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The k-ordering properties of the spectra of atoms and ions consisting of a single valence electron outside a
core of closed shells (k = n +1) have been introduced and discussed extensively in four previous papers,
together with the constant / sequences within each group of levels having the same value of k (k bands). In
the present paper, it is demonstrated that the spectroscopic quantum defects 8,; play the role of the ‘“‘order
parameter” for the k-ordering phase of the excited-state spectra. Thus only penetrating orbitals, i.e., those
having a large 8, (8,,%0.2), exhibit the phenomenon of k ordering, and in particular, the curves of 5, vs [
(for fixed k) are generally curved downwards, with an abrupt decrease to values of §,, close to zero at the
limiting angular momentum [;, which has been previously introduced. The curves of 8, vs I are basically
similar to the curves of magnetic field H as a function of temperature T in a ferromagnet, with an abrupt
decrease to 8,,~0 at [;, which can therefore be regarded as the analog of the Curie temperature T¢. The
“reduced quantum defects” n,,=8,, + | —1; (for I <l,) have also been introduced. It is shown that the
ordering of the ), values for I </, determines the nature of the I patterns of the spectrum, e.g., dpsf, dpfs,

or pdsf.

I. INTRODUCTION

In four previous papers,’™ I have introduced the
concept of the quantum number

E=n+l (1)

as an energy-ordering quantum number for the
excited-state energy levels of the neutral alkali-
metal atoms (i.e., Na, K, Rb, and Cs) and the
singly ionized alkaline-earth atoms (i.e., Mg",
Ca', Sr*, Ba", and Ra"),' and, in addition, states
with one electron outside closed shells in the spec-
tra of groups IB, IIA, IIB, and IITA elements of
the Periodic Table, and their isoelectronic ions.?
For the spectra of Ref. 1, we have considered a
total’:® of 416 excited states, while for the spectra
of Ref. 2, we have analyzed a total®:® of 858 addi-
tional energy levels, giving a combined total of
1274 levels, which provide overwhelming evidence
for the existence of a phenomenon which we have
called “k ordering,” namely, the grouping together
of levels having the same value of 2 and having
nearly the same energy (term value in the spec-
trum). Thus, the excited states of each spectrum
can be divided into successive & groups, and with-
in each % group (or “k band”), the levels increase
(slightly) in energy according to a fixed sequence
of 7 values, which we have called the “] pattern.”
Except in a few cases, the [ pattern does not change
with increasing k, and, as an outstanding example,
the [ pattern is pdsf for a total of 158 excited
states of rubidium from k=6 to k=55, i.e., over
a range of fifty £ values.

The k ordering and the I sequences of the levels
have been exhibited specifically in nine j-averaged
spectra in Ref. 1 and in ten j-averaged spectra in
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Ref. 2. By j-averaged spectra, we mean that we
have averaged the energy values E ;; listed in the
tables of Moore® using the weighting factors (2j +1)
for the two levels with j=1+% and j=1 —%, so as to
average over the effects of the fine structure. Al-
together, a total of 42 spectra have been analyzed
in this fashion, and the [ patterns of these spectra
have been tabulated in Table XIV of Ref. 2. In ad-
dition, Ref. 3 contains the revised and corrected
spectra of Ga1 and SrI (which had been previously
discussed in Ref. 2); these corrected spectra were
obtained in part from the more recent papers of
Johansson and Litzén® (Ga1) and of Garton and
Codling” (Sr1).

Two important concepts introduced in Refs. 2
and 3 are those of the limiting ionicity 6, (where
6=7Z —N and N is the number of electrons in the
atom or ion considered) and the limiting angular
momentum [, . Thus it has been shown in Ref. 2
(see pp. 469-471) that if the ionicity 6 exceeds 8, ,
there is a phase transition from % ordering to
hydrogenic ordering (denoted by “H ordering”),
i.e., energy ordering according to the principal
quantum number #. The approximate phase dia-
gram of 6, as a function of the atomic number Z
is shown in Fig. 2 of Ref. 2.

