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Thomas-Fermi approach to diatomic systems. I. Solution of the Thomas-Fermi and Thomas-
Fermi-Dirac-Weizsacker equations
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Institut fur Theoretische Physik der Uriiuersita't, Frankfurt am Main, West Germany
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Analytical approximations to the solution of the Thomas-Fermi and Thomas-Fermi-Dirac-Weizsacker
equation for neutral systems are presented. The authors demonstrate in detail the quality of the solutions for
one-center boundary conditions and provide an extension for two-center systems. Finally, the construction of
effective single-particle potentials for diatomic systems based on the solutions obtained is discussed.

I. THEORY

A. Introduction

There are two quantities of primary interest in
the discussion of diatomic systems: correlation
diagrams and the atomic interaction potential. '
Starting with the full time-independent Schrodinger
equation for a diatomic system

He(q„~ ~ ~, q„, R ) =Ee (q„~ ~, q„, R), (1.1)

with

define the adiabatic interatomic interaction poten-
tial(s) via the relation

U„(R)=E, „(R)—E, „(~)+ A„(R) —a„(~)+ Z,Z,/R,

b,„(R)= d~c „*(q,R)T„Z„(q,R), (1.5)

The correction term for the nuclear kinetic-energy
operator,

and

q=(r, v)

H =H~+H,

(
ZZ,

)

is in general small and frequently omitted from
consideration.

The discussion of correlation diagrams calls
for a further approximation. The potential term
of the electronic Schrodinger equation is supposed
to be well represented in terms of an effective'
single-particle potential

H, —Q h, = Q [t, +v„,(q, , R)j., (1.6)

1+—

a,c„(q,R)=E, „(R)C„(q,R) (1.3)

as a function of the internuclear separation, we

(the atomic unit system is used throughout this
paper), we recall that the discussion of both quan-
tities is based on the Born-Oppenheimer approxi-
mation'.

4 (q„.. ~, q„, R) = 4 (q„~,q„, R)P~(R) . (1.2)

With the solution of the electronic Schrodinger
equation

where the local form indicated in the equation is
not a necessity. It is then possible to consider the
variation of the orbital energies e,.(R) as a function
of the internuclear separation,

~q;(q, R) =~;(R)q;(q, R), (1.7)

as a general guide for both molecular structure
aspects is well as atom-atom or ion-atom scat-
tering problems.

The effective potential v,« is optimally deter-
mined in the Hartree-Fock (HF) approximation.
In this approximation the ground-state energy of
the electronic Hamiltonian is given by

E",F(R) =Tr,
Jt

dad~'5(r —r') ( —,&)p(q, q')

+ d7'p r S' r + —'V r ——'Tr 1
d7 d7' p(q, q') p(q', q) [r-r'/ (1.8)
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V,(r) = d7' p(r')
I r —r'I (1.9b)

The one-particle density matrix is defined as

p(q, q') = Q q,*(q', R)q &(q, R)

Q,nd

p(r)= Tr, p(r, o-, r, o'). (1.10)

The effective single-particle problem (1.7) for
the determination of the molecular orbitals y,. has
the form

hy(q, R) = [t + W(r) + V,(r) jp(q, R)

d, p(qq) (, R)

=c(R)cp(q, R) .
In atomic and solid-state calculations the nonl'ocal
exchange term is often replaced by the local
Slater (HFS) approximation

with the Coulomb potential of the nuclei given by

IV(~) = Z~/I r '
I

-Z, /I r+ 2RI ( a)

and. the electronic potential by

the one-particle density p(r). It thus offers rela-
-tive computational ease and independence of the
number of particles involved, which makes it at-
tractive in the case of heavier systems, with the
possibility of systematically approaching HF re-
sults. It should prove possible to incorporate in
the same systematic fashion relativistic effects"
relevant for the structure of heavier diatomic
molecules and questions of heavy-ion scattering.
There are also attempts paralleling the argument
of Hohenberg and Kohn' to go beyond the HF pic-
ture and set up pseudopotentials for the inclusion
of correlation effects.

