displacement,
which is'® 0.0188 A? for Au at room temperature.
Define &, .. as the time-invariant part of ¢,

from the reference of the moving ion. When <I> (r)
is expressed as a function of position T’ relative
to that of the moving nucleus, R(t), and averaged
over time, one finds, for the straight line trajec-
tory R= §0+ .';t,

®5, po(T)
T - -
_lim 1 f dt 2@0 g)explig: (R, + vt +1)]
T—>-° ‘ [s) g
=zr¢0@)exp[ig.<ﬁo+f')], (33)
z

where the primed summation extends over only

those reciprocal-lattice vectors § which are per-
pendicular to ¥. For channeling parallel to, say,
the crystallographic y axis, the primed sum ex-
tends over g in the y plane, whereas for channel-
ing in the y plane (not along any low index axis),
the sum is over g on the y axis.

When the crystal is treated as a homogeneous,
isotropic, translationally invariant medium, the
first-order, scalar electric potential ®, originat-
ing in the linear polarization induced by a point
particle of charge (Z - 1)e movmg with constant
velocity ¥, may be written'®

(z J’ 1 -
’ a3 N—=m—=1)2
® () = -—-—5— % exp(ik- Y)e(k,k-V) ) ,
(34)
where e(E ,w) is the longitudinal dielectric func-
tion of the medium. Here € depends on the mag-

nitude of k. In the present calculation a plasmon-
pole type of approximation'®'® was used for €(k, w);

-w,?
Twlrw + BRI+ BRYAmE — w(w +i0)

(35)

=1

The parameter w, corresponds to the plasma fre-
quency of an electron gas but may be chosen to fit
experimental data on the plasmon-like resonance
behavior of real metals, semiconductors, or oth-
er solids. Similarly, the damping constant ¢ may
also be taken from experiment, as can 3, the hy-
drodynamical velocity of disturbances in the elec-
tron gas. The energy 7w, may represent an effec-
tive band gap in materials like semiconductors.
Single-particle effects are accounted for by the
presence of the term equal to the square of the
kinetic energy, 7°k?/2m,, of a free electron with
momentum %K. The dielectric constant represen-
ted by Eq. (35) satisfies the sum rules

f mem[e(E ,w)]dw: fwwlm‘i?(f—l—@]dw =3TW

as it must from very general requirements.'”
In the present applications we have chosen w,=0,
w,=0.949 a.u. and

8% =30} = @ &) w' P/ (m,e)*? = 0.815

a.u.,'® and have taken the o —0* limit, represent-
ing Au as an electron gas with a plasma frequency
of 25.8 eV, chosen from electron energy-loss ex-
periments.'® The plasmon-pole approximation of
Eq. (35) was employed for most of the work car-
ried out in this connection. However, in one in-
stance, the calculation of the 2p,, 2s matrix ele-



ment of ®,, it was possible to employ the Lind-
hard dielectric constant'® to represent the re-
sponse of an electron gas for which 7w,=25.8 eV.
The difference in matrix elements computed in the
two approximations, for v=10.45 v,, is less than
1%. ) .

Some matrix elements of -3i7y (Egqs. 21 and 17)
were computed, with the following approximations,
to test whether the contribution of this operator to
the energies is negligible. It is convenient to
write @ in terms of projection operators p (defined
above), ¢=1-p, P,=|x)(x |, and Q,=1- P, (where
the domains of the two pairs of operators are wave
functions for ions, and for crystals, respectively)
as follows:

Q=qP +pQ,+qQ,.

The retarded Green’ s function G;Q was replaced
by one, G*, defined as in Eq.-(14a) but without
QH’Q. Then, Eq. (17) for T becomes a sum of
three terms, corresponding to the three parts of
@ above. For the two terms containing @, we ig-
nore the potential U, and we treat the crystalin a
plasmon-pole type of approximation, in which en-
ergy transfers 7w and momentum transfers 7k to
the crystal are related by

rw=rw,+ (7%/2m)k?,

and the generalized oscillator strength sum rule
over excited states is used,

> 2
2 mie™®%e10) | Fw,,= Vi2wk?/8re?,
cm .