In a similar manner, as discussed in Ref. 3,
there exists also a limiting angular momentum- [,
for & ordering, such that if 7 is made larger than
1., a phase transition from %k ordering to hydro-
genic ordering (according to ») will occur, for
those atoms and ions which lie within the region
of ionicities 6 <6,. The phase diagram of [ vs Z,
i.e., the approximate curve of 7, vs Z which sep-
arates the two phases, is given in Fig. 1 of Ref. 3.
A qualitative explanation of the absence of 2 order-
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ing for I>1, in terms of the overlap of the valence TABLE I, Spectrum of the neutral rubidium atom Rb1,
and the core wave functions has been given by the The excitation energies E,; (in units of cm™) are mea-
author in Ref. 3 (see p. 1755). A somewhat differ- sured from the ground stafe (5s). The corresponding
ent explanation, which also discusses some gen- spectroscopic quantum defects 6,; as obtained from Eq,

. i . (3) are listed in the last column of the table. The series
eral features of the k£ ordering, has been given in limit Z is 33691.1 cm™l, The values of E,; are the j-av-

a recent paper of Foley.® In Ref. 8, Foley has eraged excitation energies, as derived from the tables
discussed the £ ordering from the point of view of of Moore (see Table IV of Ref. 1). '
the spectroscopic quantum defects and the phase )
shifts for elastic scattering at zero energy, utiliz- nl k Ep (em™) bt
ing a relation previously discovered by Seaton.® 5s 5 0 3.195
In the present paper, we will also discuss the 5 6 12737 2.712
relation of the £ ordering to the quantum defects 4d 6 19355 1.233
0,; . It may be noted that most of the work of the 6s 6 20134 3.155
present paper, including Figs. 1-5, Tables I and 6 7 93767 2 675
II, and the definition of 7,,, was completed before 5d 7 95702 1:29 4
we were informed about Foley’s paper. 7s 7 26311 3.144
In Sec. II, we will show that the spectroscopic 4 7 26792 0.012
g
quantum de”fects 0,; play the‘ role of the ord}er 7 5 97 858 2,663
parameter” for the & ordering. Thus, as dis- 6d 8 28 689 1.316
cussed in Ref. 3, only penetrating orbitals, i.e., 8s 8 29047 3.139
those having a large 6,, (5,,20.2) exhibit the phen- 5F 8 29278 0.013
omenon of 2 ordering, and moreover the curves of N
" 5¢ 9 29298 ~0
5,; vs I (for fixed k) are generally concave down- 8p 9 29 848 2.656
wards, and basically similar to the curves of mag- 7d 9 30 281 1.327
netic field H as a function of temperature 7 in a 9s 9 30 499 3.137
ferromagnet, with an abrupt decrease to zero at 6f 9 30 628 0.014
the limiting angular momentum 7,, which there- 6g 10 30 637 ~0
fore can be regarded as the analog of the Curie % 10 30 966 2.654
temperature T;. Of course, instead of the mag- 8d 10 31222 1,333
netic field analogy, we could have used the behav- 10s 10 31362 3.136
ior of any classical order parameter below the [ 10 31442 0.015
transition point for the appropriate phase transi- 6h 11 30 644 ~0
tion. 10p 11 31659 2,651
In Sec. III, we will define a quantity which we 9d 11 31832 1,317
have called the “reduced quantum defect,” denoted 11s 11 31917 3.135
by N, , for each level nl. The reduced quantum & 1_1 31969 0.017
defects 7, are directly related to the energy or- 11p 12 32117 2.650
dering of the n! levels within each k group (or “k 10d 12 32228 1,339
band”), i.e., they are related to the I pattern of 12s 12 32295 3.134
the spectrum, as discussed above and in Refs. 1-4. 12p 13 32436 2,649
Finally, in Sec. IV, we give a brief summary and 11d 13 32515 1.340
discussion of the results of the present paper. 13p 14 32 667 2.648
12d 14 32725 1,342
II. RELATION OF THE k¥ ORDERING TO THE 31p 32 33554.5 2.657
SPECTROSCOPIC QUANTUM DEFECTS §,, 30d 32 33557.0 1.394
32s 32 33559.2 3.156
We have calculated the spectroscopic quantum 29F 32 33559.9 0,079
defects 6,, for the large majority of the levels 32p 33 33563.6 2.663
included in the 19 spectra of Refs. 1, 2, and 4. 31d 33 33 566.0 1,383
The quantum defects 6,, are obtained from the fol- 33s 33 33567.7 3,179
lowing modified Rydberg formula for the one- 30F 33 33568.5 0.082
electron energy levels: 49p 50 33639.9 2.704
= 2 2 48d 50 33640,5 1.431
LBy =(1+0)qu/ 0 =0u)", ) 50s 50 33641.0 3.199
where 8=Z ~ N is the ionicity, ®., =Rydberg unit 47f 50 33641,3 ~0,08
=1091737 em™, L is the series limit, and E, is Limit 33691.1

the energy of the level #] as measured from the
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TABLE II. Spectrum of the singly ionized lead ion Pb* (Pbu). The excitation energies E,; (in units of cm™) are
measured from the 6p;;, ground state. The corresponding spectroscopic quantum defects 6,; as obtained from Eq. (3)
(with 6=+ 1) are listed in the last column of the table. The series limit L is 121243 cm™. The values of E,; are the
j-averaged excitation energies, as derived from the tables of Moore (see Table VII of Ref. 2).

