
PH YS ICA L RE VIE% A 5 OVEMBEB, 1979

Perturbed Rydberg series: Relationship between quantum-defect
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In this paper the theory of a single Rydberg series perturbed by an interloping state is examined. General
analytic expressions are presented which apply both to the bound-state regions and to the autoionizing
regions above the Rydberg ionization limit. The parameters are expressed in terms of configuration-
interaction matrix elements, which can be calculated a priori. There is no restriction to weak-perturbation

theory, and the wave function and all its associated .properties, such as transition moments, can. be
extracted. Explicit calculations are presented for the Cd(5s nd&'D, series perturbed by the Cd(5p )'D,
valence state, and excellent results are obtained.

I. INTRODUCTION

The theoretical calculation of atomic and mole-
cular wave functions by variational techniques,
which utilize trial functions to describe the indi-
vidual electron orbitals, has worked very well for
the lowest-energy states of a given symmetry.
This is particularly true for "valence states, "
i.e., states whose predominant configurations are
constructed from valence orbitals. In principle,
the methods can be used to obtain excited states
of the same symmetry by promoting the electrons
to Rydberg-type orbitals. However, at these
higher energies other configurations become al-
most degenerate, and the calculations must be
expmded to include multi-configuration interac-
tions. In particular, the interaction between a
Rydberg state and an excited valence configuration
can be quite strong, and the entire concept of a
valence state and Rydberg state becomes confused.
The problem of maintaining orthogonality between
succeeding eigenstates also becomes a chore, and
no simple methods have been devised to extrapo-
late the results to high principal quantum numbers.

Our goal in this paper is to demonstrate that
there is a wealth of information about excited
electronic states buried in present day gb initio
calculations that can be extracted simply be re-
cognizing the analytic properties of Rydberg
states. This can be accomplished by incorpor-
ating multi-channel quantum defect theory (QDT).
into the framework of configurati. on interaction
and var iational theor ies for bound electronic states.
The results of QDT are derived by utilizing the
analytic properties of the Rydberg electron for
arbitrary energy. However, .we will show that
the necessary parameters can be obtained from
ab initio calculations at discrete energies, with-
out any modification of the codes that are pre-
sently employed. The QDT, with parameters de-

rived from low-energy variational calculations,
allows us to describe the properties of electronic
states at higher energies, including the continuum.
This is particularly imperative for molecular
Rydberg series, where experimental data are both
imprecise and difficult to interpret.

The theory is developed for the simplest con-
ceivable case of a single Rydberg series, origin-
ating from an L=O ion core, that is perturbed by
a, single interloping state originating from a dif-
ferent configuration. There is no restriction on
the strength of the perturbation, and the perturbing
level may lie imbedded within the series, or
equally well, lie within the ionization continuum,
in which case autoionization is encountered.

The theory is applied to an analysis of ab initio
calculations for the Cd ('Dq) Rydberg series which
converges to the Cd' ('Si') ground-state ion. The
experimental term values are shown in Fig. 1,
and are measured in units of e'/2ao with respect to

. the ionization limit where & =0. This system was
very carefully chosen for its simplicity and con-
formity to the present theoretical model. The
unperturbed series originates from the Cd (5s nd)
'D, configuration. The unperturbed levels, n
=5-10, calculated by Stevens' a,re shown in Fig.
l. In addition, a Cd (5p') 'D, valence state cal-
culated to exist at E~, approximately 1 eV above
the ionization limit, strongly interacts with the
series. Aside from higher members of the
Cd (5Pnj) 'D, series, which can be incorporated
into the theory with little modification, no other
significant perturbations are expected.

In Sec. II we review the quantum-defect theory
for a single unperturbed series. The asymptotic
behavior of the Rydberg orbital is expressed as
an ana, lytic function of the continuous energy
variable,

e = -1/v' .
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FIG. 1, Energy levels (Ry) of Cd D& series relative to
the Cd' (5s) $~~2 ionization limit. The theoretical levels
for the unperturbed Cd (5s nd) D2 series and the perturb-
ing Cd (5p ) D2 valence state were calculated by Stevens
(Ref. 1). The matrix elements for these strongly coupled
states are given in Table I.

tang(v+ p') =0.
This equation imposes the requirement that v =n
—p. , for integer values of n ~ l+ 1 and yields the
usual expression for the Rydberg eigenvalues',

