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The hyperfine structure of the rubidium atom in the ground state has been studied by means of the
relativistic many-body perturbation procedure. Relativistic effects are found to have an important influence
on direct, exchange-core-polarization (ECP), and correlation effects, the enhancement over nonrelativistic
results being, respectively, 20, 19, and 15%. Correlation effects are found to be significantly larger in
magnitude as compared to ECP effects, the ratio of the two to the direct contribution being 0.32 and 0.19,
respectively. This feature is opposite in nature to that in lithium and sodium, but represents a continuation
of the trend found in going from lithium to sodium, and indicates that the relative importance of correlation
will be even more pronounced in the heavier alkali metals, cesium and francium. The net theoretical value
for the hyperfine constant was obtained as 3460 + 50 MHz, in satisfactory agreement with the experimental
result of 3417 MHz. The physical reasons for the observed trends in the contributions from different
mechanisms will be discussed, including some detailed features such as the relative contributions from

different core shells to the ECP and correlation effects.

I. INTRODUCTION

The study of alkali-metal atoms and alkali met-
als is pivotal to the understanding of the theory
of hyperfine interactions! in atomic and solid-
state systems in general. This is because in these
relatively simple systems one can study the con-
tributions of the different physical effects,!™ such
as the direct, exchange-polarization, and many-
body effects, in considerable detail without ex-
cessive effort. One hopes from such a study in
these systems to obtain general conclusions re-
garding the relative importance of these physical
effects, which can be useful in the study of more
complicated systems. The present work is con-
cerned with alkali-metal atoms, specifically ru-
bidium, as part of our continuing efforts to under-
stand the origin of hyperfine interactions in the
alkali series, our earlier work® having been con-
cerned with the lighter atoms lithium and sodium.

From earlier investigations, it has been shown
that the leading contribution to the hyperfine con-
stant in alkali-metal atoms, and the simplest to
calculate, is the direct contribution of the val-
ence s electron. Using nonrelativistic Hartree-
Fock (HF) theory, it has been found that this con-
tribution ranges from 70% in lithium to 45% of
the experimental result in cesium. The counter-
part of the Casimir relativistic enhancement fac-
tor® in the framework of the HF theory is usually
obtained by comparing the contact contributions
from nonrelativistic and relativistic Hartree-
Fock formalisms. Such an analysis shows?™® that
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the relativistic enhancement factors for the val-
ence-electron contributions range from 0.1% in
lithium to about 40% in the heaviest atom of this
series, cesium.

The various effects that one has to consider
beyond the direct mechanism arise from electron-
electron interactions. The earlier investigations
of these various effects have been carried out on?
lithium and sodium using nonrelativistic many-
body perturbation theory, the former having also
been studied by other many-body procedures.’

It has been found that a combination of direct, ex-
change-core-polarization (ECP), and correlation
contributions produces good agreement with the
experimental hyperfine constants. In these two
atoms ECP effects are stronger than correlation
effects, the relative importance of correlation
appearing to be greater in sodium as compared
to lithium.

In view of these results regarding the impor-
tance of ECP and correlation in the lighter alkali-
metal atoms and the influence of relativistic ef-
fects on the direct contribution in the heavier
ones, it is clear that to explain the experimental
results in the latter systems, one must employ a
procedure that combines both relativistic and
many-body effects. Such a procedure has been
developed and applied8'1° to a number of transi-
tion-metal and rare-earth atoms and ions. The
results of these investigations have shown that
relativistic effects in general do not give a com-
mon enhancement factor!'®for both the valence and
the core-electron contributions and that the inter-
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play of relativistic and electron-electron interac-
tion effects is more complicated and has to be
handled carefully.%?

With the aim to enhance the understanding of
hyperfine interactions in alkali-metal atoms, we
have investigated rubidium by relativistic many-
body perturbation theory. The reason for choos-
ing rubidium for our investigations is that relativ-
istic effects are expected to be important for this
relatively heavy system. At the same time, from
the trend observed in lithium and sodium,? this
system will be expected to be subject to substan-
tial contributions from many-body effects. The
understanding of rubidium, which is intermediate
between potassium and cesium, will also help us
obtain conclusions which can be extrapolated and
applied to those other two systems. In addition,
it is anticipated that a basic quantitative under-
standing of the various contributions to the hyper-
fine constant in the ground state of the rubidium
atom will be helpful in the analysis of the results
for the excited states, which have attracted con-
siderable attention recently.!!"!® Besides the rel-
ativistic many-body investigation in rubidium we
have also carried out a complete nonrelativistic
many-body-perturbation theoretical study. The
comparison of the results from both treatments
can be expected to give a better understanding of
the interplay of relativistic, ECP, and correla-
tion contributions.