Earlier attempts" to mobilize the TF and TFD
approximations for diatomic systems have mainly
concentrated on the calculation of the one-particle
density and the direct evaluation of the energy
functional E(p) [see Sec. IB]as a function of the
internuclear separation. Both the absolute values
of the total molecular energies and the impossibil-
ity of molecular binding stated by the theorem of
Teller and Balazs" indicate that the TF density
and its direct application in calculating the total
energy from the functional E(p) can be regarded
only as a first step in molecular calculations. A
second step could be the solution of the Schrodinger
equation with the two-center TF potential. The
corresponding total energies and the fully quantum-
me chanical density

p(r) = Q q,*. (r)y,.(r) (1.13)

V„(r, R)y(q, R), (1.12)

with

V„(r, R) = -c[(3/m)p(r, R)P t'.
In Slater's original work' the averaging procedure
is carried through after variation leading to a
factor c=—,'. In later discussions' a value of c=1
was proposed. This factor arises as a conse-
quence of averaging before variation in both the
functional formalism of Kohn et al."and in the
direct derivation of the Thomas-Fermi-Dirac
(TFD) model. '

The technical effort involved in carrying through
self-consistent calculations for two- center situa-
tions still makes it useful to search for alternatives
to a fully self-consistent scheme which provide
comparable results. One possible alternative is
to be found in the Thomas-Fermi (TF) model, "
expecially in the extended version of the Thomas-
Fermi-Dirac-Weizsacker (TFDW) approximation'
including inhomogeneity corrections and exchange.
The general Thomas-Fermi approach can be
viewed as a gradient expansion" "of the full
one-particle density matrix p(q, q') in terms of

then show definite improvement compared to the
TF energies and densities. This was shown for
the atomic case by Latter. " Corresponding appli-
cations to two-center systems were already ini-
tiated" in 1934 but have only been continued re-
cently

Further improvement can be achieved by the in-
clusion of Weizsaeker's inhomogeneity term. ' If
both the exchange and the Weizsacker terms are
included, already the total energies calculated
from the corresponding energy functional show
good agreement with HF results. In particular,
Teller's theorem does not hold for the TFDW
model, which is emphasized by the results of the
calculation of Yonei, "who provided the only nu-
merical solution of the TFDW variational equation
with two-center boundary conditions available so
far.

Our aim is a relatively complete survey of the
possibilities offered by the (general) TF approach
for the discussion of diatomic systems. The pro-
gram consists of the following steps.

(i) Solution of the TF and TFDW variational
equations with two-center boundary conditions in
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order to obtain the total electrostatic potential (or,
respectively, the density) for the electrons in the
diatomic system.

(ii) Following the successful work of Latter" in
the atomic case, we solve the one-particle Schro-
dinger equation (1.7) in the Hartree-Fock-Slater
(HFS) form (1.12) with the potential (density) of
step (i) in order to obtain effective molecular or-
bitals and correlation diagrams.

(iii) The electronic ground-state energy E, , (8)
or the corresponding interaction potential is then
calculated by evaluating the expectation value of
H, with a Slater determinant comprising the lowest
orbitals obtained in step (ii). Further molecular
quantities of interest like dipole moments are to
be calculated with the molecular orbitals of step
2. The program offers some scope for improve-
ment, if this is considered necessary.

(a) The orbitals obtained in step (ii) allow the
calculation of the fully quantum-mechanical den-
sity (1.13), which could be iterated upon, provid-
ing a relatively simple HFS scheme for diatomic
systems. (b) The ground-state energy can be
improved upon by invoking configuration mixing"
or perturbation theory. '

In this paper we will be concerned in detail with
the first step, the aim being an accurate and fast
solution of the TF(DW) variational equations. We
found that this aim could be reached best by work-
ing with an analytical Ansat~ for the total electro-
static potential that satisfies the appropriate boun-
dary conditions. The parameters of the Ansatz
are determined systematically with a minimiza-
tion procedure based on the evolutionary strategy
of Rechenberg. " In order to base this procedure
on a firm footing we go back first to the one-cen-
ter case (Sec. II). In Sec. III, we then revisit the
two-center TF problem which we discussed in a
previous paper" in terms of a numerical solution
with the aid of the relaxation procedure. We fin-
ally consider the two-center TFDW case, where
contact with the results of Yonei is made. The
two diatomic systems that we used for an illustra-
tion of our results are N —N and Ne —Ne. In a sub-
sequent paper we discuss the correlation diagrams
and the electronic ground-state energies.