(2)

~.=-l/(n —) )

The defect, p = p, (&), is a slowly varying function
of q

At large distances, the orbital radial function must
be a solution. of the second-order Coulomb equa-
tion and can be uniquely represented as 3. linear
combination of the regular and irregular Coulomb
functions in terms of a single parameter tan)'.
For arbitrary & &0 the Coulomb functions contain
exponentially rlslng tel ms and the solution ls not
well behaved. The eigenvalues &0 are determined
by the following condition which insures that the
amplitude which multiplies these terms vanishes
and the resultant orbital exponentially decays at
large distances,

varying analytic function of &. The slowly varying
nature of p. '(e) and g'(e) is, of course, the es-
sence of the QDT. The parameters may be deter-
mined from an analysis of the ab initio calcula-
tions for the unperturbed series.

In Sec. III the theory is developed for the per-
turbation of the series caused by a single inter-
loping state. A very simple analytic representa-
tion of the perturbation of the eigenvalues is ob-
tained, in which the quantum defect p, in Eqs. (2)
and (3) is replaced by p~,

tangy~=A/[coty($ + Xp) + 9], o
tang($ + A~) . (5)

The perturbation introduces an "energy-dependent"
phase shift A.~ given by

tanmXp ———I'/2( E' —Ep)

which is added to the phase shift $0 for the unper-
turbed series. Ep is the "position" of the per-
turbing level, possibly modified by a principal
part "shift" which we shall ignore for present
purposes. The "width" 1"=g V~2 is a measure of
the strength of the interaction.

In Sec. IV we determine the normalization of the
perturbed wave function and show how I" can be
evaluated from the usual configuration-interaction
(CI) matrix elements between the perturbed and
the unperturbed Rydberg states. Even without re-
course to theoretical calculations, Eq. (5) is a
very useful representation for analyzing a per-
turbed series. The parameter wX~(c) introduced
by the perturbing level varies from zero, as &- -~, to &m at & = E~, to m as & -+~. The energy
dependence of the unperturbed parameter $0 is
modified in such a way as to introduce an addi-
tional eigenvalue into the spectrum of the Ryd-
berg levels. If the width I"=wV~~ is very small,
then the additional level will be well localized in
analogy to the usual perturbation results. How-
ever, a large width will spread the contribution
of the perturbing state over the entire Rydberg
series and possibly into the ionization continuum,
where it can influence the photoionization spec-
trum.

In Sec. V the theory is applied to the Cd ('D2)
series. Conclusions are summarized in Sec. VI.

II. THEORY OF UNPERTURBED RYDBERG SERIES

tang p' =A(a)/[cobra'+ 8(c)],

4 and 8 are monotonic functions of & which ap-
proach 1 and 0, respectively, at the ionization li-
mit and are known functions defined by the orbi-
tal angular momentum l of the Rydberg orbi-
tal. The Rydberg series is uniquely defined
by the parameter g' = ('(z) which is a slowly

(4)
We shall assume LS coupling is valid for the

given, unperturbed Rydberg series. Further, we
only consider the simplest case of a series origin-
ating from an ion-core state

~
L,,MI, ,S„Ms,)'

= $0(r,) with total orbital angular momentum L,
= 0. This may be combined with the spin func-
tions,

~
s,m, ), of the s = —,

' Rydberg electron to de-
fine a total spin S = S,+ s, which is assumed to
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commute with the total Hamiltonian IIz,(r„r).

SM &
—2 P,(r,)ls, m, &

pp (r), (2r) "/(2L + 1) ! (8)

We shall be particularly concerned about the long-
range properties of p, (r).

The general function for the Rydberg state can
be expressed as an antisymmetrized product,

I
c»o Po& = f1'[l S M &»t'o(r)] = & [l »»'p&pp(r)/r], (9a)

where

l
o.p&

-=l S,M, ; L,m, &
=

l
S,M, & r, (r) (9b)

and the antisymmetrization operator (t is norm-
alized such that

(+o pol it| po&=f &~q»(rloo'(~) (9c)

We can construct a complete set of states [n].
from the complete set of ion-core states, g,(r,)]
=[go,P, . . . ], and the various orbital angular mo-
mentum states F»,(r). These are referred to as
channel states, and they play an important role in

QDT and scattering theory. The channel states
are simple product functions which already con-
tain the orbital and spin angular momentum of
the Rydberg electron. They span the entire space
of the system, »vith the excfusion of the Rydberg
radiaL coordinate r The total .wave function

l
E),

at total energy E, is expanded in a truncated set
of channel states

lE) =pc»
l
~» p»&

and coupled integro-differential equations are gen-
erated for the radial functions C,p, (E,r)/r, .