The basic aspects of the relativistic many-body
perturbation procedure are given in Sec. II and
we briefly discuss some of the details pertinent
to the application of the procedure to the rubidium
atom. The diagrams resulting from the perturba-
tion series are also given in Sec. II and their
physical significance is described. The results
from the important diagrams are presented in
Sec. III. In this section we also discuss the rela-
tive importance of the various contributions and
the comparison between the results of theory and
experiment. Section IV lists the main conclusions
of our work.

II. THEORY AND PROCEDURE
A. Relativistic many-body perturbation theory

The principle of the linked-cluster many-body
perturbation theory (LCMBPT) and its application
to the problem of hyperfine interaction has been
described in-the earlier literature.*!* The em-
phasis in the past has been mainly on nonrelativ-
istic many-body perturbation theory,*!® although
recently a number of relativistic calculations have
also been reported.® 1" We will present very
briefly here some aspects of our relativistic many-
body procedure.

We are interested in the exact solution of the
Schrédinger equation

¥ =E¥, 1)

where 3C is the net Hamiltonian'® of the system and
can be written as

)=e 2 85 Epe- L £+ T g @
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with

In the subsequent discussion the second term in
Eq. (3) (the Breit term) will be dropped in solving
the Dirac-Hartree-Fock equation, because the in-
fluence was found to be small.® The basic prin-
ciple of the many-body perturbation theory is to
write the net Hamiltonian 3¢ as

5e=130+30, ’ - (4)

where 3¢, is some chosen one-electron Hamilton-
ian and 3¢’ is the difference of 3C and 3¢, to be
treated as a perturbation. If &, is the eigenfunc-
tion of the one-electron Hamiltonian 3¢, with eigen-
value E,, we can write

3Py = E(®, . (5)

The solution ¥ of Eq. (1) can be obtained by using

the linked-cluster expansion, !4

2(L), 30’ n
0= (525 ) 1o ©

n=0

With ¥ constructed in this way, the expectation
value of an operator 3, can be written as®

o = ; 0 '(EOJE/JCQ "E‘C”<E0$f’3€0)n|¢°>" '

(M

In order to apply this procedure to obtain a phy-
sically measurable quantity represented by the
operator 3Cy, one has to suitably construct 3¢,
solve for &, and E;, and then evaluate the various
terms in expression (7). The one-electron Ham-
iltonian J¢, can be expressed as

N N
=9, T;+9, Vi. (8)
i=1 i=1

In relativistic theory 7'; is given by?

Ti=ca,;-D;+Bic’— Z/r;, (9)

where Z is the nuclear charge and @ and B are the
usual Dirac spinors. The counterpart of T; in
nonrelativistic theory is
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Ti=-3Vi-Z/v;. (10) basis states are obtained by solving the equation

The V; chosen in either the relativistic or non- (T+ Vo, = €;0;. (12)
relativistic case is the standard V¥"! potential,? !°
and the matrix elements of it between states ¢
and b, for example, can be written in the form

The radial relativistic Hartee- Fock equations
‘arising from Eq. (12) are'’

{a| V") dP, P [ }(Y ‘
=tk ==[c+A{=+ + W, =
ar KY c A\ E)]Q W,=0, (13)
> ((anlsom) - Ganl- Ly ( |
= (an—bn—an——nb). 11) S dQ @ 1(y
; 719 V19 &;‘—K‘r—" C—C;+E - W,=0, (14)
However, the one-electron states in nonrelativ- where P and @ are, respectively, the large and
istic theory are the two-component [l, m) states, small components of the wave function. The po-
while in the relativistic theory they are the Dirac tential ¥ and the exchange terms Wy, and W, are
four-component |jm) states. The one-electron given by!’