B. Thomas-Fermi model and its extensions

The basic relation in the TF theory is the ex-
pression for the total electronic energy of a sys-
tem as a functional of the electronic density p:

E TF d'T c]p + pTV+ gpV

where W again denotes the pure Coulomb potential
of the nuclei and V, the electrostatic potential of
the charge density p.

Variation of E with respect to p with the subsid-
iary condition of fixed particle number,

E+ V pdT =0,

yields the TF equation

-,'c,p'~'+ W+ V + V = 0 (1.16)

With the definition of the total electrostatic poten-
tial

V= —lV —V,

and the aid of Poisson's equation

o = —(I/4m) aV, ,

Eq. (1.16) can be cast into the well-known form

&V= n(V —V, )'~', & = Bv 2/3m. (1.19)

(1.22a)

which is equivalent to the dimensionless equation

C "(x)=4(x)'"/Wx, x=r/p, ,

p = -'(9m'/2Z)' ~'. (1.22b)

The equation is solved for the boundary condi-
tions

@(~)—0

reflecting the case of a neutral atom, and

(1.23a)

(1.23b)

representing the existence of the pure Coulomb
potential of the nucleus at x=0.

From Eqs. (1.22a) and (1.22b) and the boundary
condition (1.23b) it is readily seen that the exact
solution has the property

/I y 1/2
r-O

The TF potential V is usually discussed in terms
of a screening function C, which is generally de-
fined by the equation

(1.20)

For a neutral atom, where @ can be assumed to be
spherically symmetric, we are left with

(1.21)

Insertion of this Ansatz into Eq. (1.19) yields (as
V, can be shown to be zero for neutral systems)
the following differential equation for C:

c, =~so (3v')'~',
(1.14) The TF density is related to the screening func-

tion by the equation
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TABLE I. Comparison of total atomic energies for various approximations. The values for
ETF and ETFD are calculated from the analytical expressions given in the book by Gomb6, s
(Ref. 7). The Hartree-rock values E„~ are taken from Ref. 32.

ETFD ETFD%
a

ETFDW
b ETFDw' EHF

N
Ne
Ar
Kr
Xe

-72.056
-165.62
-652.75

-3289.64
-8472.82

-77.948
-176.29
-681.18

-3379.91
-8650.26

-128.83
-524.91

-2745.60
-7213.92

-54.862
-128.442
-521.167

-2708.93
-7081.94

-54.220
-126.347
-518.576

-2638.37
-6889.90

-54.401
-128.547
-526.812

-2752.05
-7232.13

'Reference 28.
"Present calculation based on Eqs. (1,27) and (1.28) with X= ~ .

, 5" .'Same density as in b and use of the energy functional (1.27') with X=-.
9

o = —(1/4m)AV,

= (Z/4m)a[(C —1)/r] = (2/4v)(& "/r) .
(1.24) ETFDN ~ l~

(1.27)

(1.25)

Thus the above relation for C" is equivalent to

y-3 /2 with

+ -'; vv. + c,(v p)'/p ),

The asymptotic behavior of the TF screening func-
tion is as easily proven to be'

(1.26)

Both features (1.25) and (1.26) clearly show the
limitations of the TF model. While (1.25) corre-
sponds to an infinite density at x=o, a more real-
istic model should give a finite density, and in
place of the asymptotic behavior (1.26}, we would
expect an exponential decrease for a realistic
atomic potential. Table I shows the total TF en-
ergies for some rare-gas atoms in comparison
to the HF values. The agreement is poor. This
underlines our statement in the Sec. IA that the
pure TF model can only be a starting point for
the calculation of atomic and molecular systems
and that improvements of the model are manda-
tory. It is a well-documented'4 fact that the in-
clusion of an exchange term (known as the TFD
approximation) does not lead to marked improve-
ment of the TF model (see total energies in Table
1). Feature (1.25) remains valid in this extension
and, in place of the asymptotic behavior (1.26), a
rather corn'plicated cutoff behavior" of the density
and the potential is introduced which is difficult
to handle for many-center systems.