(»», lIIr(r„r) —El E&=0 for all i .
In the Limit of Large r, where the Rydberg elec-
tron is ionized and its interaction with the core
electrons vanishes, these channel states

l
o.& must

be uncoupted by the total Hamiltonian IIr(r„r)
(This is the definition of a channel state. The as
sumption concerning I S-coupling for the ion-core
states can be removed by selecting appropriate
combinations of "approximate" channel states
which properly diagonalize the asymptotic spin-
orbit interaction. ) The asymptotic Hamiltonian

x C(S„s,S;Ms,m„Ms) . (7)

The Rydberg orbital, »Lo(r) = F» (r)pp(r)/r, with
orbital angular momentum l defined by the Legen-
dre function F», (r), is described by a radial func-
tion p, (r) which must be well behaved at the origin,
i.e.,

is separable and the channel states define the fol-
lowing differential equation for the radial portion
of the total wave function:

(»», lII, -ElE& c, (E. -E)-—,r+'

1 8' L»(L»+ 1)

2 p»(E, r)
r y

(12a)

This is, of course, the Coulomb. equation. Each
a state defines an ionization limit, with the thres-
hold energy E and an orbital angular momentum
L for the escaping electron. Therefore, each

l
u&

identifies an entire unPerturbed Rydberg series.
QDT examines the analytic properties of the radial
functions in each channel. Whenever E equals a
proper bound-state eigenvalue E„, the radial func-
tions must vanish asymptotically,

~C.""'—0 E=E
00 (12b)

For the one-channel expansion E)=C,
l

c»o; p, ) de-
fined in Eq. (9), p, must satisfy Eqs. (11) and (12)
for E . =E

Ap

Seaton' has defined Coulomb functions f(e,r) and

g(e, r) that are solutions of the Coulomb equation
(12a) and are anatytic functions of the 'hsymptotic
energy &,

g —(E E)
Further, these functions are exact, independent
solutions of Eq. (12a) for aLL & and aLL r, with the
Wronskian normalized as follows,

s sf 2

BJ 7T

(14)

p „,f(~ r)

po —= »t'»»(& r)»-'

where

(fcos»»$ -g sin»»&o) . (16)

The important parameter (' = f'(&) is a slowly
varying analytic function of &. The single-channel
expansion

l
E)= C,

l
c»o;po& defines a solution of Eq.

(11) which is exact and has its asymptotic proper-
ties given by Eq. (16) for aLL E. However, for E
&E 0, well-behaved solutions, which are square

The leading terms in the power-series expansion
of f and gare independent of e; in fact, Eq. (8) is
equivalent to the expansion of the solution f, which
is regular as r-0, while g approaches —(2L)!/»»(2r)'
and is divergent at the origin. The radial function
pp(&, r) is related to these functions as follows:
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qs(&'. r), (17)

The asymptotic properties of f and g have been
well described by Seaton, and, for & &0, both func-
tions contain exponentially rising functions 4 .
The discrete eigenvalues defined by (17) occur
when the amplitude associated with the 4 com-
ponents in Eq. (16) vanishes. Seaton has shown
this condition is satisfied when

[cosmic

+ sinn( (9 + A cotvv')] 0
= 0,

c)
" r(1+I —v„')

where

&„=-1/(v„)

Except for $'=0 [which corresponds to the "pure"
Coulomb case, where the eigenvalues occur at the
poles of the y function I'(l+ 1 —v'„), i.e., v„= l+ 1,l
+ 2, . . .] the eigenvalues are defined by the condi-
tion

cote $'+ 9 + A cotvv„' = 0 .

