
PH YSIGA L REVIEW A VOLUME 20, NUMBER 5 NOVEMBER 1979

Atomic physics of channeled ions
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Electronic states of swift channeled ions are studied in terms of a time-dependent effective-Hamiltonian
theory. These states are shifted in energy by the electric potential of the perturbed crystal, and transitions
among them are induced coherently by the oscillation of the potential. Calculated energies for low-lying
states of hydrogenic ions channeled in Au are in reasonable agreement with experimental resonant coherent-
excitation spectra.

I. INTRODUCTION

Channeling, the passage of swift projectiles
through crystal. s by way of channels bounded by
strings or planes of atoms, has figured in many
studies in recent years. ' However, litt1.e atten-
tion has been paid to the internal degrees of free-
dom of channeling ions. ' Recently, electronic
spectra of such ions have been measured" using
resonant coherent excitation, ' giving to the theory
of their electronic states new interest and impor-
tance.

A time-dependent effective- Harniltonian forma-
lism is presented for channeled ions, which de-
scribes the energies of low-lying electronic states,
the coherent transitions between these states, and
the decay of coherence. Electronic wave functions
and energies are calculated for various one-elec-.
tron ions axially channeled in Au, and the theoret-
ical resonant coherent- excitation spectra are com-
pared with experimental results. "

Kutcher and Mittleman, ' in a 1975 paper having
a similar title to the present one, presented a
theory of hydrogen-like ions channeling at high
velocity and predicted wave functions and binding
energies of He' and H channeli. ng in Na at the high-
velocity (nonrelativistic) limit. Our treatment re-
sembles theirs in using an effective-Hamiltonian
approach and has the same high-velocity limit,
but there are basic differences, which are import-
ant for the present calculations. These differences
occur in the choices of P space for which the ef-
fective Hamiltonian is defined, in the retention in
the present case of the variations in the potential
along the channel direction, and in the treatments
of polarization of the crystal.

II. TIME-DEPENDENT EFFECTIVE-HAMILTONIAN THEORY

is assumed to fol1ow a prescribed classical tra-
jectory while the wave function for the remainder
of the system evolves according to the time-depen-
dent Schrodinger equation

where r, and r, represent all the position coordi-
nates of the ion's electrons, and the particles of
the crystal, respectively, relative to an origin
fixed to the crystal. The Hamiltonian H is the sum
of the Hamiltonians H, and H, of the free ion and
the unperturbed crystal, respectively, and the ion-
crystal interaction V:

H=H, (r„t)+H, (r,)+ V(r„r„t). (2)

The time dependence indicated for H, and V arises
from their dependences on the position of the ion.

If the ion has a small. enough radius, its inter-
action V(r„r„t) with the crystal is approximately
the interaction, call it U(r„t), of the equivalent
point charge with the crystal. Now the Harniltonian
Hp

H, = H, (r„t) + H,(r, ) + U(r„ t)

obtained from H by replacing V with U has the ad-
vantage of being separable in r, and r„as well as
being a r easonable approximation to K Therefore
a useful basis for solution of Eq. (l) is

$ )(
——X ((r„t) Q( (r„t), (4)

where the y, are an orthonormal set of wave func-
tions of a crystal perturbed by a channeling point
charge

~~
8

ip——H —U y)=0,

Consider an ion channeling at high velocity,
v&Zvp, where Z and vp are the atomic number
and the Bohr velocity, ' respectively. The nucleus

and where the Q, are normalized eigenfunctions of
H„with eigenvalues e, . Let the Q, be indexed in
order of increasing energy (q,. ~ e, if j&i), and
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have appropriate time-dependent phase factors so
that

satisfies the equation

~

~

8
sP——Hc g

= cg —Ha (6)
I—I —(H +QH'Q)Ill)Gqq(tt ) ,ll'l(t —=t')

with initial condition

(14a)

These product functions form a complete set, and
satisfy a time-dependent Schrodinger equation with
Hamil. tonian H, :

(7)

Geo(t, t') = 0 if t ( t', (14b)

where I stands for the unit operator. ' With the
above result for Q4', Eq. (10) takes the desired
form~

I

Exchange of electrons of the ions with those of the
crystal may safely be ignored. '

Consider the time evolution of a system in which,
at some initial time t„ the ion is in a low-lying
state, specifically some linear combination of the
lowest n (t); functions, while the crystal is in some
arbitrary state X,. Define time-dependent projec-
tion operators P and Q

(
(, H —,- «.„)Pt =O

in which the effective Hamiltonian is

H, f~= Ho+PH'P —21@I',

where the last term is

-' —', l«l' Pl«QJ dt Q=qqQH'Pt'll,
to

(15)

(16)

(17)

P(t) = g I(„(I) & t„(I)
l

Xi~ g~ ~~Xr~

and

Q(t) = 1 —P(t).