where V is the normalization volume for the crys-
tal. This modelis the same as the one underlying
Eq. (35) for the dielectric function when w,=0and -
B*=rw,/m,=0.949 a.u. Similarly, we treatgq
space of the ion by compressing the oscillator
strength in ¢ space (for transitions from any state
in p space) into a single final energy (#°/2m,)k*
(relative to the ionization limit of a free ion) for a
given momentum transfer #k. The g-p transition
strength is determined by the generalized oscilla-
tor strength sum rule

UG e Tali ) Prw, = 17k 2m,, i< 5.
i

The calculated values of the real part of (2s|—3i7iv|
2s).are found to be less in absolute value than the
experimental uncertainties in the transition ener-
gies, except possibly for C**, where the calcula-
tion gives —0.029 e?/a, for v=6 v, in the (100)
channel. Because of this, and because the calcu-
lation is probably an overestimate (due to assum-
ing too small a g-p transition energy), we neglect
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the real part of -4i%y in the remainder of this pa-
per. '

Calculation of the energies E, requires diagon-
alizing the Hamiltonian H, —e®, ,o— e®, in the
space of five eigenfunctions (1s, 2s,2p,,2p,, and
2p,) of the atomic Hamiltonian H,, taking &, pc
and ¢, from Egs. (33) and (34), respectively. For
pH p, we start with the nonrelativistic hydrogenic
Hamiltonian, and subtract a small constant from
the 1s, 1s element to correct the energies for re-
lativistic effects other than fine-structure split-
ting. (The fine-structure splitting is smaller than
both the above correction, and the resolution of
the present experiment, and is therefore ignored.)
The correction is such that the excited eigenvalues
of pH,p are degenerate and have energies above
the ground state by the amount of the spectroscop-
ic value of the 2p ®P,,, — 1s 2S transition energy in
the free ion.

The z axis is oriented along the direction of mo-
tion and, in the planar case, the x axis is perpen-
dicular to the channel. It is convenient to inte-
grate over configuration space first, before per-
forming the subsequent sums or integrals indica-
ted.

The results for O™ moving with a velocity® 100,
along the center line of a (100) axis of gold are
shown in Fig. 2. In the middle of the figure is
shown the effect that the static crystal potential
®,, pc has upon the energies. Then =2 states are

07* IN 100> Au
AT VELOCITY = 10 v, 25p;
e
L 4 4
/
. /
Egj _22_2_;) //
& ~
I‘“ A < //
= N ~ 2p,
- 240 — N ~— —
= \Q‘
S \\\ 2p, 2p,
o« AN —
w S -
g =\ T~ 2 2,
| - N ~— —
N \
Q \
w \
L‘ZJ \
\
239 — \ 2sp, —
STATIC STATIC +
NONE CRYSTAL POLARIZATION
POTENTIAL POTENTIALS

PERTURBATION OF ION

FIG. 2. Energy, relative to the 1s state, of four ex-
cited states of 07* moving along the center line of a
{100y channel in Au with velocity 10v,, according to this
theory. Starting on the left, values are for free ions,
and for ions with the indicated perturbations.
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shifted down slightly by varying amounts with re-
spect to the 1s level, as compared with the free-
ion energies. As shown in the Appendix, these
shifts are approximately proportional to the elec-
tron density averaged down the channel center
line. We note from the right-hand side of Fig. 2
that the polarization potential ®, also depresses
the levels slightly, but its main effect is to mix
and split the 2s and 2p, levels. This latter is sim-
ilar to the first-order Stark effect. Because of the
ion’ s motion, the induced electron density tends
to lag behind the ion in the form of a wake.® 2°
The result is an induced field which, in the neigh-
borhood of the ion, is directed opposite to the ve-
locity, and acts to retard the ion. The same field
mixes the 2s and 2p, levels.