nl k E,; (cm™) by, nl k E,; (cm™) 81
6p 7 9387 4,019 11d 13 114 491 2,937
7s 7 59 448 4.335 12p 13 114 685 3.819
od . 69274 5.094 13s 13 115496 4,261
10f 13 115655 1.137
» 8 76334 3.874 9 13 115797 0.022
8s 8 89180 4,300 g .
5f 8 92 520 1.001 12d 14 115901 2,935
v o 04 896 2918 13p 14 116037 3.818
14s 14 116 615 4,261
8p 9 95 851 3.842
11 14 116729 1.139
9s 9 101346 4,303 10 11 116 833 0 095
of 9 102 874 1.112 4 :
5¢ 9 103 559 0.018 13d 15 116912 2.933
o 10 103 872 2073 14p 15 117008 3.819
197 15 117 521 1,140
% 10 104 821 3.830 11 15 117 600 0.023
10s 10 107 930 4,258 g .
" 10 108533 1.123 14d 16 117 660 2.932
6g 10 108 968 0.020 13 16 118121 1,143
o9d 11 109304 2.937 122 16 118183 0.023
10p 11 109734 3.824 15d 17 118230 2.930
11s 1 111574 . 4,262 147 17 118 588 1.142
8 11 111942 1.130 13¢ 17 118637 0.022
K 1 112230 0.021 16d 18 118675 2,926
10d 12 112444 2.937 l4g 18 118 996 0.023
1 1 1 .
1;’; 13 , 112 ;?g 2 ggg 17d 19 119027 2.926
of 12 111147 135 15¢ 19 119 286 0.023
8¢ 12 114 346 0.022 Limit 121243

ground state, taken as zero, i.e., the values listed
in Refs. 1, 2, and 4, as obtained by j-averaging
over the values given in the tables of Moore.> The
difference n -0, is often referred to as the effec-
tive quantum number n} .

Upon solving Eq. (2) for 6,,, we obtain

aw /2
5, =n-(1 +6)<—m—> =n-nk . (3)

As examples of the calculated values of §,,, we
have listed these values in Tables I and II for the
spectra of RbI and Pb1l, respectively. The j-
averaged values of E,, were obtained from Table
IV of Ref. 1, and Table VII of Ref. 2, respectively.
Of course, in the usual spectroscopic notation Rb1
refers to the spectrum of the neutral rubidium
atom, and Pb1I refers to the spectrum of the Pb*
ion. It can be seen from these results that except
for low-lying states, §,, is approximately indepen-
dent of 7 for a given I, and that §,, decreases
rapidly and monotonically to a value close to zero
as [ is increased to I=7,, where [,=3 for Rb and

1,=4 for Pb".

Thus we were led to graph &, as a function of [
for a number of atomic and ionic spectra. For
definiteness, we have plotted 6, vs I for constant
k, even though the variation of ,, with » and there-
fore with k, at a given [, is generally small, as
discussed above. We present three examples of
these graphs in Figs. 1-3, which show §,, vs [ for
Sn1I (Sn* spectrum) for =8, ,and for Cs1 and Pb1I
for k=9. If we define 1, as the lowest value of [
for which 6,,=0, we find [, =3 for Sn11 and Cs1,
and /,=4 for PbII.

We note that a very approximate representation
of 6,, is given by the straight line

Opp~1,-1, (4)

and we have shown this 45° line in Figs. 1-3, with
7,=3 for Snil and Cs1I, and [,=4 for Pbi. If the
relation 6,, =1, — I would be exact, we would have
a degeneracy of the levels within each % band,
which has been called “% degeneracy” in the paper
of Foley,? in which a very similar equation has’
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[ I I T
Sn IL

k=8
B {4} = gdpst

FIG. 1. Spectroscopic quantum defect 6,; for the
Snu spectrum (Sn* ion) as a function of I, for fixed &
=8. We note the abrupt decrease of 6,; as I approaches
the limiting angular momentum I/ =3. Forl >I,, the
6, are very small (6,;<0.1). The curve marked
“M.A.” refers to the magnetic analogy discussed in the
text [Sec. II, discussion following Eq. (5)]. The qualita-
tive agreement of 6,; with the M. A. curve strengthens
the validity of regarding 6,; as the appropriate “order
parameter” for 2 ordering. The straight line 3-1=1,
—1 refers to the approximation of 5, ; by Eq. (4).