The wave function 4' will evolve in P space, and
will develop a Q component as time goes on, be-
cause of the influence of the term H' =H —Ho.

An equation for the evolution of the P-space part
of the wave function of the above system may be
derived, if Eq. (1) is written as two equations

8P iF——H (P+Q)4'=0,
Bt

Q("—'- )("Q) =
Bt

(10)

and use is made of the commutators,

P, iF —= Q, iF—= [P,HJ.
I

(12)

The solution of Eq. (11) for Q4, subject to the ini-
tial condition Q4'= 0 at time tQ) is

Q(t)4 (t)

where the time argument I,' is understood for the
operand of G+, as in Eq. (13). The effective Ham-
iltonian is nonlocal both in. space and in time, be-
cause of I".

A calculation discussed in Sec. IV shows that the
Hermitian part of the last term, --,'i@i", in H, « is
negligible compared with PH'P for Z ~ 6, and
v&Zvo. In addition, we argue that, at high ion ve-
locity (v»Zv, ), -~iF I' is mostly absorptive. The
term in question involves a P-Q interaction at
time E'&t, a propagation in Q space from t' to t,
and Q-P interaction at time t, summed over all
tt&t. Since the limit of Goo(t, tt) as t' approaches
t from below is -iI, the contribution to the right-
hand side of Eq. (17) from the time element dt' run-
ningfrom t dt' to t approaches iPH'QH'Pdt'/F-
=-i(QHtP)~QH)Pdtt/F for small dt'. This contribu-
tion is all. absorptive, as the operator multiplying
-i is positive. (We note in passing that it is local
in time. ) It follows that the Hermitian part, if any,
of --,'iP I' requires interactions at ti~es t' and t re-
moved from each other. Ne argue below that at
high enough velocity, separated interactions are
negligible, compared with those occurring closer
in time, so that the Hermiti. an part of --, ill" de-
creases relative to the absorptive part.

The operator H'= V —U has the following repre-
sentation in coordinate space

dt' Goo(tt t')Q(t')H'(t')P(t')4((t')/F I .(13)

1

~q

" &o

where 6 is the retarded Green' s function which
where q, is the charge of the cth particle in the
crystal, and R (t) is the (prescribed) position of
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the ion. In. a multipole expansion with respect to
the ion position, the leading term inFI' at large
distance is the dipole term,

1

(x, iH'x, )=g -e(x, lpga, l .— .I x,)
a C

W]

+ (x lpga. lR-, I x )

ge(r, —R) gq, (r, —8)/I r, —Ri'. -e4 r„t +eC R, t

Thus, at large distance I r, —8) from the ion, II',
considered as a function of the coordinates of the
crystal' s particles, falls off as the square of the
distance. Therefore, the disturbances of the crys-
tal which are caused by FI' are localized, at the
time they occur, near the position of the ion. At
high enough velocity such that the ion quickly out-
runs the disturbance, that part of QFE'P which in-
volves a transition X, -X~(k ol) in the crystal con-
tributes to essentially only the absorptive part of
--', i'd? . Those interactions QFI'P with that part of
Q space in which the ion is excited, but not the
crystal, require separate consideration. We as-
sume that n, the number of ion states included in
the definition of P space, is chosen to be suffi-
ciently large that ions excited to P„(m &n) will
soon excite the crystal' (through QH'Q in the pro-
pagator), the result being absorption from P space
as ab~~~.

It follows that I' is asymptotically a positive op-
erator, local in time, at high velocity, so that
- ~ iIE I' is asymptotically purely absorptive. The
Hermitian part of --, i@I' decreases with velocity,
both in an absolute sense, and relative to the ab-
sorptive part, and relative to PII'P.