N-1

. 1 1
y=2-3 (2j'+1)r <P,..l; Pj,>+<Qj,l; Qj> (15)
i*=t > > _ :
and
,rn
Wo, orq; = E Z (27" + 1)(Tj, ')« ,.u >+<Qr 7,.3,11%>>-P:'or Q- (16)
[
with Jn i\ ‘ goy =A,1-J. (20)
ij' - ) .
30-3 From Eq. (20) one can write down the following

and 7, and 7, standing for the smaller and larger formal expression for the hyperfine constant A,

7 in the 1/, expansion respectively. ‘The per- A;=(1/1J) (\yJich \\I;J) s ‘ (21)

bati iltonian 3¢’ is given b
turbation Hamlltonian 3¢ 1s given by with ¥ ;(m ,=J), the many-electron wave function

in Eq. (6) and with m ;=1 for the nucleus.
3= 2:——2 V. 17) . . N
Upon substituting the expansion for ¥ given in
Eq. (6) into Eq. (21), one gets a similar expres-

i>7 tJ

The determinant &, is constructed using the one- sion as in Eq. (7) with 3¢, given by Eq. (18) or

electron ¢,’s corresponding to the lowest energy (19) in the relativistic or nonrelativistic cases,

states. The relativistic ¢,’s are all ‘jm) respectively. The summations over m and z gen-

states. 18 erate the various-order diagrams, the physical

The magnetic hyperfine Hamiltonian is given by!® meanings of which will be discussed in Sec. II B,
. where their process of evaluation is also describ-

-y xT; ed.
IR TR D (18)

B. Diagrammatic procedure
The corresponding nonrelativistic expression for
alkali-metal atoms with filled core shells and a
single s valence electron is given by

In Sec. II B we shall present briefly the pro-
cedure for obtaining the basis set and describe
the pertinent diagrams for the rubidium atom and

87 - - their physical significance. Since the details of

r__ .
sov = 3 Mt Z 28,0(r.) (19) obtaining the basis set in the nonrelativistic case
is given elsewhere,’ we shall present only a few

In Eq. (19) note the presence of only the contact important points here. Thus for the choice of the
term, the orbital and dipolar terms vanishing v¥~1 potential in the present work, it is convenient
owing to the spherical symmetry. The experi- to create all the angular momentum (J) states in
mental measurements!® % determine the hyper- a potential with the 5s electron missing. The

fine structure utilizing the spin Hamiltonian nonrelativistic basis set consists of bound states
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with principal quantum number » up to 12 and
twelve continuum states corresponding to a twel-
ve-point Gauss-Laguerre quadrature. The rel-
ativistic jm basis set consists of the correspond-
ing j=1+ % and j=1-4 functions belonging to the
same values of n. For the nonrelativistic as well
as the relativistic set, I was chosen to range
from 0 to 4. After obtaining the basis set, one
evaluates the operator expectation value given in
Eq. (7). This is a perturbation expression and,
as usual,>? we denote the order of perturbation
by the sum (m +#) in Eq. (7), which is also the
total number of 1/7,, interaction lines occurring
in the generated diagrams. When (m + ) is equal
to zero, the corresponding diagram is shown in
Fig. 1 and is referred to as the (0,0) diagram.??®
This diagram represents the direct valence-elec-
tron contribution to the hyperfine-constant term
A;. From Eq. (21) we find

K *P.Q
rel J 9s¥9s
AJ (O, 0)-_17 ‘/; 5 dT 5 (22)

where « is the fine-structure constant; in order to
obtain A, in units of MHz, K; can be written as-

8 .
K, :?ﬂ(uau,/IJa?gh) %1078, (23)

and for the nonrelativistic case,
A¥(0,0) =K ;¢%(0) . (24)

The next-order diagrams result from taking
(m +n) equal to 1 in Eq. (7), so either m or n can
be equal to one, the other being zero. In effect
we need to consider only one of these possibilities
to draw the diagrams shown in Fig. 2 and then
multiply the values of these diagrams by 2. The
digram shown in Fig. 2(a) is referred to as a
phase-space? diagram because the excitation to
5s” is possible owing to the occupation of the 5s*
in the shell with the same principal quantum num-
ber. The diagram in Fig. 2(b) represents. the
ECP effect which arises owing to the exchange in-
teraction of the unpaired 5s valence electron with
other core s states. Both of these diagrams exist
in the relativistic and nonrelativistic formalisms.
For example, the expression for the diagram in
Fig. 2(b) is

5s*

FIG. 1. (0,0) diagram.

ns” 5s”

(a) (b)

FIG. 2. Core polarization or (0,1) diagrams.

Pailns (25)

n” €

A,(0,1)=2K,

for the nth core state. The entities p and I are
defined®*!" by the following equations, in which
nr stands for the nonrelativistic, rel for the rel-
ativistic formulation:

rel __ _ 1“°°PQ- mPQ
R A SO N
Pri= (P, 10N 1), (27)
L8 = ((PosPss + Q@30 1 1/715 | (P5 P, +Q5.Q))
(28)
L =({0,056 1 1/7 5 d5,0,) . (29)

In the relativistic formulation there are also con-
tributions to the ECP from other than s shells due
to Casimir-type distortions of the atom.® In the
present case only the contributions from the p
shells are important. For the sake of complete-
ness we list here the expression?! for p'¢* when
the hole state » is not an s state.