Letting

cotm p, = (9 + cobra )/A,

(20)

we obtain Eqs. (1)—(4) in which the eigenvalues
occur at v„= (n —p, ), with n= l+ I, l+2, . . . , such
that

E„=E —1/(n —p )'.
p'(&„) is the "quantum defect" for the state with
eigenvalues Eo and is related to the parameter $o

through Eq. (21). The parameter A is a function
of &andi

(22)

integrable, are only obtained at particular eigen-
values E=E„=q„+E 0, when g„vanishes asympto-
tically, i.e.,

where po is the variationally determined radial
wave function with boundary conditions given by
Eq. (8) in the frozen field of the 'S,» core. Let

F„'(r) =N„p, (E„',r) =—(N„C)$ (E„,r)

such that

r e„'*(r)E„'.(r) dr = 5„„,

(26)

(27)

ception. The ion-core function Qo(r, ) in QDT is
constrained to be the asymptotic ion-core state of
the ionized system. The only variable in the
wave function is the radial function po(r) [and the
number of ion-core channels included in the ex-
pansion of Eq. (10)]. SCF calculations, on the
other hand, replace $0(r,) by a variational trial
function $0 which is not necessarily an eigenfunc-
tion of the ion-core Hamiltonian, and both $0 and

p," are varied to obtain a best energy.
If we use the single configuration ~tao;po) in a

variational calculation, we will obtain a set of
eigenvalues E"„, which represent the Rydberg levels
of the unpe~turbedseries originating from the L,
=0 core and an l Rydberg electron. For an /=2
electron, which corresponds to, say, the
. . . 5s( S«,) nd'D series of Cd, we might ex-
pect that the variationally calculated core func-
tion will closely approximate the true ion-core
state. Certainly as n becomes large and the Ryd-
berg electron density within the core diminishes
(as n 3), this will be true. For present purposes
we will assume Q", =—Q, and the radial function
po(r) is the only variational function. In this case,
with no core polarization, both variational theory
and QDT give identical results, i.e., E"„=E„ in
Eq. (22). Let

A = (1+P'e) (25)

and, A - 1, as & —0. The function 9 is not analy-
tic in & and is given in terms of the 4 functions, '
which are logarithmic derivatives of I' functions,

9 (v, l) =—[g(v+ l + 1) + g(v —l) —2 lnv] .A
2m

(24)

This function approaches zero as q -0. Only at
threshold, &=0, does p = $0. The known func-
tions A. and Q introduce significant energy varia-
tion in the quantum defect p, , especially for l+0;
generally much more substantial extrapolation of
the spectra can be obtained from an analysis based
on g held constant, with p' varying according to
Eq. (21).

The usual self-consistent-field (SCF) varia-
tional calculations construct a trial function simi-
lar to Eqs. (7) and (9), but with one important ex-

(E„ia,iE„,&=E„6„„,. (26)

Given a set of eigenvalues $E'„$ determined from
the variational solution of Eq. (11), we obtain a.
"quantum defect" p (Eo) from Eq. (22) and then
use Eq. (21) to determine the pa.rameter $0(E„).
If the amplitudes of the functions f and g in Eqs.
(15) and (16) are determined primarily in the
range of small r values where f(e, r) and g(z, r) are
almost independent of e, then we might expect $ (e)
to be only a slowly varying function of &. This
requires that all interactions, except the asymp-
totic Coulomb and centrifugal terms in Eq. (12a)
vanish rapidly with increasing r. The QDT is
predicated on this fact that $o is an insensitive
function of &, particularly in the vicinity of the
threshold. Calculated $ values of the Cd (5s nd)
'D& Rydberg series are given in Table I and exhi-
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TABLE I. Calculated properties of CdI (5s nd) D2.

Term

5s5d
5s6d-
5s7d
5s8d
5s9d
5slOd

Unperturbed
eigenvalues
En
(calculated)

-0.108 504 9
-0.061 173 5
-0,039 266 6
-0.027 3199
-0.020 0844
-0.015 364 0

(V'-2)
(der ived)

-0.035 815
-0.043 135
-0.046 477
-0.050 075
-0.056 198
-0.067 6,63

(derived)

-0.071 404
-0.061 068
-0.057 541
-0.057 902
-0.062 444
-0.073 274

CI matrix element
(P[a, f

Zo)

-0.044 414
+0.027 650
-0.020 014

. +0.015557 2
-0.012 9512
+0.010899

I (By)
(derived)

0.298 56
0.22423
0.19999
0.19452
0.205 48
0.21181

(5p)2 +0.076 938 5

Optimum parameters chosen; ($ -2)=-0.057541; I'=0.19999Ry, E&=0.0769385 Hy.

bit this desired feature.
Note that by using the nondivergent SCF solu-

tions
~

E„'), we have obtained an asymptotic analy-
tic representation of the radial function gs(&,r)
for gal energies. This function is regular at the
origin and, for & &0, is just the scattering, or
continuum, wave function, in channel eo. The
asymptotic form of g~~ yields a scattering phase
shift 50 in terms of the parameter g', i.e.,

4

g'„(q,r) corresponds to the distorted-wave approxi-
mation (DWA)' in channel

~
no) in the absence of

coupling to other channels.