The induced electron density varies too rapidly
with position near the ion for a second-order Tay-
lor series expansion to be useful in computing the
diagonal matrix elements of ®,, so the latter are
not simply proportional to the induced electron
density at the center of the ion. However, the2s,
2p, matrix element may be estimated within about
a factor of 2 (depending on atomic number and ve-
locity) from the stopping power in this model, by
approximating the induced field as a constant over
the volume of the ion. '

Calculated spectral shifts for N® moving in the
midplane of the {100} planar channel are shown in
Fig. 3, plotted against ™2 The left intercepts of
the curves are determined by the static potential
p®,, pcp only, and are approximately proportional
to electron density in the channel, as shown in the
Appendix. The changes in these curves with in-
creasing v (decreasing v) are due to the wake.
As in the axial case, above, one sees a Stark-type
mixing and splitting of the 2s and 2p, states by the

02 T T T T T

Ne* N {100} Au e
o4 —

2p,

AE = AE® (Hartrees)

o 0.01 0.02 0.03
VELOCITY 2 (a.u.)

FIG. 3. Transition energies AE from ls, relative to
the transition energy AE® in free ions, vs the in-
verse square of ion velocity, for N 6* centered in {100}
planar channels of Au, according to this theory.

wake. We note that the 2p, and 2sp, levels cross,
which is allowed on account of the reflection sym-
metry ot the Hamiltonian. For trajectories not in
the midplane, this level crossing does not occur.

V. COMPARISON WITH EXPERIMENT

Resonant coherent excitation spectra have been
reported from this laboratory.** Beams of one-
electron ions obtained from the Oak Ridge Nation-
al Laboratory tandem Van de Graaff accelerator
were passed in channeling directions through thin
single crystals. Spectra were determined by mea-
suring charge-state populations (charges Z-1 and
Z) of the collimated emergent beam. Local mini-
ma in the curves of count ratios (Z-1 to the sum of
Z-1 and Z counts) versus velocity are evidence of
resonance coherent excitation. From the veloci-
ties at which these minima occur, the experimen-
tal transition energies AE have been calculated,
using relations )

2niKv/a, K=1, 2, 3, ... for (100)
AE =
2n#Kv/V3a, K=1, 2, 3, ... for {111),

which follow from Eqs. (25) and (26). The lattice
constant @ of Au at 25°C is®* 4.078 97 A.

The theoretical values of transition energies AE
as compared with the free-space values AE® are
plotted as solid curves in Figs. 4—9. The dotted
curves are angular frequencies as functions of ve-
locity, Eq. (26), with spectroscopic values® of
AE® (2p P, ;, - 1s 2S) deducted. At the intersec-
tions, the resonance condition Eq. (25) is satis-
fied. The intersections where dipole selection

0.2 T T T T

[0 I o

AE - AE® (Hartrees)

L l i !

[e] . 0.01 0.02 0.03
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FIG. 4. Transition energies AE from 1s, relative to
the transition energy AE" in free ions, vs the in-
verse square of ion velocity, for C5* centered in (100)
axial channels of Au. ——, this theory; ———, 2m7Kv/
a-— AEO; O, predicted resonant coherent excitation
(RCE); @, observed RCE (Refs. 3 and 4).



rules®® are also satisfied, marked with open cir-
cles, are where resonant coherent excitation is
expected. The experimental points, obtained from
minima in the count ratios discussed above, are
the filled circles. Most of the experimental curves
from which these points come are shown in Ref. 4.
We have corrected the experimental velocities for
slowing down in the crystal.

The experimental curves of count ratios versus
velocity contain rather broad dips, most of which
are pointed at the bottom. It is reasonable to as-
sume, as we do, that the minima occur at veloci-
ties where ions on centered trajectories come in-
to resonance, as these trajectories are associated
with the longest coherence times (and smallest
widths). This assumption cannot be strictly true
in the case of odd harmonic resonances in a {100)
axial channel, as the odd Fourier components of
the field are all zero in the center of this channel.*

In Fig. 4 is given a comparison between theory
and experiment for excitation of C** py the second
harmonic in the (100) axial channel. The second
harmonic part of the alternating field, as seen by
ions on the center line of a (100) channel, points
in the z direction (parallel to the velocity). By
symmetry, only the 2sp, and 2sp* states of cen-
tered ions can be excited by this harmonic.* The
ratio of intensities corresponding to exciting these
two states, assuming centered ions,. should equal
approximately the ratio of the squares of the 2p,
coefficients in the two states. These coefficients,
taken from the calculated eigenvectors of p(H, -
®,.)p for C°* at the appropriate velocity, give the
result on the basis of the above argument that the
intensity of the transition to the lower (2sp,) of
these two states should be only 0.36 times that to
the higher (2sp*) one. However, the two resonan-
ces observed experimentally (Fig. 11 of Ref. 4) are
of nearly equal strength. Furthermore, as is seen
in Fig. 4, the lower experimental resonance has
its energy near that calculated for the degenerate
2p, and 2p, states. Therefore, we attribute this
lower feature to 2p, and 2p, states, excited in tra-
jectories which are far enough from the channel
center line to break the symmetry on which the
selection rules discussed above are based. Itis
not clear why a smaller minimum representing the
2sp, state is not observed, but it may be obscured
by the larger feature near it.