3 f‘” PQ,
rel — n¥i
Pni 47704( o 7 ar

*PQ, 41,
+fo ;'QZ) dy)<4z§11) Om)i

(30)

for I;=j;+ 3 and

. 3 f“’PQ. “P,Q, .\
rel _ ___ Y nti + ._Lfa \
Pni ( o 7 dr /o- v dy/

4

Aty
><((21,.+ 1)(Zli+3))(mj)i’ (31)
for I;=j;-3

We now proceed to the description of second-
order diagrams where two orders of 1/7,, inter-
action lines will occur and which correspond to
(m +n) equé.l to 2 in the perturbation-series ex-
pression (7). These diagrams are shown in Figs.
3 and 4. In obtaining the second-order diagrams
one can either have m or n equal to two, the other
being zero, or have m=n=1. The diagrams of
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the former type are shown in Fig. 3 and are
known as (0, 2) diagrams, whereas the latter
type, known as (1, 1) diagrams, are shown in Fig.
4. In either type there are two distinct cate-
gories, one representing a purely one-electron-
type excitation, the other representing correla-
tion-type excitations. The one-electron diagrams
are shown in Figs. 3(a)-3(h) and 4(a)-4(d). Of
these one-electron diagrams, some are consid-
ered as corrections to the (0, 1) diagrams and
are known? as laddering diagrams. In general
they represent potential corrections to hole and
particle states used in evaluating the (0, 1) dia-
grams, for instance 3(b) and 3(c). Diagrams 3(a),
3(d), and 3(e) with hole states m and »n from the
same shell (but different spin) represent potential
corrections and are included in laddering; other-
wise these diagrams, as well as those shown in
3(f)-3(h), 4(a), and 4(b), are known as consist-
ency diagrams®?! because the polarized shell n
in turn produces a polarization of shell m. In
diagrams of type 4(a), 3(f), and 3(g), either the
hole state m should be a 5s* state or the particle
state ¢ a 5s” state except, of course, in some
special cases where, for example, the state m
can be a 4s” and # a 4s* state. Diagrams 4(c)
and 4(d) represent second-order ECP effects.
Diagrams 3(i)-3(1) and 4(e)-4(j) represent cor-
relation effects.? In each of these diagrams there
are always two simultaneously excited states and
this represents dynamic correlation between those
states. As will be seen from the results in Sec.
III, the role of these diagrams in the case of rub-
idium is very crucial in order to explain the ob-
served hyperfine constant in this system. In dia-
grams 3(i) and 3(k) either the state shown as m
must be the 5s* state or the state i must be a 5s7,
while in diagrams 3(j), 3(1), 4(e), and 4(f), m or
n can be 5s* or i should be a 5s™ particle state.

m j i 5s* i v
L5 {5
n i * ! 5¢ i

(a) (b) (c)

i A m i i m

m -- ] - m — - 7R
j kon n qu n AN ]
(i) (j) (k) (1)

FIG. 3. Typical (1,1) diagrams.

FIG. 4. Typical (0,2) diagrams.

There are more diagrams [3(g) and 3(h)] that look
like, but do not represent correlation effects, and
this can be revealed by unfolding them.? It can
also be observed that in all the hyperfine dia-
grams in Figs. 1-4, as well as the higher-order
ones in Fig. 5, at least one 5s hole state or one
5s particle state has to take part, since the 5s
electron is the one which produces the net spin
density in the system. For purposes of economy
in computing time, in evaluating the diagrams
relativistically we have assumed that the j=17— 3
orbitals have the same radial characters as j
= [+ % orbitals. Earlier work®?' has shown that
the error made by this approximation is less than
2%. ,

The contributions from all the diagrams up to
second order that have just been discussed, in-

FIG. 5. Higher-order diagrams.
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cluding potential-correction laddering effects,
are described in Sec. III. In addition, we have
also studied third- and higher-order diagrams
such as, for example, those shown in Fig. 5,
whose importance is also discussed in Sec. III.