III. PERTURBATION OF THE RYDBERG SERIES

I.et us suppose that, in addition to the ground-
state series

~
E„') in Eq. (25), we have determined

various, excited, variational channel state wave
functions which have the following properties.

0 2y tp slnw
qs(e, r) — B't' . o sin((v+5 ), (29)

g singe'
e&0

where the phase shif t is given by

(P) =pc f
~

n, :p~)
i/0

such that

(34a)

cot5, = [cotw )'+ R,(9)]/B,

where y'= 1/e, R,(9) —= —,'(9 + 9*), B =A(&,l)/[I
—exp(-2wy)] and

&u = r/y + y I n(2r /y)
——,'el —arg(I'(l + 1 + iy)) .

Near threshold, where y-~, &-O', B=A=1, and

R,(9) =0, we obtain

5'=wp'=m$ as c-0'. (30)

0 0

~0 s4r ~0 sos
~ e~ ' 8~

where gz„-„,g(&,r)g and

g, ~ (fsinm('+gcosm( )

(31)

(32)

Both gz and gz are solutions of the equation

(no
~
Hr —(Eo + e)

~
n„g (e)) = 0 .

It should be recognized that, for & &0, the solution

In addition to the function gz(e, r), which is regu-
lar at the origin, we can obtain an indePendent solu-
tion at energy &, which is also analytic in z and

irregular at the origin. We define gz(&, r) by the

following Wronskian cog.dition,

(P~a, ~P') =E,5, (34b)

with the additional condition that the following in-
tegral vanish for any arbitrary radial function

F(R),

(P~ n„F)=0. (35)

The "perturbing" states
~
P) correspond to mell-

behgved bound-state solutions originating from
excited ion-core states

~
n,.) and are orthogonal to

the unperturbed Rydberg series with .F= F„' given

by Eq. (26). This will generally be true, espe-
cially if the set of channel states

~

n, ) only contain
core angular momenta L, and Rydberg orbital
angular momenta l which both differ from the
values in

~
no) [see Eqs. (7) and (9)]. If ~P) is

generated from a variational calculation which
allows arbitrary variations in the core functions,
then small nonorthogonalities rn gy be introduced
which invalidate Eq. (35), but only in very special
cases, generally involving configurations with ex-
cited cores of the same symmetry as

~
no). These

complications are not present in the Cd (~D,) cal-
culations, and can be treated, if necessary, with
minor variation of the present theory. We shall
proceed with the assumption contained in Eq. (35).
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If we consider just one perturbing state, and one
Rydberg series, we obtain a particularly simple
result. Let

I
E& =

I
~0 F.&+B.(E) IP& (36)

where we must choose the coefficient B~(E), and
the radial function FE(r) to satisfy the condition

(37)

for a/I E and E' and such that
I
E& is well behaved.

Equation (36) may be regarded as a, restricted
version of the multichannel QDT expressed in
Eqs. (10)—(12) . The excited channel states, with
o., en„have been collected together in Eq. (34a),
and by some variational technique the radial func-
tions C,. p& have been generated which decay
asymptotically and satisfy Eq. (12b) when E = E~.
This set is "frozen" and introduced into Eq. (36)
with one linear parameter Bp(E) which must be
adjusted to satisfy Eq. (37). Ideally the QDT
would allow each C;p,. function to vary indepen-
dently until Eqs. (11) and (12) are satisfied, and
in this sense Eq. (36) is much more restrictive.
However, since the variationally determined state

I
P& can indirectly encompass the infinite set of

channel states, it offers compensations that are
not easy to assess.