Since the transverse component of the alterna-
ting field becomes about as large as the longitud-~
inal (or z) component (in the second harmonic) at
approximately 0.4 A from the channel center line, *
the near equality of the intensities of the two ob-
served resonances suggests that transitions in
ions at distances of about 0.4 A from the center
line make significant contributions to the observed
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COMPARISON OF THEORY WITH EXPERIMENT
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FIG. 5. Transition energies AE from 1s, relative to
the transition energy AEY in free ions, vs the in-
verse square of ion velocity, for N* centered in (100)
axial channels of Au. ——, this theory; ———, 2n%Kv/a
—_ AEO; O, predicted resonant coherent excitation (RCE);
®, observed RCE (Refs. 3 and 4).

resonances. A similar conclusion was reached
previously® from examination of energy-loss spec-
tra. . :

Similar conclusions are suggested by the second-
harmonic resonances in N°* in (100), Fig. 5. The
discussion of calculated intensity ratios versus ob-
served ones carries over quantitatively, and the
lower of the pair of minima seen in the second har-
monic is attributed to 2p, and 2p,. This assign-
ment is consistent with the 2p, - 1s energy meas-
ured with the third harmonic, also shown in Fig. 5.

Figure 6 shows agreement between theory and
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FIG. 6. Transition energies AE from 1s, relative to
the transition energy AE in free ions, vs the in-
verse square of ion velocity, for 0'* centered in (100)
axial channels of Au. ——, this theory; ———, 27%K/a
- AEO; O, predicted resonant coherent excitation
(RCE); @, observed RCE (Refs. 3 and 4).
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experiment for the 2p,, 2p, level of O™ in (100)
similar to that found for N®, A second minimum,
much smaller than the main one, was omitted
from the graph.

The F* resonance is weak, and its position is
difficult to read, as indicated by the large error
limits in Fig. 7. The double minimum predicted
by the theory is not resolved. The count ratio
curve appears to have a very small secondary
minimum at a velocity which is (if due to the fourth
harmonic) too low for the corresponding AE to fit
on Fig. 7, but this feature may be due to noise.

Transition energies for C* and N°* in the (111)
axial channel are shown in Figs. 8 and 9. There
are only small differences between the calculated
and experimental transition energies. In the case
of N¥, the experimental count rate curve shows
no evidence for the 2sp, - 1s transition expected to
be produced by the sixth harmonic. This is not
significant,as the 2sp* — 1s resonance observed
with this harmonic is quite weak, and the intensi-
ty of the missing minimum should be still smaller,
by a factor of 3, judging by the relative 2p, char-
acters of the 2sp, and 2sp* states. ' '

The (111) channel is narrower than the (100) one,

with greater average electron density on the center
line. Thus, on the basis of Eq. (A3), greater sta-
tic shifts are anticipated, and both the detailed
calculations and the experimental results in Figs.
8 and 9 confirm this point.

VI. CONCLUSIONS

A time-dependent effective-Hamiltonian theory
for the electrons of channeled ions has been pro-
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FIG. 8. Transition energies AE from 1s, relative
to the transition energy AE" in free ions, vs the in-
verse square of ion velocity, for C°* centered in {111)
axial channels of Au. ——, this theory; ———, 277K/
Vaa — AEO; O, predicted resonant coherent excitation
(RCE); @, observed RCE (Refs. 3 and 4).

posed, and transition energies have been calcula-
ted for swift one-electron ions centered in various
channels of Au. Such calculations require expec-
tation values of both the static (or unperturbed) po-
tential in the crystal and the wake potential in-
duced by a moving point charge. An approxima-
tion in terms of the mean electron density in the
channel center is suggested for possible future
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FIG. 9. Transition energies AFE from 1ls, relative to
the transition energy AE % in free ions, vs the in-
verse square of ion velocity, for N°* centered in (111)
axial channels of Au. ——, this theory; —— —, 277%Kv/
Via - AEO; O, predicted resonant coherent excitation
(RCE); @, observed RCE (Refs. 3 and 4).
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use in lieu of the full static potential.