Yonei eI, gl. could show that the additional
inclusion of a quantum correction to the kinetic
energy (the so-called Weizsacker term) leads to
excellent results (see total energies in Table 1).
Furthermore Teller's theorem" does not hold
for the TFDW model, i.e., the calculation of
m, olecular binding energies is possible. "

The energy functional in the TFDW model has
the form

ext, X/3
ETFDq, ——ETFDw+ dT C4p

with

c, = (3w') 'i'/540

With the help of the variational principle (1.15)
we obtain from the energy functional (1.27),
5 ~2/3 4 ~& /3+ gr+ y3 1 3 2 e

+ V, + c,[(vp/p)' —2(&p/p)]=0.
(1.28)

From this equation we can immediately show that
the asymptotic form of the density p for a neutral
system becomes

p ~ (1/r'}exp[ (Vo/c, )' 'r—] .

In Weizsaacker's original work' the constant A. was
equal to one. Using a gradient expansion method
for the derivation of the quantum correction,
Kirzhnits" obtained X=-,' . In view of this dis-
crepancy Yonei' 26~' took A. as an adjustable pa-
rameter. It turned out that the best results were
achieved for X = —,'. We adopt this value with the
interpretation that it provides a means of adjust-
ment for the higher-order terms of the gradient
expansion. It can indeed be checked explicitly
that the use of Eq. (1.27) with X= -', gives essen-
tially the same results for the total electroni'c
energies as the extended TFDW energy functional
with I, = —,', which was recalculated by Hodges in
the form
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The argument goes as follows. In Eq. (1.28) we
make the substitution X'= p which leads to the
equation

& c,X'/' —~ c,X'/'+ (W+ V, + V, )X = 4c,AX .
(1.30)

In view of the fact that W, V„and X should go to
zero asymptotically, the term V0X is dominant on
the left-hand side of Eq. (1.30). Se we are left
with the asymptotic equation

bX = (V,/4c )X

which is, under the assumption of spherical sym-
metry in the asymptotic region, equivalent to

d .(~X)=4,'(n .
3

The solution is

(xX) =A exp[(V, /4c, )' 'x],
which corresponds to Eq. (1.29).

Following the above definition of the atomic
screening function we can insert (1.24) into Eq.
(1.28). That way we obtain a differential equation
for the screening function:

with

a, =-,'c, (Z/47/)' ', a, =-', c,(Z/4m)'/'.

From this equation [in contrast to the TF equa-
tions (1.22a) and (1.22b)] no restrictions for
4 "(x—0) can be derived. Thus it should be pos-
sible to solve Eq. (1.31) with the boundary condi-
tion

// ~ y
7 0

(1.32)

II. ANALYTICAL APPROXIMATION TO THE TF AND
TFDW ATOMIC SCREENING FUNCTIONS

A. TF screening function

representing a finite density at x=0.
In conclusion, we want to point out again that the

introduction of the quantum correction of the
kinetic energy is able to achieve a definite im-
provement of the density (and the potential) in the
asymptotic region and at the charge centers; we
have an exponential decrease of the density [Eq.
(1.29)] and a finite density at the nuclei.

a~ —a2

@// / I 2 c // //

+c —2--
3 @!/ y c //

(1.31)

Many approximations to the TF screening func-
tion can be found in the literature of the last
thirty years (see Torrens' pp. 29-34). The vari-
ous forms usually represent a compromise be-
tween the required accuracy and the analytical
simplicity of the approximation. One of the most
accurate but also most complicated forms is the
one chosen by Latter":

(x) =(1+0.02747x' '+ 1.243x —0.1486x' '+0.2302x'+0.007298x" '+0.006 944x3) ' (2.1)

This approximation has the correct asymptotic
x ' behavior of the TF function. The form we
have chosen in our calculations is a modification
of Latter's function:

C (x) = (1 + a,x+ a,x'!'+ a,x'+ a,x') ' . (2.2)

The most significant difference between Latter's
approximation and our function lies in the missing
x' ' term. Only if this term is missing, the con-
dition (1.25) is fulfilled which is, as mentioned
above, one of the features of the exact TF function.
For latter's function we find

p~ = (Z/4m)(C~/x) ~ r '/'.