We may write P4 in a separated form

h ff = FI —e$4p —
~ lf p (21)

where y= (X&l I X,). Here and in the following, 4
means Z, C (r„f).

I et us express the above results, Eqs. (19) and

(21), in an interaction picture. In order to avoid
secular terms in the Hermitian. part of the inter-
action matrix, first linearly transform the basis
to the (time-independent orthonormal) one which
diagonalizes that part, P(H, —eC~c)P, of h, «which
is time invariant and Hermitian.

P(H, —eC ~)Pg( ——Eqt/r(, i = 1,2, ... , u, (22)

where C~~ i.s the time average of 4, measured
relative to the nucleus of the moving ion:

where 4(r, t) is the expectation value (with respect
to the perturbed crystal wave function x,) of the
electric potential at point r and time t in the crys-
tal, and where the explicit time dependence arises
from the change with time of X,. That part of (X, (

H'x, ) which depends on the coordinates of the ion's
electrons is, therefore, eZ, C (r„ f). The other
term is irrelevant to the ensuing work, as it is a
function of time a'one. Omitting that term, the
effective Hamiltonian becomes

PC'=xPf (18)

where f is an unknown function of the coordinates,
r„of the atomic electrons, and p projects onto
the space of n atomic bound states, i.e. , is given

by Eq. (8) with IX, &and&X, I omitted. Then, Eq.
(15) reduces to Schrodinger-like equation for Pf,

T

4 Dc(r') = — dt 4 [R(t) + r', f] .
0

Then, upon expanding Pf as follows,

n

Pf= gc 4e "'"", (23)

8
i@ h„, Pf=0, —— (19)

the effective Schrodinger equation, Eq. (19) be-
comes

where the effective atomic Hamiltonian, h, ff is
dC)ib '= [-e&iiC'„cij&
N

&. =H. +P(x iH'x, )P-', &P(x il'x)P (20) --,'i& &, je ' """C,, i=1, , .2. . , «, (24)

in which the integration implied by those scalar
products notated with parentheses extends only
over the crystal coordinates Now, (X., iH'X, ) is
given by

where 4 „~= 4 —4 D~, and wher e matrix elements
are in the t/ basis.

The interpretation. of the above result is simple
and direct. Consider the effective Hamiltonian
A cff (Eq. 21). The potential -ePC DcP (which is con-
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stant in time) mixes the n atomic states of p space
and perturbs their energies. The new states are
the g, with energies E,. The oscillating potential
-ep4~~p causes coherent transitions between these
states, and --,'i@y causes loss of coherence and
lif ctime broadening.

The spectra of ions passing through solids may
be observed in emission, if the radiative lifetime
is much shorter than the time the ions spend in the
crystal. This has been done by Bell et al. ' for the
(ls2P) 'P, —(ls') 'S, transition in helium-like sul
phur, S'", in aluminum. The projectiles were not
channeled, in which case the time average 4, D~
of the static potential is zero, and the ion' s elec-
tronic energies (Eq. 22) are perturbed by only the
polarization potential. Such an interpretation was
offered by Bell et al. 9 and by Jakubassa" for the
observed line shift.

III. RESONANT COHERENT EXCITATION

The oscillating potential 4„~ of. the crystal it-
self may be used to resonantly excite swift ions in

single crystals. lt follows from Eq. (24) that re-
sonant coherent i-j transitions may occur when
one of the angular frequencies ~I of (fl @„clj)is
in resonance with the energy difference, i.e. , when.
both the resonance condition

(25)toq —- (E, E,)/r-.
and selection rules' are satisfied. " 'This possi-
bility was predicted by Okorokov, ' for axially
channeled ions. References to other work are giv-
en in Ref. 4.

The present treatment applies not only to both
axl.al and planar channeling, but to projectile tra-
jectories in arbitrary directions. Channeling is
therefore not a necessary requirement for reso-
nant coherent excitation. This is a good place to
note that a long coherence time is necessary for
sharp resonances. Coherence times increase with
increasing velocity and increasing atomic number, '
and are longer for' channeled ions than for unchan-
neled ones.

The angular frequenci. es w& of 4„c, for an ion
moving with velocity v, are determined by the
crystal symmetry and lattice parameters, and take
only the values

ted such that no even integer is combined with any
odd integer in the same vector. "

Et follows that the p-space electronic spectra of
channeled ions may be measured by observing at
what velocities resonant coherent transitions oc-
cur. Sections IV and V contain calculations of
these spectra from the above effective Hamiltonian
theory, and comparisons with experimental values.