been considered, namely, 6,=g -1[Eq. (2) of Ref.
8]. This degeneracy can be easily derived from
Egs. (2) and (4), since we would then obtain

(1+6)*R, _ (1+3)°@&,,

L-Eny= m+1-1,F (E-1,7°

T [ T T
4.0 fs 91 u
{ti} =past .
3.0 —

Sn¢

2.0 _
1.0 -

0 |
0 I 2 3 4 5

FIG. 2. Spectroscopic quantum defect §,; for the Cs
spectrum (Csi) as a function of 7, for fixed 2=9. The
limiting angular momentum I, is 3. The curve M. A.
(magnetic analogy) approximates the behavior of 6 ,;
very closely. The approximationl;—I=3-1 is shown
for comparison.

(5)

| ! I I
4.0 Pb I . -
k=9 )
B {ti}=dpsfg ]
30 M.A. -

Sne

2.0 -1
1.0 -
- g
00 [ 4 5

FIG. 3. Spectroscopic quantum defect é,; for the
Pb* spectrum (Pbu) as a function of I, for fixed 2=9.
The curve M. A. (magnetic analogy) and the straight
line Iy —I=4-1 are shown for comparison.

Equation (4) would imply that 6,, decreases by one
unit as [ is increased by one unit, and Foley® has
derived this approximate relationship using Sea-
ton’s relation® for the elastic scattering phase
shifts and the calculations of these phase shifts
by Manson.*°

From the preceding discussion and from Eqs.
(4) and (5), it is clear that the deviations of 5,
from the value 7, — [ are directly responsible for
the spread of the energy levels within a given &
band, and for the resulting [ pattern of the spec-
trum. This situation has led us todefine the “ re-
duced quantum defects” n,;, which will be dis-
cussed in Sec. III.

We wish now to discuss the property of 3, as
the appropriate order parameter for the k order-
ing. As we have anticipated in the Introduction,
(Sec. I), the curves of §,, vs [ are similar to the
curve of H vs T (magnetic field versus temper-
ature) in a ferromagnet, below the Curie temper-
ature T,. For this reason, we have plotted a
curve having the same shape as the curve of spon-
taneous magnetic moment versus T for angular
momentum J - in Figs. 1-3. These curves are
denoted by MA (“magnetic analogy”). The maxi-
mum of the MA curve was taken as 7, or 7, +1 and
the corresponding value of T, was takenas [,.
The shape of the curve, which involves the Bril-
louin function B;, was obtained from the textbook

. of Eyring et al .*

It is seen that the MA curves approximate 6,
much more closely than the linear approximation
of Eq. (4), in particular for Sni1 (Fig. 1) and Cs1
(Fig. 2). Thus the results of Figs. 1-3 give addi-
tional support to the concept of a k ordering phase,
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I I I I
16— Na I SEQUENCE

A€2+
IONICITY

FIG. 4. Spectroscopic quantum defects 6 55, 055, 6 545
and 6 5 (= 0) for the Nal isoelectronic sequence, as a
function of the ionicity. We note the smooth behavior
of the 6,; as the ionicity 6 traverses the phase boun-
dary between £ ordering (for Mg*) and hydrogenic or-
dering (for A1%*).

which was introduced by the author in Ref. 2, and
furthermore they establish the validity of consider-
ing §,, as the relevant order parameter for the %
phase, with the angular momentum [ taking place
of the temperature T in the analogous thermodyn-
amical system (and I, analogous to T).

Since §,, vanishes approximately for I>7,, i.e.,
at the transition from % ordering to H ordering, it
occurred to us that perhaps when the ionicity 6 is
made too large, i.e., as 6 becomes larger than the
limiting ionicity 6,, the quantum defects §,; may
also undergo a similar discontinuity or abrupt
change. For this reason, we have plotted in Figs.
4 and 5 the typical quantum defects 6,,, 0, 0.4,
and §,, for the NaI and RbI isoelectronic sequenc-
es, respectively, as a function of the ionicity 5.
The neutral atom and its isoelectronic ions are
listed on the abscissa axis of the two figures. It
is immediately apparent that no such discontinuity
occurs at the limiting ionicity, which is 6,~1.5
for the NaI sequence and &, ~2 for the RbI se-
quence (see Fig. 2 of Ref. 2). In particular, for
the NaI sequence, where an abrupt phase transi-
tion occurs between Mg" (2 ordering) and Al%* (H
ordering) (see Fig. 1 of Ref. 2), the quantum de-
fects 6,, are completely smooth in this region of
ionicity 0.