III. RESULTS AND DISCUSSION

In Secs. I and II, we have discussed the theory
and procedure for evaluating the hyperfine dia-
grams relativistically and nonrelativistically, and
we now proceed to present the results. We will
start with the zero-order and subsequently pro-
ceed to the ECP, consistency, correlation, and
higher-order contributions. In each stage we
would like to present the nonrelativistic results,
the relativistic modification as represented by
the difference between the corresponding rela-
tivistic and nonrelativistic results, and try to
analyze all the results in terms of physical ef-
fects. In doing so we shall try to draw specific
conclusions about the importance of one-parti-
cle, many-body, and relativistic effects for the
hyperfine interaction in rubidium. Combining
our conclusions with those of earlier investiga-
tions on lighter alkali- metal atoms,*? we will then
extrapolate our ideas to make general statements
about the nature of hyperfine interactions in alkali-
metal systems.

In evaluating the results of the contact hyperfine-
interaction constant A; in both relativistic and
nonrelativistic theory, one needs the value of the
multiplying factor K, defined in Eq. (23). Using
the values of the currently available constants,??
K, was found to be 1467.630 MHz/a.u. After
evaluating each diagram in atomic units, we mult-
iply its value by this constant.

In the rubidium atom, there is an unpaired 5s
valence electron which alone makes a large con-
tribution to the hyperfine constant in the restricted
Hartree-Fock theory. In the LCMBPT language,
this is the (0, 0) diagram which is shown in Fig. 1.
The contribution to this diagram was found to be

A0, 0) =2 255.41 MHz
and
A¥(0,0) =1 880.63 MHz

from relativistic and nonrelativistic calculations,
respectively. There is thus an enhancement of
20% of the result due to relativistic effects, in
reasonable agreement with earlier estimates in
the literature.®® This enhancement represents
only the influence of the contraction of the radial
function associated with the 5s orbital, in the
Hartree-Fock approximation, due to relativistic
effects. For understanding the net relativistic
effect, one has to evaluate relativistically the
higher-order diagrams in Figs. 2-5 involving
various orders of electron-electron interaction.
We have listed the ECP results that arise due .
to the polarization of 1s—4s cores by the exchange
interaction with 5s in Table I. In this table we
give the results for both relativistic and nonrel-
ativistic diagrams, each being further classified
into laddered and unladdered categories. We have
briefly explained in Sec. II B the procedure for
laddering, and the laddered values listed in this
table are obtained by a geometric-series approx-
imation for a converging infinite series of dia-
grams. In the case of s states each row includes
the contribution from both the usual ECP repre-
sented by Fig. 2(b) and the phase-space diagram??
shown in Fig. 2(a). The net relativistic ECP con-
tribution arising from p-core states is also pre-
sented in Table I; this does not have a correspond-
ing counterpart in the nonrelativistic case because
the p-orbital wave functions vanish at the origin
in the nonrelativistic approximation. In the last
column of Table I we have presented the ratio of
relativistic to nonrelativistic results for the ECP
diagrams. It is interesting to note that for the
case of 1s and 2s states there is a deenhance-
ment instead of the enhancement factor that is ob-
served for ¢#,(0). In the case of the 3s and 4s
states, however, there are enhancements of 199

TABLE I. Contribution (in MHz) of the exchange-core-polarization to the hyperfine constant

of ¥Rb.
: 1

agce akce akcp a XS(I:P _GQEC] Ecr
States unladdered unladdered laddered laddered agcp
1s 6.9 5.2 7.0 5.2 0.74
2s 29.6 28.8 29.6 28.9 0.98
3s . 68.9 81.7 73.8 87.8 1.19
4s 217.8 270.7 261.1 320.9 1.23
np oo 2.6 e 2.6 eos
Total 323.2 389.0 371.5 440.2 1.19




20 RELATIVISTIC MANY-BODY INVESTIGATION OF THE HYPERFINE... 1793

and 23% respectively, which are close to the
enhancement factor of 20% for the contact 5s case
mentioned in the previous paragraph. These
different trends for the ECP contributions from
1s and 2s states on the one hand and 3s and 4s

on the other are worth further examination. Thus
a decrease, of a type similar to the ECP results
for 1s and 2s state was also observed earlier in
the case of the manganese atom.? However, in
strong contrast tothe cases®™°of Mn°, Eu°, and Gd**
where all s shells have very different enhance-
ment factors, we find for 3s, 4s, and 5s (direct
contribution) shells .approximately the same fac-
tor. Further understanding of the relativistic
effects in the ECP diagrams can be achieved by
looking at the individual integrals involved in
these diagrams. The ECP effect is the product
of three factors, namely, the integral represent-
ing the hyperfine vertex (p), the exchange inte-
gral (I), and the inverse of the energy differences.
In Tables II and III we have presented these quan-
tities for a chosen set of ns ~is excitations ob-
tained both relativistically and nonrelativistically.
Table II lists the factors p and I defined by Egs.
(26)—1(29). In the fifth column we have presented
the ratios of the relativistic to nonrelativistic
hyperfine vertex integrals and in the last column
similar ratios for exchange integrals are presen-
ted. The ratios of the p’s are nearly constant
around the value of 1.19, as is expected,’% and a
constant ratio was also found in the Mn’, Eu®,