IV. CALCULATIONS

Calculations of electronic energies E, of one-
electron ions moving al'ong trajectories centered
in the (100) and (111)axial channels and in the
(100) planar channel of Au will be described.
These channels are illustrated in Fig. 1, which
gives different views, all to the same scale, of a
simple face-centered cubic lattice. Only the 1s,
2s, and 2p hydrogenic states are included in P
space. The energies are the five eigenvalues of the
operator p(H, —eC nc)p as discussed above, the
Hermitian part of the remainder --,'i5I" of the ef-
fective Hamiltonian being negligible (see below).

%e require matrix elements of expectation val. —

ues C(r, f) of the electric potential in a crystal
which is interacting with a moving point charge (at
the location of the channeled ion) of charge Q. The
fact that stopping power varies with the charge Q
approximately as Q' suggests that a first-order
perturbation calculation of 4 is adequate for the
present purposes. Accordingly, take

(28)

SOME CHANNELS IN A fcc CRYSTAL

%. v 9 pP
a..Q, o gu
Q o QocQ
CFQ 0 QM

&100)

g= (2wh/a, 2'/a, 2vl/a), (27)

the integers g, k, and l taking all values restric-

(dl =g v

where g is a reciprocal-lattice vector. For gold,
which is face-centered cubic, with lattice constant
a, take the conventional cubic unit cell. and Cartesi-
an basis. Then these vectors are

I&oo)
(»o I

FIG. 1. Perspective drawings, to the same scale, of
a simple fcc crystal, showing (100) and (111) axial
channels, and (100) and (110) planar channels. The
distance between centers of adjacent (100) strings of
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where 4p and 4, are the expectation values of the
unperturbed potential, and of the polarization po-
tential (first order in U), respectively.

The potential C, is taken to be a sum of atomic
potentials, averaged over vibrations. Au is face-
centered cubic, and we take the conventional cu-
bic unit cell.. The origin of space coordinates is
the center of one of the atoms, and orthogonal u,
v, and u) axes are directed toward other atoms at
distances a, the lattice constant, from the origin.
Thus, Cp as a function of position r is

e, (r) = Qe, (g)e"',

where the sum is over reciprocal-lattice vectors
g, defined by Eq. (27). The coefficients C, (g) are
single-atom factors 4,(g) (proportional to electron
scattering form factors) multiplied by Debye-Wai-
ler factors:

c,(g) =c,(g)e

where

16m.
c,(g) = —, sin(gr)@„.(r) 3 dr,

gQ
(31)

where 4« is the expectation value of the electric
potential in a single Au atom, which we take from
a Hartree-Dirac-Slater calculation with Wigner-
Seitz boundary conditions (radius, 3.011 Bohr ra-
dii) described by Tucker et af." The last factor
in Eq. (30) arises from averaging the potential
over lattice vibrations; assuming independent iso-
tropic Gaussian probability density distributions
for the atoms. - The exponential factor M is found
to be

M =-'u 2
6 (32)

Cp g expig R, +vt+r'
p

'4, exp i ~ 8,+r' (33)

where the primed summation extends over only

where u' is the mean-square atomic displacement,
which i.s' 0.0188 A for Au at room temperature.

Define 4, D~ as the time-invariant part of C,
2

from the reference of the moving ion. When C,(r)
is expressed as a function of position r' relative
to that of the moving nucleus, R(t), and averaged
over time, one finds, for the straight line trajec-
tory 8 = R,+ vt,

C, (r')

those reciprocal-lattice vectors g which are per-
pendi. cular to V. For channeling parallel to, say,
the crystallographic y axis, the primed sum ex-
tends over g in the y plane, whereas for channel-
ing in the y plane (not along any low index axis),
the sum is over g on the y axis.