As a consequence of this behavior the energy func-
tional (1.14) becomes infinite if p~ is inserted for
the TF density. However, in Latter's work the
TF density was not a quantity of interest, and the
screening function itself is almost indistinguish-

able from our form. Figure 1 shows Latter's
function and our function both in comparison to
the exact numerical solution given by Kobayashi
et aZ "

For the proper determination of the parameters
a, in (2.2), we compared two different methods.
The first is the minimization of the quantity

F= dT
i
hV —nV'/'i

as a function of the parameters a,. ; the second is
the explicit minimization of the total energy (1.14)
as a function of a, where we insert (1.24) for the
electron density. The results were, in general,
very similar. However, it turned out that the
function obtained by the energy minimization was
extremely exact near the nucleus (x-0) and less
accurate in the asymptotic region, while the
minimization of the quantity E produced an approx-



20 THOMAS-FERMI APPROACH TO DIATOMIC SYSTEMS. I. . . . 1803

1.0 B. TFDW screening function

0.8

0.6

0.2

x10 I I I I I I

In this section we shall present an analytical
approximation of the atomic TFDW screening
function. For a proper choice of the analytical
form we have to account for the boundary condi-
tions (1.23a} and (1.23b) and for the relations
(1.29) and (1.32) which are both features of the ex-
act solution. Relation (1.29) can be expressed in
terms of the screening function [via Eq. (1.24)]:

C
U

e- 0
I

I

E

g ~~2~ C=
5 b.r'+ dr""e'" 'j a, =b, =1.

C "„=(I/r) exp[-(&./c. )' "rl
We investigated functions of the form

(2.3)

(2.4)

0

I I I I I I I I I I

2 & 6 8 &0

FIG. 1. Atomic TF screeing function: comparison of
the analytic approximations of the present calculation
(solid curve) and of Ref. 15 (dotted curve) with the exact
numerical solution of Ref. 29. The lower graph shows
the deviation of the analytical solutions from the numeri-
cal solution.

imation of constant quality over the whole range
of x. The optimal parameter set we found was

a = ( 1.4712, —0.4973, 0.3875, 0.002 102).

This is the parameter set for which the screening
function is plotted in Fig. 1.

A third method for the proper determination of
the parameters is the minimization of the corre-
sponding Langrangian. This possibility, which
we do not consider here, has been discussed in
detail by Csavinszky. "

We want to point out that the direct minimiza-
tion of the quantity E represents a method by
which approximate analytical soliitions of any dif-
ferential equation can be obtained zeithout the
necessity of a foregoing numerical solution. Qf
course, the quality of the final results is very
dependent on the particular choice of the analyti-
cal form. However, as long as special features
of the solution like (1.25) and (1.26) and the de-
sired boundary conditions can be included in the
analytical form, very accurate results are ob-
tained. Besides this, the final magnitude of the
quantity E always represents a direct measure of
the quality of the approximation.

For the numerical minimization procedures, we
used an evolutionary strategy" with dynamical
variance adjustment. This method converges very
rapidly; the final parameters were reached after
about 400 iterations. More details about the evo-
lutionary strategy are given in the Appendix.

d=b(b —a}—c. (2.6)

The minimization procedures were carried out
in the same fashion as for the TF function. - In all
cases we adopted Yonei's choice of the parameter

Table II contains the final parameters a,
b, c, and a for the nitrogen atom and some rare-
gas atoms. The parameter d is to be calculated
from (2.6). The corresponding total energies are
listed in Table I, where the results of Yonei and
the present results are compared with correspond-
ing HF values. The energies given in the column
ET»„' are recalculated with the same density by
insertion into the extended TFDW energy func-
tional (1.27a) with A. = ~.