A possible explanation of the smooth behavior
in Figs. 4 and 5 as contrasted to the abrupt de-
crease of 0, in Figs. 1-3 may well be the fact that
when [ is made too large, i.e., for 1>7,, the
overlap of the valence wave function v,(nl) with
the core wave functions u,(#, I.) and their pertur-
bations u, (n,1,—~1.) which leads to the & ordering®:*
becomes vanishingly small, wheredas no such rapid

T I I
40 Rb I SEQUENCE -

30

Sn1
20

Baf-51 _
O T T
‘Rb sr¥ Yyt 73t Np* Moot
IONICITY

FIG. 5. Spectroscopi¢ quantum defects 6 55, 055, 044,
0545 and 0 4 5¢ for the Rbi1 isoelectronic sequence, as a
function of the ionicity. We note the smooth behavior of
the 6,,; as the ionicity 6 traverses the phase boundary
between & ordering and hydrogenic ordering at 6 ;~ 2
(corresponding to the Y** ion).

change of the overlap occurs as the ionicity is in-
creased beyond 9, .

III. REDUCED QUANTUM DEFECTS 7,

As discussed in Sec. II, it is useful to define the
“reduced quantum defects” 7,, as follows:

T’nts-énl_(ll‘l)=5nl+l"ll (lgll)’ (6)

Nu=0, (I21)), ("

where we have used two different definitions for
the regions /<!, and [=[,. Of course, for [>[,,
3,, is always small (generally 5,,<0.1), and the
definition of Eq. (1) ensures that n,, is always pos-
itive for I=[,, since §,,>0 in all cases.

From Eq. (6), we can derive the relation

6nl=nnl_l+l1 (ZSZI) (8)

so that the denominator (z -6,,)* of Eq. (2) can be
written
=0, =(m+l-1;=-ny,)
=k =1,-n,)" (I<1y). (9)
For 1>1,, hydrogenic ordering prevails and the

energy levels are practically degenerate with the
level n=n,, where =, is defined by

~(10)

Thus we can write, both for /<7, and for 1>1],,
the following general equation for the binding en-
ergy L —-E,, ofall levels with a given value of &:

o (1+8)%@® (1+8)2@®,
-E .= = — .
L mt (k - ll -TI,.,)Z (nl ""7nl)2

nm=k-1,.

(11)
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As an example, for the case of RbI, the £ band
with £ =50 contains besides the levels 49p, 484,
50s, and 47f, which are listed in Table IV of Ref.
1, also the following 43 levels which are essen-
tially degenerate with 47f, due to the hydrogenic
ordering for 1>1, (1,=3): 47g,47h,47i,...,
n=47,1=45, and n=47,1=46. Thus the k=50 band
contains a total of

k-1,=50-3=47 ©(12)

levels.
The approximate location of a given 2 band can
be obtained from the Rydberg formula

L-E,~(1+6)R../(k-1,). (13)

Of course, for RbI, we have 6 =0 (zero ionicity).
Thus Eq. (13) with & -1, =47 gives for the £ =50
band .

L-E~®,/412=49.7 cm™, (14)

"so that E,,=33691.1 -49.7=33641.4 cm™, which
is near the upperlimit of the =50 band at E .
=33641.3 cm™.

The separation of levels with the same [ in neigh-
boring & bands can be obtained from the derivative
9E,/ok, which is obtained from Eq. (13), where L,
6, and I, are constants:

0E, _ 2(1+8)°R.,
o (B-1,°

Thus the spacing between the n1=46f and 47f levels
is given approximately by using the average & =49.5,

(15)

AE,(49,50)=2®R,,/(49.5 - 3)*=2.18 cm™, (16)

The order of magnitude of the average spacing
(B, (k)Y between successive 7 levels which obey
k ordering (I,,1,<1,) in the £-band region can be
obtained as follows. As we have discussed in Ref.
3 (see pp. 1757 and 1758), the separation S, ..,
between the 2 and % +1 bands is of the same order
of magnitude as the spacing A,a,b(k) of levels within
each k band (or may be even smaller for heavy
atoms). If we assume that