When the crystal. is treated as a homogeneous,
isotropic, translationally invariant medium, the
first-order, scalar electric potential 4, originat-
ing in the linear polarization induced by a, point
particle of charge (Z —1)e moving with constant
velocity 0, may be written '

@,(P') =, d'k exp(ik T') -1 k ',(Z 1)e ",
27T e k, k 0

-CO1=
(8& + ~

& + P /2 + k /2 /4 Wl —(d ((d +20)'
(35)

The parameter &~ corresponds to the plasma fre-
quency of an electron gas but may be chosen to fit
experimental data on the plasrnon-like resonance
behavior of real metals, semiconductors, or oth-
er solids. Similarly, the damping constant 0 may
also be taken from experiment, as can P, the hy-
drodynamical velocity of disturbances in the elec-
tron gas. The energy pm~ may represent an effec-
tive band gap in materials like semiconductors.
Single-particle effects are accounted for by the
presence of the term equal to the square of the
kinetic energy, 8')'2'/2m„of a free electron with
momentum Pk. The dielectric constant represen-
ted by Eq. (35) satisfies the sum rules

p

oo

~1m e(k, ~) d~= I u&lm
~

d&u =—,w~~'
k, (d

as it must from very general requirements. "
In the present applications we have chosen co~=0,

~~=0.949 a.u. and

p
2 3 2 (3) (3 )2/3+4/3@2/(I e)4/3 0 81 5

a.u. ,
" and have taken the cr -0+ limit, represent-

ing Au as an electron gas with a plasma frequency
of 25.8 eP, chosen from electron energy-loss ex-
periments. " The plasmon-pole approximation of
Eq. (35) was employed for most of the work car-
ried out in this connection. However, in one in-
stance, the calculation of the 2p„2s matrix ele-

where e(k, w) is the longitudinal dielectric func-
tion of the medium. Here & depends on the mag-
nitude of k. In the present calculation a plasmon-
pole type of approximation"" was used for e(k, ~);
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ment of 4 „ it was possible to employ the Lind-
hard dielectric constant" to represent the re-
sponse of an electron gas for which 5~~=25.8 eV.
The difference in matrix elements computed in the
two approximations, for v=10.45 vp ls less than

Some matrix elements of ——,'iky (Eqs. 21 and 17)
were computed, with the following approximations,
to test whether the contribution of this operator to
the energies is negligible. It is convenient to
write Q in terms of projection operators p (defined
above), q = 1'—p, P, =

I g, )(y, I, and Q, = 1 —P, (where
the domains of the two pairs of operators are wave
functions for ions, and for crystals, respectively)
as follows:

Q=qP, + pQ, +qQ;

The retarded Green' s function Gq was replaced
by one, G', defined as in Eq. (14a) but without
QH'Q. Then, Eq. (17) for I' becomes a sum of
three terms, corresponding to the three parts of
Q above. For the two terms containing Q„we ig-
nore the potential U, and we treat the crystal in a
plasmon-pole type of approximation, in which en-
ergy transfers 5~ and momentum transfers @k to
the crystal are related by

k GO = 5 QP&+ (jl /2m )k

and the generalized oscil. lator strength sum rule
over excited states is used,

the real part of -~ify in the remainder of this pa-
per.

Calculation of the energies E, requires diagon-
alj.zj.ng the Hamiltonian II, —84, ~~- e4, in the
space of five eigenfunctions (ls, 2s, 2p„, 2p„and
2p, ) of the atomic Hamiltonian H„ taking C, De
and C, from Eqs. (33) and (34), respectively. For
pH, p, we start with the nonrelativistic hydrogenic
Hamiltonian, and subtract a small constant from
the 1s, 1s element to correct the energies for re-
lativistic effects other than fine- structure split-
ting. (The fine-structure splitting is smaller than
both the above correction, and the resolution of
the present experiment, and is therefore ignored. )
The correction is such that the excited eigenvalues
of pIl,p are degenerate and have energies above
the ground state by the amount of the spectroscop-
ic value of the 2P 'I', &, —1s 'S transition energy in
the free ion.

The z axis is oriented along the direction of mo-
tion and, in the planar case, the x axis is perpen-
dicular to the channel. It is convenient to inte-
grate over configuration space first, before per-
forming the subsequent sums or integrals indica-
ted.