There is very good agreement with both Yonei's
values and HF calculations for lighter atoms. For
increasing Z the total atomic energies become
slightly less accurate in comparison to the HF
values. The simultaneous increase of the dis-
crepancy between E»»" and E»D„' indicates,
that for larger Z the choice of A. =-,' is less ade-
quate, probably due to the increasing importance
of higher-order terms. We plan to discuss an
improvement of the approximation for heavier
systems within the framework of a relativistic

It is easily seen that all functions of this type are
consistent with boundary conditions (1.23a} and
(1.23b) and with the relation (2.3). In order to
account for feature (1.32), the coefficients a, , bz,
d, and n cannot be optimized independently. They
must fulfill a certain relation which depends on
the degree e. We tested the family of functions
of the type (2.4) going up to order n = 3 and k = 5.
The five-parameter form of order n= 1,

C = (I +ar)/(I+ br+ cr'+ dr'e "), (2.5)

turned out to produce the best results. Higher
orders of n or k gave no improvement or were
less accurate. For this function the relation
which the coefficients must fulfill is given by
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1.0

0.8

TABLE II. Parameters of the atomic TFDW function
for some atoms.

0.2

Q

0 0.4 0.8 1.2 1.6 2.0 2 4

( [a u. j

N
Ne
Ar
Kr
Xe

1,3340
1.5051
1.9003
2.2778
2.5184

45.991
73.247

121.93
358.69
581.83

48.657
76.316

125.79
363.70
587.66

94.190
182.98
419.40

1647.7
3168.4

FIG. 2. Atomic TFDW screening function for neon:
numerical solution of Ref. 27 (dashed curve) and analyti-
cal approximation (solid curve), in comparison to the
atomic TF screening function (dotted curve).

TFDW model.
In Fig. 2 the analytical approximation of the

TFDW function for Ne is compared with Yonei's
result. Again the agreement is very good. The
difference to the mere TF screening function
which is also plotted in this figure is remarkable.

III. ANALYTICAL TWO-CENTER POTENTIALS

A. Two-center TF and TFDW potentials

In this Section we shall describe the construc-
tion of a suitable analytical approximation of the
TF and TFDW potential for diatomic systems. ,

The basic construction principle for the two-
center potentials is the superposition of two
spherically symmetric parts, which was first
successfully applied by Hund" in 1932 and recently
revived by Eichler and Wille" in the variable-
screening model. We superimpose two screened
Coulomb potentials

(3.1)

where the analytical form of the individual screen-
ing functions is given by Eq. (2.2) for the TF po-
tential and by Eq. (2.5) for the TFDW potential,
respectively. For the parameters in P, and &f&,

the atomic values are no longer to be taken. In-
stead, the parameters must be functions of the
internuclear distance A now, i.e., we optimize
the parameters for each internuclear distance
separately. The optimization strategy we use is
still the same as described in Sec. IIA.

Via the ensate (3.1), two-center boundary con-
ditions as well as rotational symmetry with re-
spect to the internuclear axis and the presence of
the pure Coulomb potential at both charge centers
are automatically satisfied. Furthermore the
normalization condition

is fulfilled. This is easily seen by partial inte-
gration:

d7= ——&V, dw

TABLE III. Parameters of the N-N bvo-center TF
potential for various internuclear distances (powers of
the quantity p, arising from the definition x= x/p in
(1.22b) are included in the parameters).

0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.-.1
1.2
1.3
1.4
1.5

3.491
3.458
3.387
3.288
3.213
3.155
3.106
3.102
3.093
3.110
3.110
3.112
3.111
3.115
3.115
3.122

-1.0229
-0.9865
-0.9145
-0.8537
-0.8807
-0.8999
-0.9214
1.060

-1.149
-1.294
-1.368
-1.431
-1.476
-1.515
-1.546
-1.582

2.051
2.030
1.986
1.956
1.991
1.991
1.992
2.078
2.111
2.199
2.225
2.239
2.245
2.245
2.245
2.245

0.1350
0.1354
0.1380
0.1378
0.1291
0.1289
0.1287
0.1172
0.1154
0.1038
0.1021
0.1013
0.1010
0.1017
0.1001
0.1004