S+~ (B () , (k)

then between successive levels with 7=1,, i.e.,
between the levels nl, and#+1,7,, we have [, +1
intervals [e.g., I,=3 intervals involving the levels
49p,48d,50s,47f in Table IV of Ref. 1, for Rb,
plus one interval S, ;, between 46f (2=49) and
49p (£ =50)], so that the average interval between
successive % band levels is of the order of

talp

o 1 BE, _ 2(1+8)R.
<A1a’b(k)>— (1,+1) akk_‘(ll+1)(k—l1)3 ’

(18)

For Rb, with 2=49.5,1,=3, Eqgs. (16) and (18)
give

oy - 212

A cm™=0.55 cm™. (19)
1

alp

As we have discussed in Sec. II, the deviations
of the 5, from the values [, -, i.e., the reduced
quantum defects 7,; are directly responsible for
the width of each & band and the I pattern (I se-
quence) of the levels #] within the %z band. I is
therefore of interest to plot the graphs of 1, vs 1
(for constant ) for several representative spectra.
First we wish to note that if the [ pattern is {7,}
=lalyl.1,, ie., ifthelevelsn,l,,n,1,,n.1.,1,1,
are arranged in the order of increasing energy,
then according to Eq. (11), we must have the in-
equalities:

n"u’a> n"blb> n"clc> Mnatq - (20)

Thus the level with the largest (algebraic) value
of n,; lies lowest, and the other levels with the
same k value are arranged in the order of decreas-
ing n,, values.

In Figs. 6-8, we have plotted the values of n,,
vs [ for nine representative spectra, namely,
Cal, Gal, SnlI (Fig. 6); K1, RbI, Ball (Fig. 7);
and Cs1, TlI, PbII (Fig. 8). The values of  and
1, as well as the [ pattern are listed in the upper
right-hand corner of the figures. The graphs of
Fig. 6 pertain to £ =8, whereas those of Figs. 7
and 8 pertain to 2=9. Since the values of 5,, and

Cal (k=8,473) fdps
© Gal (k=8,2=3) pdfs
Sn (k=8,£,=3) dpsf

I I

N
I .

041,

-06 | 1 Il
8s 7p 6d 5f

FIG. 6. Reduced quantum defects n,;, as defined by
Eq. (6), as a function of I for the £ =8 energy levels of
the spectra Cai, Gai, and Snii. The corresponding nl
levels are listed on the abscissa. We note that the 7
pattern {I;}=1,1;1.1; in each case corresponds to the
sequence of decreasing n,; values

nnala >77nblb>77nclc >nndld

[see Eq. (20)]. The values of & and 7, and the {;} pat-
terns are listed in the upper right-hand corner of the
figure.
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T T T T
K1 (k=9,2,=3)fpds
RbI (k=9,ﬂ‘=3) pdsf
Ball (k=9,4,=4)dpgfs

|

L

A N 1

Ty O /,/ >
-0.2 —/‘ /<./ - -
7 SAKT / —
-04 /7N / -
- \ / —
—O.S*L/ \\ / 7
08l / l 7

1 | |

9s 8p 7d 6f 5g
né

FIG. 7. Reduced quantum defects n,;, as defined by
Eq. (6), as a function of I for the k=9 energy levels of
the spectra Ki, Rbi, and Ban. The corresponding nl
levels are listed on the abscissa.

hence those of n,, are not sensitive to the value of
n, as discussed above, they are also not sensitve
to the difference between 2 =8 and £=9. We may
also note that 7, =3 for the light and medium atoms
(Z<55), whereas 1,=4 for the heavy atoms (Z =56).
The most striking feature of these graphs is that
with the exception of two spectra (namely, Cal in
Fig. 6 and KI in Fig. 7), the two highest 7, values
involve the np and nd levels, whereas the two low-
est n,, values involve the #s and »f levels, (Here
we have not included the three 7, values.) Thus
we expect that four [ patterns will be dominant,
namely, dpsf, pdsf, dpfs, and pdfs. Indeed, if we
consider the results of Table XIV of Ref. 2, we
see that the most prevalent [ patterns among the
42 spectra investigated are dpsf, dpfs, pdsf, and
fdps. Three of these [ patterns are among those
listed above. The fourth [ pattern, mentioned

1.8 T T T T .

CsI Cs I (k=9,.2,=3) pdsf
T2 1 (k=9,£,=4) pdsf
Pb I (k=9,2,=4) dpsfg

1 W Y O O O O A O |

0 ==
9s 8p 7d ef 5¢q
nd

FIG. 8. Reduced quantum defects 7,;, as defined by
Eq. (6), as a function of I for the £ =9 energy levels of
the spectra Csi, Tl1, and Pbu. The corresponding nl
levels are listed on the abscissa.

above, namely, pdfs, actually occurs in three
cases, namely, Cul (¢=5-8), ZnI, and GalI (in-
stead of the two cases listed in Table XIV of Ref.2).
The additional case, namely, Gal, is found to have
the [ pattern pdfs, when the revised spectrum of
Johansson and Litzén® is used (see Table I of Ref.
4).