The results for 0"moving w|th a velocity' 10vp
along the center line of a (100) axis of gold are
shown j.n Fig. 2. In the middle of the figure is
shown the effect that the static crystal potential
4, Dc has upon the energies. The n =2 states are

(m le'" '"I0)
l

k &„,= Vk2&u'k'/8ve',

where V is the normalization volume for the crys-
tal. This model is the same as the one underlying
Eq. (35) for the dielectric function when u&, =0 and
P'= k +am, = 0.949 a.u. Similarly, we treat q
space of the ion by compressing the oscillator
strength in q space (for transitions from any state
in p space) into a single final energy (F'/2m, )k'
(relative to the ionization limit of a free ion) for a
given momentum transfer tk. The q-p transition
strength is determined by the generalized oscil. la-
tor strength sum rul. e

Qi(& le'"'"li
&

I'a.~„=k'k'/2m„ i ~ 5.

(D

(0

24.0

(3
CC

(3
CC

23.9

0 IN ~100~ Au

AT VELOCITY = 10 v 2sp'

p

px 2py

2s
2px 2py

2sp

The calculated values of the real part of (2s I
——,

' i5'yI
2s) are found to be less in absolute value than the
experimental uncertainties in the transition ener-
gies, except possibly for C", where the calcula-
tion gives —0.029 e /a for v= 6 vo in the (100)
channel. Because of this, and because the calcu-
lation is probably an overestimate (due to assum-
ing too small a q-p transition energy), we neglect

NONE
STATIC
CRYSTA L

POTE NT I A I

STAT I C +
POLAR IZATION
POTENT I A LS

PERTURBATION OF ION

FIG. 2. Energy, relative to the ls state, of four ex-
cited states of 0~' moving along the center line of a
(100) channel in Au with velocity 10vo, according to this
theory. Starting on the left, values are for free ions,
and for ions with the indicated perturbations.
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2 level of 0'+ in (100)eriment for the 2P„, P,expe
d for N" A second minimum,

much smaller ntha the main one, was om~ e
from the graph.

The F" resonance is wea, , an
d b the large errordifficult to read, as indicate y

redactedi . 7. The double minimum predictelimits in Fig. . e
r is not resolved.by the theory

'

s to have a very sma 11 secondary
t the fourthcit which is (if due o eminimum at a veloci y

Trans&tron ene g
l are shown in Pigs. 8 an

are only small diffeferences between e
In the casetransition energies. In e c

the experimental count rate curve s owof N, e exp
p —1 t s iti on expected tono evidence for tthe 2sp — s ran

roduced by the sixth harmonic, . I.s i

P —1 so a ob das the 2sp*, — s re
nic is quite weak, an ewith this harmoni q

b still smaller,minimum should e s ity of the missing
l tive 2p char-by a factor of 3u3 udging by the re a ive

2s and 2sp*, states.
(ioo) o~&111~ channel is narrower n

ater t density on the centerater average electron ensiwith greater
. (A3), greater sta-hus on the basis of Eq.

tic s i s '
and both the detailedtic shifts are anticipated, and bo

d the experimental results in Figs.calculations an
8 and 9 confirm this point.

VI. CONCLUSIONS

d t effective- Hamiltonian theoryA time-depen en e
ro-f channeled ions has been pfor the e lectrons o c

0.1

0.0

I

C5 IN (&I&) Au

m -0.1
L

O

-0.2

-0.3

-04

I I

0.01 0.02
VELOCITY ~ (a.u.)

~ from 1s, relativeG. 8. Transition energies ~FI
to the transition energy in

s uare of ion velocity, for C ' centere i

nt coherent excitationW —~E; 0, predicted resonant co ere
CE); ~, observed RCE (Be

0.03

have been calcula-and transition energies hav......,.t„,d,...„...ted for swift one-electron Ions c
ch calculations require expec-channels of Au. Such ca cu

ed 0-f both the static (or unperturbe p-tation values of o e
otential in. —the crystal and the wake po en i

duced by a moving point charge. n

s of the mean electron density in the
channel center is suggested for posse e u

0.2 0.1

OP
CP

00

~ -01
I

CI
-0.2

I

= -O.I -L

X

~-02 ~
I

Cl

-0.3

I

-O.3
0

I I I I I

O.OI 0.02

VELOCITY (a.u. )

0.03 -0.4
K:12 3

I
1

5
I

I

0.01 0.02
VELOCI TY-2 (a.u. )

0,03

ies AE from 1s, relative toFIG. 7. Transition energies r
r hE in free ions, vs the in-the transition energy in, n-

ve.ocity, for F cen reverse square of ion ve y, re
of Au. , this theory; ———, m

—4E; g, predicted resonant co eren
~, observed RCE (Refs. 3 and 4).

r ies 4E from ls, relative toFIG. 9. Transition energies r
gv

are of ion velocity, for N cen

v 3a —4E; Q, predicted resonan co
(RCE); ~, observed RCE (E Refs. 3 and 4).