Zg + Z2

In Tables III and IV the. final parameters of the
two-center TF potentials of Ne-Ne and N-N are
listed for several internuclear distances. Figure
3 shows the analytical approximation of the two-
center TF screening function in comparison to the
exact numerical solution of Ref. 23. Again the
agreement is excellent. In Tables V and VI the
parameters of the two-center TFDW potentials
of Ne-Ne and N-N are presented together with the
total molecular energies. Although the precision
of the total energies is better than 1% rcompared
with the HF results of Ref. (31)], this precision
is not sufficient for the calculation of the molecu-
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TABLE IV. Parameters of the Ne-Ne two-center TF
potential for various internuclear distances (powers of
the quantity p, arising from the definition x= r/p in
(1.22b) are included in the parameters).

lar binding energy of the N, molecule, which
amounts to only some permillage of the total en-
ergy.

0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

3.998
3.959
3.824
3.693
3.629
3.584
3.558
3.528
3.520
3.503
3.498
3.492
3.494
3.488
3.481
3.478

-1.411
-1.361
-1.192
-1.177
-1.242
-1.365
-1.489
-1.542
-1.627
-1.658
-1.707
-1.736
-1.781
-1.793
-1.792
-1.788

2.754
2.716
2.607
2.630
2.691
2.787
2.858
2.862
2.870
2.848
2.840
2.805
2.801
2.770
2.716
2.685

0.1714
0.1729
0.1793
0.1699
0.1512
0.1347
0.1251
0.1281
0.1324
0.1384
0.1415
0.1495
0.1499
0.1532
0.1638
0.1622

B. Effective two-center sing1e-particle potentials

In view of our final aim, the construction of a
good effective single-particle potential for solving
the Schrodinger equation, two modifications of
the two-center potentials described in Sec. IIIA
are mandatory: (i) The exchange term &c,p'~'
must be included as part of the effective potential,
and (ii) a self-energy correction must be included
for the asymptotic region in a way similar to that
proposed by Latter" for the one-center case.
Both points are taken into account by the following
definition of the effective potential:

—max —' — if
~

v gg~& max
1 2 1 2

It should be mentioned that via the inclsuion of the
exchange term the potential v,«(in contrast to the
two-center TF and TFDW potential) cannot be
split anymore into two spherically symmetric
parts.

0.8

0.6

04

x]0
0-

E

-8

0

z fa. u. j

FIG. 3. Analytical approximation to the two-center
TF screening function (solid curve) in comparison to the
numerical solution of Hef. 23 (dashed curve). The lower
graph shows the deviation of the analytical solution from
the numerical solution.

IV. CONCLUSIONS

In this paper we addressed in detail the question
of the solution of the TF and TFDW equations with
two-center boundary conditions. We were able to
show that the relatively tedious numerical proced-
ures employed so far (as the relaxation method
in the case of the TF equation) can be replaced
by a semianalytical method without any loss of
accuracy. The method consists in the use of a
parametrized analytical Ansatz that incorporates
the boundary and symmetry conditions of the
problem. For the determination of the param-
eters, a fast method was found in the evolutionary
strategy of Rechenberg.

It is our contention that the electron density ob-
tained in this fashion, especially in the case of
the TFDW formalism, is an excellent starting
point for the consideration of further stationary
properties of diatomic systems. The calculation
of molecular orbital energies and the correspond-
ing interaction potentials will be taken up in a
sequel to this paper.

ACKNOWLEDGMENTS

We thank the Deutsche Forschungsgemeinschaft
for its partial financial support and the computing



1806 E. K. U. GROSS AND R. M. OREIZLER

TABLE V. Parameters of the N-N two-center TFDW potential and the corresponding total
electronic energies ETFDw(R).