and Gd* cases.® ! However, the behavior of the
exchange integral is rather different. For 3s and
4s states, we hardly find any relativistic effect.
In contrast to the cases Mn’, Eu’, and Gd* stud-
ied earlier,®? in the alkali- metal atom Rb the
polarized shells and polarizing shell have the

same [ value and, presumably, the same relativ-
istic contraction (particularly the 3s, 4s, and 5s
shells), and hence the overlap between the 5s and
the core 4s and 3s shells, important for exchange
interaction, does not change very much in going
to relativistic theory. The deenhancements ob-
served for the 1s and 2s ECP contributions also
become understandable from the results in Table
II, since the exchange integrals I involved in the
case of 1s and 2s shells undergo substantial de-
creases in going to relativistic theory. A sim-
ilar trend was also observed in the cases of trans-
ition-metal and rare-earth atoms.®® We shall re-
mark next on the influence of the third factor,
namely, the change in the energy denominators
A€ on the ECP results. It is seen from the last
column of Table III that the relativistic effect
changes the values of Ae very little.

The net result from the (0, 1) diagram is 371.5
MHz nonrelativistically and 440.2 MHz relativ-
istically. The nonrelativistic ECP result can be
compared with the results obtained recently* by
a moment-perturbation (MP) method, namely,
437.85 MHz. This result is in reasonable agree-
ment with our nonrelativistic 371.51 MHz. The
difference of about 18%, as discussed earlier,? is
most likely a consequence of the local Sternhei-
mer approximation used in the MP procedure.
Earlier nonrelativistic calculations have shown
that the ratio Agcp/Aarect Was nearly constant in
the series sodium to cesium. OQur observation
in the present work that relativistic effects do
not change Agcp/Ay;rec: Significantly indicates that
the relativistic value of this ratio should also be
reasonably constant in the series sodium to ces-
ium.

Combining the contributions from the direct

TABLE II. Comparison of a sample of relativistic and nonrelativistic hyperfine-vertex in-
tegrals p and exchange integrals I defined in Egs. (26)—(29).

ns is p™(a.u.) p™(a.u.) Ratio I™(107°% a.u.) ' (1075 a.u.) Ratio

1 5 141.80 164.10 1.15 0.598 0.368 0.61
6 73.40 84.36 . 1.14 0.269 0.238 0.88
7 47.03 53.94 1.14 0.170 0.154 0.91

2 5 44,73 53.04 1.19 2.107 1.507 0.72
6 23.15 27.27 1.18 1.104 1.023 0.93
7 14.84 17.43 1.17 0.707 0.668 0.94

3 5 18.11 21.52 1.19 12.468 9.929 0.80
6 9.38 11.06 1.18 6.437 6.145 0.95
7 6.01 7.07 1.18 4,118 3.99 0.97

4 5 6.12 7.28 1.18 157.567 166.8 1.06
6 3.17 3.74 1.18 80.287 82.9 1.04
7 2.03 2.39 1.18

51.119 52.8 1.03
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" TABLE III. Comparison between nonrelativistic and
relativistic one-electron energy differences (a.u.).

States A€y, A€ 1) Ratio
1s—6s -551.63 -562.31 1.019
25 —6s -75.21 —77,66 1.032
3s—6s -12.29 -12.72 1.035
45— 6s -1.67 -1.71 1.024

(0,0) and the ECP (0, 1) diagrams, we obtain a net
result of 2252.14 MHz from our nonrelativistic
calculation and 2695.6 MHz from the relativistic
work. Comparing this relativistic result with the
experimental result of 3417.3 MHz, we find that
the difference is larger than the ECP contribution
and one, therefore, expects very significant con-
tributions from second- and higher-order dia-
grams.