The two spectra which we have excluded above,
namely, Cal in Fig. 6 and K1 in Fig. 7, corre-
spond to the patterns fdps and fpds, respectively.
The [ pattern fdps is found in ten spectra (see Ref.
2, Table XIV), exclusively among the light ele-
ments, with Z values ranging from Z , =11 to
Z ,..x=33. The other [ pattern, namely fpds, is
found only for the Cal spectrum (levels with k=5
and % >11), besides the case of KI shown in Fig. 7.

The general tendency for the plots of n,, vs I to
have their highest values for np and nd states is
obviously related to the predominant frequency of
the I patterns dpsf, dpfs, and pdsf which account
for 32 cases out of a total of 48 which are listed in
Ref. 2 (Table XIV). We believe that the maxima
of 1,, at #np and nd are due to the finer details of
the valence-core overlap, which is believed to be
responsible for the k-ordering phenomenon,®’* as
well as the inverted fine structure of excitedd, f,
and g levels.?

IV. SUMMARY AND DISCUSSION

In the present paper, we have investigated cer-
tain aspects of 2 ordering (and the associated I
patterns) of atomic and ionic energy levels, which
had not been discussed in our previous papers on
this subject (Refs. 1-4). More specifically, we
have investigated the relation of the k& ordering of
atomic energy levels E,, to the corresponding
spectroscopic quantum defects 3,,. The quantum
defects 6,, had been briefly considered in Ref. 4
[see Eq. (2)], but their general relationship to the
k ordering has only been discussed in the present
paper, and independently in a recent paper of
Foley.® .

In connection with the discussion of Secs. II and

'III of the present paper, the author apologizes for

the rather frequent cross references to the earlier
papers of Refs. 1-4. However, in order to avoid
needless duplication of the tables of Refs. 1-4 (al-
together 35 tables) and of the four pertinent figures,
it seemed desirable to write this paper as was done
here, including the cross references. For those
readers who are interested in the k-ordering
properties of atomic and ionic spectra, and their
associated [ patterns, the four aforementioned
papers should be studied in sequence.

In Sec. II of the present paper, we have dis-
cussed in detail the behavior of the quantum de-
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fect 6,, as a function of the orbital angular mo-
mentum quantum number ! (see Figs. 1-3). In
particular, it has been shown for three represen-
tative cases (SnlI, CsI, and PbII) that the curves
of §,, vs 1 have a pronounced downward curvature
and that §,, decreases abruptly to a value close to
zero at the limiting angular momentum [, for %z .
ordering, which has been introduced in Ref. 3.
Here the value of 7, is 3 for SnII and CsI, and 4
for the Pb1I spectrum. The curves of §,, vs [
(which have been obtained actually for the large
majority of the 19 spectra considered in Refs. 1
and 2) show a remarkable similarity to the curves
of magnetic field H as a function of the tempera-
ture T in a ferromagnet, with an abrupt decrease
to zero at the limiting angular momentum /,,
which therefore can be regarded as the analog of
the Curie temperature T,. The corresponding
curves have been shown also in Figs. 1-3, where
they have been labeled as “MA” for “magnetic
analogy.” This similarity leads us to interpret
the quantum defect &, as the classical order pa-
rameter for ¢ ordering. In other words, the %
ordering is a property of the penetrating orbitals
with relatively low [ values, such that [<[,, for
which the overlap of the valence electron wave
function with the core orbitals is sufficiently large.
It should also be mentioned that the existence of
such a readily available order parameter as the
quantum defect §,, provides additional support for
our previous assumption of a “k-ordering phase,”
as was done in Refs. 2 and 3, and for the interpre-
tation in terms of phase transitions at the limiting
angular momentum [, and the limiting ionicity 6, .
We also note from Figs. 1-3, that since the curve
of 8, vs 1 does not have a discontinuity at /=1,,
but instead approaches the value 6,,(7,) with a
finite slope, the phase transition at [=1, can be
described technically as a second-order phase
transition. »

A less accurate approximation to the quantum
defects 6, is the straight line 6,,~1, - [, which
has been introduced in Eq. (4) and is also shown
in Figs. 1-3 for the spectra of Snll, CsI, and
Pbil. A similar straight-line relationship, namely,
8,,~g -1, has also been considered by Foley.?