TFDW
b

TFDW

0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.5
1.9
2.0
2.068
2.1
2.2
2.5
2.75
3.0

1.4245
1.2696
1.1937
1.1769
1.1215
1.1938

.1.2243
1.2715
1.2996
1.3295
1.3482
1.3766
1.3838
1.4149
1.4157
1.4099
1.4045
1.4046
1.3987
1.3833
1.3707
1.3535

55.499
42.817
37.673
38.184
40.546
40.857
42.402
42.858
44.057
44.357
44.508
45.322
45.588
45.902
46.069
46.143
45.947
45.959
46.092
45.909
45.741
45.551

58.818
46.010
40'.718
41.138
43.434
43.696
45.209
45.636
46.818
47.100
47.239
48.043
48.298
48.593
48.748
48.820
48.622
48.634
48.766
48.579
48.409
48.218

145.33
98.474
73.616
67.779
64.426
69.094
72.177
75.697
79.538
81.717
84.274
87.143
88.657
92.346
94.571
94.867
94.610
94.746
95.010
94.729
94.368
93.770

264.62
245.85
220.16
202.93
190.37
180.71
173.05
166.80
161.62
157.26
153.53
150.31
147.51
140.94
134.95
133.78
133.04
132.70
131.72
129.20
127.48
126.03

265.47
247.29
221.33
203.62
190.46
180.71
172.77
166.47
161.13
156.77
153.10
149.81
147.03
140.64
134.94
133.84
133.18
132.87
131.94
129.67
128.16
126.92

'Based on the energy functional (1.27) with X= ~ .5('
"Based on the energy functional (1.27') with A, = ~ .

9

centers of the University of Frankfurt and the GSI,
Darmstadt, for the use of their facilities.

E:(R"-{R. With an arbitrary start vector xp c
the algorithm consists of the prescription

APPENDIX

The evolutionary strategy provides a simple .
means for finding a minimum of a function

x„+z „(o) if E(x„+z „(v))& E(x„)
X

x„otherwise . .
(A1)

TABLE VI. Parameters of the Ne-Ne two-center TFDW potential and the corresponding
total electronic energies ETFDw(R).

-ETFDW a. ETFDW
b

0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7

. 0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
2.0

1.5630
1.5359
1.3387
1.3267
1.3611
1.3959
1.4014
1.4509
1.4858
1.5158
1.5430
1.5709
1.5971
1.6140
1.6147
1.6222
1.5754

77.090
61.046
59.141
60.734
62.587
64.674
67.265
68.605
69.273
69.847
71.213
71.345
71,945
71.988
71.982
71.963
72.633

80.861
64.672
62.603
64.094
65.880
67.916
70.472
71.786
72.430
72.989
74.343
74.465
75.056
75.092
75.079
75.057
75.71.2

235.24
172.10
137,65
131.78
134.56
140.42
145.76
152.81
157.67
162.09
167.51
170.52
174.34
176.37
177.26
178.58
181.47

607.42
559.84
497.84
457.64
428.90
407.17
390.15
376.41
365.12
355.68
347.68
340.81
334.86
329.66
325.08
321.02
306.08

608.39
562.29
498.97
457.89
428.59
406.38

~ 388.84
374.97
363.72
354.39
346.32
339.68
333.86

' 328.92
324.60
320.81
307.05

~ Based on the energy functional (1.27) with X= ~ .
5(~ Based on the energy functional (1.27') with A. = &~.
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Here s„(0) is a random vector generated from a
spherically symmetric Gaussian distribution with
variance 0, i.e., the probability for the random
vector having the magnitude

i @i 1s given by

m(i s ~) =(s2v') " ' exp[-(1/20 )z'].
The convergence rate of the evolutionary pattern
(Al) depends much on the choice of the variance
o. If 0 is not held fixed but suitably adjusted dur-
ing the iteration, a marked improvement of the
convergence rate can be achieved. Rechenberg"
has found a strong criterion for the optimal choice
of 0. He could show that under the assumption of
spherical symmetry of F in the vicinity of the

minimum, the optimum convergence rate is
reached if and only if the probability of success,

8QCC

+tot

(A,„„is the number of successful attempts and

A„, the total number of attempts), equals a criti-
cal value of W„« ——0.2V.

' If W is greater than

W„«, then 0 has to be increased; otherwise, 0

must be decreased. As the probability of success
is easily calculated during the iteration, this cri-
terion provides a useful means for the adjustment
of o. In our calculations we controlled the prob-
ability of success after every 13th iteration and

adjusted 0 via the prescription

5o.ia if W) W"«
~new =-

(r„~/1 Sif. W( W„„.
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