20 ATOMIC PHYSICS OF CHANNELED IONS 1857

use in lieu of the full static potential.
The static potential was obtained from 'a relativ-

istic quantum mechanical calculation for an Au atom
with signer-Seitz boundary conditions, averaged
over vibrations, and the polarization was estima-
ted from dielectric theory.

The results are in reasonably good quantitative
agreement with recent measurements of resonant
coherent excitation. It is suggested that improve-
ment in the agreement requires that consideration
be given in the calculation to ions whose trajector-
,ies ar e not center ed in the channel, and to an im-
proved treatment of the polarization wake.
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APPENDIX

Relationships between the electron density and
the energy shifts due to the static potential'4o D~
are derived in this Appendix.

The average 4o D~ of the potential Co along the
direction of a crystallographic axis may be written
as an expansion in cylindrical coordinates:

4, Do=4(p)++4 (p)exp(imP),
mwo

where p is the distance from a channel center line,
and p is the azimuthal angle. For (111)and (100)
axial channels, the above sum extends over only
those m values which are integral multiples of 3
and 4, respectively, by symmetry. For an ion on
the channel center line, the Inatrix elements, in a
basis of s and P electronic states, of exp(aims)
are all zero for m ~ 3. Therefore, given an s and

p basis, 4(p) is the only part of 4„Dc which ef-
fects ions centered in (111)or (100) axial channels.

Upon averaging both sides of Poisson's equation,
one finds

the axis and over azimuthal angle. It follows that
the coefficients of the Taylor expansion of 4 about
the channel center line,

4 (p) = 4 (0) —mm(0) p'-,
w s2™2m(p)

m'(2m —2)! 8'~ '
p=0

21R . . . (A2 )

are proportional to the average charge density n
and its derivatives at p= 0. Dropping terms of
fourth and higher order from Eq. (A2) leads to the
following approximation for the static first-order
contribution to spectral shifts for ions on the chan-
nel axis, in terms of the average down the channel
center line, n„of the electron density:

«.«tU —ls) —«'V —»)
=-«.[(pip'lj&- (ls lp'lls&)

r
-26mZ n„ for 2s

22mZ "n„ for 2P„, 2P„ (AS)

s" 'n (x)
(2m)! sx2™2

2mg 0 ~ ~ (A4)

Dropping terms of fourth and higher order leads
to the following approximation for the static con-
tribution to spectral shifts for ions on the channel
midplane in terms of the average over the mid-
plane, N„of the electron density:

~-10mZ n, , for 2P,

where ~E„„and ~E' are, respectively, the ener-
gy spacings between the two states indicated, with
and without the inclusion of the static potential
p4, Dcp in the Hamiitonian (but without the polari-
zation potential). Values of bE„„-&E'given by

Eqs. (AS) would be exact if the density n (p) did not

vary with p, and are within 2'%%uq of the values com-
puted using the full static potential p4o D~P, for 0"
in Au (100). Agreement tends to be poorer for
lower-Z ions and for narrower channels.

A similar derivation for planar channeling yields
the following relation between the averages 4, nc(x)
and n (x), of the potentials and charge densities,
over the y-z plane, as a function of displacement
x from the midplane of the channel:

4

4, „(x)= 4, „(0) 2~n (0)x' . ..

1 9 9——p—4 (p) = -4m@(p),
p Bp ~p

(A1)

where m is the expectation value (for the state!( of
the crystal) of the charge density, averaged down

«...(i —1s) —«'(f' —»)
-26mZ n„ for 2s

=
~

-34wZ n„ for 2P„

-10' n q for 2P ~ 2Pg

(A5)
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The above expressions would be exact if the den-
sity n(x) did not vary with x, and give results with-
in 18/q of the values computed for 0" in the (100)
planar channel of Au.

The approximations derived in this Appendix

were not used in the calculations reported in this
work. They are included both for possible future
use, and as evidence that the energy shifts due to
the static potential are determined mainly by the
electron density in the center of the channel. .
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