The second-order results of our calculation are
listed in Tables IV and V. We consider first the
results from the consistency diagrams shown in
Figs. 3 and 4 which we have listed in Table IV.
We have quoted only the contributions from the
diagrams which contribute individually more than
1 MHz in magnitude. The rest of the diagrams
are summed and their net contribution labeled
“other diagrams”, and listed in this table. As
shown in Table IV, the total result from the (0, 2)
consistency diagrams is 9.20 MHz and from the
(1, 1) consistency diagrams is 3.23 MHz, addingup
to the netresult of 12.43 MHz from all second-order
consistency diagrams. This result is only about
3% of the (0, 1) nonrelativistic contribution. Ow-

TABLE IV. Contributions (in MHz) to the hyperfine
constant of 8Rb second-order consistency diagrams. The
results presented in this table are from nonrelativistic
calculations. Only diagrams of magnitude larger than 1
MHz are individually listed.

Diagram States Contribution
3(a) m=5s"n=4s" 1.26
m=5s"n=4p" 5.81
m=4s*n=4p* -9.97
m=3s"n=4s" 3.97
3(f) m=4s"n=4s" —1.67
m=5s"n=4p" 8.78
3(g) m=4sn=4s* 2.45
m=4s"n=4p* ~1.52
Other (0, 2) consistency 0.10
Total (0, 2) consistency T 9.20
4(a) m=5s"n=4p* 1.73
m=4s n=4s" 2.94
m=4s"n=4p" -1.81
Other (1, 1) consistency 0.38
Total (1, 1) consistency 3.23
Net total consistency 12.42

ing to the smallness of this result, we felt itnot
necessary to evaluate these diagrams relativistic-
ally. A reasonably good estimation of the relativ-
istic enhancement effect for these diagrams can
be made by applying a multiplication factor of 1.19
(as in the ECP case) to the nonrelativistic result
of 12.43 MHz. Thus we obtain a relativistic re-
sult of 14.3 MHz. This result shows that the con-
sistency effect is small, and the net one-electron
results, combining all the contributions discussed
so far, are 2264.56 MHz from the nonrelativistic
diagrams and 2709.94 MHz from the relativistic
diagrams.

The diagrams shown in Figs. 3(i)-3(1) and 4(e)—
4(j) represent dynamic correlation effects. From
an inspection of the results so far one can expect
a sizeable contribution from these correlation dia-
grams. Due to the large number of diagrams
present in this class, a complete relativistic eval-
uation is very cumbersome. We have evaluated
all of them with the nonrelativistic basis set.
However, we have evaluated some major contrib-
uting correlation diagrams with the relativistic
basis set and compared the results with those from
the nonrelativistic calculation to examine if we
could still use a common enhancement factor in
order to incorporate the relativistic effect. This
procedure was based on the trend observed in the
evaluation of the (0,0) and (0, 1) diagrams. The
major contributing diagrams involve the n=4 and
n=>5 shells, and our results in the (0, 0) and (0, 1)
diagrams show that, particularly for these shells,
a relativistic enhancement factor is applicable.

In Table V we have presented the nonrelativistic
results of the correlation diagrams. The diagrams
that contribute more than 10 MHz in magnitude are
listed individually®® and the rest are included in
the list as “other diagrams.” The major contrib-
uting diagrams are those which involve the 5s-
hole state at the hyperfine vertex correlating with
the 4s, 4p, or 3d shells. This result can be un-
derstood from two main considerations. The first
is that the 5s state is unpaired and thus has a net
density at the nucleus, and also, being the most
deformable state, is subject to large correlation.
Secondly, the 4s, 4p, and 3d states are closest
to 5s and, therefore, correlation diagrams involv-
ing these states are the major ones. Thus it can
be observed from Table V that through correlation,
a 4p state alone can modify the Hartree-Fock 5s
result (0,0) by as much as 36%. The total results
from the (0, 2) and (1, 1) nonrelativistic correlation
diagrams are 610.4 and 5.8 MHz respectively,
leading to a net result of 616.2 MHz. As pointed
out earlier, we have examined the relativistic
modification of the correlation effect by making
relativistic evaluations of the diagrams which
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TABLE V. Contributions from second-order correlation diagrams to the 8Rb hyperfine con-
stant. The results listed are from nonrelativistic calculations. Only the diagrams of magni-

tude larger than 10 MHz are listed (Ref. 25).