The static potential was obtained from a relativ-
istic quantum mechanical calculation for an Au atom
with Wigner-Seitz boundary conditions, averaged
over vibrations, and the polarization was estima-
ted from dielectric theory.

The results are in reasonably good quantltatxve
agreement with recent measurements of resonant
coherent excitation. It is suggested that improve-
ment in the agreement requires that consideration
be given in the calculation to ions whose trajector-
ies are not centered in the channel, and to an im-
proved treatment of the polarization wake.
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APPENDIX

Relationships between the electron density and
the energy shifts due to the static potential'®, ;.
are derived in this Appendix.

The average @, . of the potential &, along the
direction of a crystallographic axis may be written
as an expansion in cylindrical coordinates:

'50. pc=2(0) + Z‘I’m(p) exp(ime),

m#0

where p is the distance from a channel center line,
and ¢ is the azimuthal angle., For (111) and (100)
axial channels, the above sum extends over only
those m values which are integral multiples of 3
and 4, respectively, by symmetry. For an ion on
the channel center line, the matrix elements, ina
basis of s and p electronic states, of exp(xim ¢)
are all zero for m >3. Therefore, given an s and
p basis, ®(p) is the only part of &, ,c which ef-
fects ions centered in (111) or (100) axial channels.

Upon averaging both sides of Poisson’s equation,
one finds

% aip <p5%><—b(p)=—47rn'(p)y (an

where 7 is the expectation value (for the state y of
the crystal) of the charge density, averaged down

the axis and over azimuthal angle. It follows that
the coefficients of the Taylor expansion of & about
the channel center line,

$(p) = &(0) - m(0)p* -

U azm-zn(p) 2m
“mi@em-=2)1 a*m2 p

p=0

—, (AZ)

are proportional to the average charge density n
and its derivatives at p=0. Dropping terms of
fourth and higher order from Eq. (A2) leads to the
following approximation for the static first-order
contribution to spectral shifts for ions on the chan-
nel axis, in terms of the average down the channel
center line, 7, of the electron density:

AE gq:(f — 15) = AE°(j - 15)
- [(G |0 i) - (s |¢[19)]
-267Z7n,, for 2s
=\ -227Z*x,, for 2p,, 2p, (A3)

-10727%,, for 2p,

where AE,,. and AE® are, respectively, the ener-
gy spacings between the two states indicated, with
and without the inclusion of the static potential
Pp®,, pcp in the Hamiltonian (but without the polari-
zation potential). Values of AE,,,- AE® given by
Eqgs. (A3) would be exact if the density 7 (p) did not
vary with p, and are within 2% of the values com-
puted using the full static potential p&, ,.p, for O™
in Au (100). Agreement tends to be poorer for
lower-Z ions and for narrower channels.

A similar derivation for planar channeling yields
the following relation between the averages &, ()
and 7 (x), of the potentials and charge densities,
over the y-z plane, as a function of displacement
x from the midplane of the channel:

By, pc (%) = By pc(0) = 277 (0)x° ...

a1 92"y (x)

—— 2m_ ., ., A4
@i || S (A8

p=0

Dropping terms of fourth and higher order leads
to the following approximation for the static con-
tribution to spectral shifts for ions on the channel
midplane in terms of the average over the mid-
plane, 7,, of the electron density:

AE 4, (j —18) = AE°(j - 15)

-261Z%n,, for 2s

e
={-3412%5n,, for 2p, . (A5)

-107Z7n,, for 2p,, 2p,
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The above expressions would be exact if the den-
sity #(x) did not vary with x, and give results with-
in 18% of the values computed for O"* in the {100}
planar channel of Au.

The approximations derived in this Appendix

were not used in the calculations reported in this
work. They are included both for possible future
use, and as evidence that the energy shifts due to
the static potential are determined mainly by the
electron density in the center of the channel.
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