The approximate relation of Eq. (4) has led us
to introduce the “reduced quantum defects” n,,,
which are defined by Eqgs. (6) and (7) in Sec. III,
in particular: 7,,=6,,+1-1, for I<],. It is shown
in Sec. III that the ordering of the 7n,, values de-
termines the ] pattern within each group of levels
having the same value of k&, i.e., within the same
k band. A general expression for the energy levels
E,, in terms of n,, has been derived in Egs. (8)-
(11). From Egs. (11) and (13), we have derived
the expression for the separation of levels with

the same ! in neighboring 2 bands, namely, the
derivative o E, /ok of Eq. (15). In addition, the
average spacing (A,a,b(k)) between successive
levels (with I<1,) in the % band is given by Eq.
(18).

From Eq. (11), it is readily seen that the levels
within a given & band are energy-ordered as fol-
lows: ’

Enala<Enblb<Enclc<Endld ’

if we have

nnata> Tln,,z,,> nnctc> 77n¢1¢ .

Thus the level with the highest algebraic n,, value
lies lowest, and the other levels with the same &
value are arranged in the order of decreasing 7,,
values, corresponding to the [ pattern {I,}
=11yl 1y, ;

In Figs. 6-8, we have plotted the values of Mt
vs [ for nine representative spectra, as explained
in Sec. ITII. The most striking feature of these
graphs is that with the exception of two spectra
(Car1 and K1), the two highest n,; values involve
the np and nd levels, while the two lowest 7,
involve the ns and nf levels. Thus we expect that
four I patterns will be dominant, namely, dpsf,
pdsf, dpfs, and pdfs, and this expectation is gen-
erally borne out by the frequencies of the actual
patterns, as presented in Table XIV of Ref. 2.

After the work of the present paper was com-
pleted, we received a copy of a short paper of
Ostrovsky,'? in which the connection between &
ordering and the spectroscopic quantum defects
0,; has also been considered. In particular, it
was also pointed out that the relative constancy
of the sum 8, +1 within a given % group is a nec-
essary condition for the existence of & ordering,
in similarity to Eq. (4) above, and to Eq. (2) of
the paper of Foley.® In this connection, we can
also refer to the paper of Demkov and Ostrovsky'?
and to the earlier papers of Klechkovskii'* on the
validity of the “n +7 rule” for the ground states
of neutral atoms.

Returning to the k ordering and the [ patterns
of the excited states of atoms and ions, as dis-
cussed in this series of five papers, there re-
mains the wider question as to the fundamental
significance of these remarkable regularities and
their connection to the inverted fine structure (see
Ref. 4) and to the large quadrupole antishielding
factors®®:® y_ and R for the atoms and ions having
at least one filled np shell, and preferably a large
number of filled #p and nd shells (medium and
heavy atoms with Z=>11). As we have already dis-
cussed in Refs. 1 and 4, unless a p shell of the
core is fully occupied, i.e., unless Z=>11, the &
ordering does not occur and simultaneously the
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excited d (and/or f) states do not exhibit the in-
verted fine structure which is characteristic of
the heavier elements. Also the ionic antishielding
factor y,, which depends directly on the large #p - p
and nd —-d excitations of the core does not become
large until Z>11. In this connection, we note that
the values of y,, for monovalent ions with an ex-

ternal #nd'° configuration, namely, y.(Cu")=-15.0,%"

Yo(Ag") =-34.9," and y,,(Au") = -72.0,® can be fitted
by a formula similar to Egs. (9), (10), and (12) of
Ref. 4, namely, ‘

Y [nd™®] = -0.9847(Z - 15)0%0 (29<Z<79). (21)
In Ref. 3 (see pp. 1755 and 1756), we have dis-

cussed the possibility that the 2 ordering is strong-

ly dependent on the overlap of the valence wave
function v (1) and the core wave functions u,(n, 1)
and their perturbations u,(n,[.~1’) caused by the
.electrostatic interaction with the valence electron.

This possibility is enhanced to the status of a
strong probability by the discovery in the present
paper that the quantum defects §,, are the appro-
priate order parameters for the k£ ordering, which
has been found to occur only when §,, is large
(6,,20.2), i.e., for the penetrating orbitals with
Isl,. A similar explanation involving the number
of radial states of the core which are occupied for
a given [ value has been put forward by Foley.®
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