Diagram States Contribution
3(i) m=5s" n=4s" 81.3
n=4p 672.3
n=3d 165.0
m=4s" n=4s i=5s" -12.8
n=4p i=5s" —-90.0
n=38d i=5s" -38.6
3(j) m=5s" n=4s" —60.6
n=4p* —39.2
m=4s* n=5s" ~27.6
m=4s” n=4s" i=5s" 51.8
n=4p~ i=5s" 17.1
Other (0, 2) direct correlation -8.7
Total (0, 2) direct correlation 710.0
3(k) m=5s" n=4p —60.2
n=4s -25.3
n=3d -14.7
m=4s* n=5s" -19.4
m=4s" n=4p~ i=5s" 17.4
3(D m=5s" n=4p* 11.2
m=4s" n=4p~ i=5s" ~12.7
Other (0, 2) exchange correlation 4.1
Total (0, 2) exchange correlation -99.6
4(e) m=5s" n=5s" -17.0
, n=4s" -17.1
4(g) - m=4p 31.2
4(i) m=4s -11.6
Other (1, 1) correlation 20.3
Total (1,1) correlation 5.8
Net total second-order correlation 616.2

make the major contribution in the nonrelativistic
case. The relativistic enhancement factors for
all these diagrams are found to be positive and
lie around 15%. We, therefore, have applied a
relativistic enhancement factor of 15% to the non-
relativistic values of the rest of the correlation
diagrams to account for their relativistic modi-
fication. Following this procedure, the net rel-
ativistic correlation contribution up to the second
order is found to be 708.5 MHz. Including this,
the net result up to second order (including ladder-
ing effects for the ECP diagrams) is 3418.4 MHz.
The net contributions from various physical ef-
fects to the hyperfine constant are presented in
Table VI.

To obtain an estimate of higher-order effects,
we have evaluated a number of diagrams (Fig.
5(a) which can be considered as potential-ladder
corrections to some .of the correlation diagrams,
as well as some additional higher-order diagrams
[such as Figs. 5(b) and 5(c)]. The net contribution
from these types of diagrams is found to be about
40 MHz. Since there can be a large number of

such diagrams and we expect them to be individ-
ually smaller than the ones we have considered,
we have used a conservative error limit of 25

MHz to incorporate their effect.

Combining this

with the possible influence of computational lim-
itations such as, for example, a finite number

of basis-set functions, we have ascribed a con-
fidence limit of +50 MHz to our theoretical result
of 3458.4 MHz for the hyperfine constant.

TABLE VI. Summary of results for the hyperfine con-
stant of 5Rb (in MHz).

rel — nr

Diagrams nr rel rel
(0, 0) 1880.6 2255.4 0.20
(0,1) laddered 371.5 440.2 0.20
Consistency 12.4 14.3 0.15
Correlation 616.2 708.5 0.15
Higher order 35.0 40 0.14
Net total 2915.7 3458.4 0.19
Experiment 3417.3
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IV. CONCLUSIONS

In summary, the net result for the hyperfine con-

stant of the rubidium (®Rb) atom from the present
calculation is 3460 +50 MHz. This result is in
good agreement with the experimental value 3417.3
MHz.?° There are four mechanisms that have been
found to give important contributions: thedirect ef-
fect (A,) coming from the valence electron, the ECP
effect (Agcp) from the polarization of the core
electrons, correlation effects (4,,.), especially
between the valence electron and the outer p shell,
and relativistic modifications of these effects.
Several trends have been observed from our
analysis. In comparison with earlier work,?%*
we conclude that for the alkali-metal atoms, the
ratio Azcp/A4 is nearly constant in the nonrelativ-
istic and relativistic formulation, with the excep-
tion of lithium. We further observe that the cor-
relation contribution A ... increases relative to A,
in going to heavier systems. From the observed
trend in this respect up to rubidium, it is expec-
ted that the contribution from correlation effects
in cesium would be significantly larger relative to
the direct contribution than the 30% found in rubid-
ium and perhaps as large as 40% in the heaviest

alkali-metal francium. A third important fact is
the very small variation in the relativistic en-
hancement factor for ECP contributions from dif-
ferent s-core shells of rubidium. This is in
marked contrast to the corresponding results
found earlier in the transition-metal series. '
This difference in behavior between rubidium and
the transition metals is due to the s character of
the polarizing shell in the former, a consequence
of this being that the polarizing and polarized
shells have comparable relativistic. contractions.
Finally, in view of the importance of correla-
tion effects and the relativistic modifications of
ECP and correlation effects observed in the pres-
ent work on the rubidium atom, one can expect
that these effects will be significant in rudibium
metal in particular and alkali metals in general,
and would have to be considered in attempting to
explain the remaining differences® between the
theoretical and experimental Knight shift and
relaxation-time data in these metals.
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