From another point of view, Eq. (36) is exactly
equivalent to Fano s configuration interaction
theory (CIT) for a single resonance imbedded in
a continuum. Fano simply expands the undeter-
mined function E~ using the complete set of zvell-
bekgved solutions for the unperturbed series that
were generated in Sec. II,

F ' (r) =go„(E)FO(r)
n

+ d&'C, , E)g~ &',~), (38)
0.

where Fo is defined in Eq. (26) for the bound eigen-
states and (t)n has the asymptotic properties in
Eqs. (16) and (29) for E'=E + e' above the ioni-
zation limit. Fs' (r) vanishes at the origin, and
is always nondivergent for r-~. The coeffi-
cients A(E) and C(E) are determinedfrom Eq. (37).
Below the ionization limit E &E,, solutions are
obtained only at discrete energies E = E„which
define the eigenvalues for the perturbed series.

In contrast, we shall expand Fe(r) as follows:

Fs(r) = (j)„(g,r) —tanw A~G~(e, r), (39a)
where G» is required to be well behaved as r-0,

and asymptotically

G,(e,r) (t)', (e,r) . (39b)

Note that (t)oz and Fz are not yet normalized. Also,
the entire perturbed radial dependence has been
incorporated into the function G». When the para-
meter X~=0, for all &, we retrieve theunperturbed
solution (t)s. Unlike Foe' in Eq. (38) which is well
behaved and only defines solutions at discrete
energies E„when E is below the ionization limit,
Fe, in Eq. (39) yields mathematically proper solu-
tions at gEl energies using the unperturbed radial
functions (1)z(e,r) and (I)1(&,r) on the energy shell
E = E 0+ z. Of course these functions are asymp-
totically divergent when & &0 and well-behaved
solutions must be extracted, in analogy to Eq. (17),
by imposing the condition F~(r) -0 as r-~.

Let us define the following matrix elements:

v, = &PIB, -EIn, ;y',—(e)&, (4o)

w -=&PIB, -EI~„G,(~)&, (41)

and a shifted energy for the perturbing state IP&,

E =E + —'ping. (42)
The term —,'7t W~v„ in Eq. (42) corresponds to the
principal-part shift one obtains in CIT. Since
we have no simple method of evaluating S~ with
any certainty, we shall introduce it as the sole
adjustable parameter in the present theory. (It
is possible that multi-configuration calculations
can be used to estimate the shift ~pWpV~, or expli-
cit numerical integrations can be employed using
pseudopotential methods. ) The Cd results are ob-
tained assuming E~ = E~.

From Eqs. (36), (37), and (39) we obtain the al-
gebraic equation

&PIe, EIE&=B,(E)(E,--E)+ ,v-t a~n)(w =0
(43)

and an integro-differential equation for the radial
function F~(r),
&~o III.—EI ~o F.&+ Bp(E) &BOIH. —EIP& =0. (44)

The matrix elements in Eq. (43) involve an inte-
gration over the entire (N+ 1)-electron coordinate
space, including the radial coordinate x of the
Rydberg electron, in analogy to the usual CIT.'
In Eq. (44) we only integrate over the coordinates
of the channel state

I
o.,&, and this defines a

second-order differential equation for the radial
function Ez(r) which has the asymptotic properties
expressed in Eq. (12a). Using the homogeneous
solutions of Eq. (44) we obtain the result'

I

-tanv X~G,(e,r ')
2

'r)) (N((~(r') dr(D(r) —((—a( () ))rro) +O)))' +( (r') dr 4(rl —((n(H
(

)+ O)O))r)) ~

) .
0

(46a)
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-tanmX~ = 2mB~(E) Vv

and from Eq. (43) we find

Br = Vv/(E —E~)

such that

(45b)

(46)

Note that both (n IHz,
I
P) and 0 are functions of the

radial coordinate g. The operator 0 represents
the contribution of the (N+ 1) electron exchange
terms to the solution of Eq. (44). These terms
are, of course, implicit functions of Fe in Eq. (39).
We shall assume that the exchange terms in Eq.
(45a) are well approximated using Fe = |i|os. In the
limit, as x-~, the first integral vanishes, and the
second integral is equivalent to Vv in Eq. (40).
This should be an excellent approximation in most
cases, and is certainly consistent with the assump-
tion that Wv in Eq. (41) can be neglected. Com-
paring the asymptotic form of Eq. (45a) to Eqs.
(39a) and (39b), we obtain the result,

IV. EVALUATION OF I" AND NORMALIZATION OF THE

PERTURBED RYDBERG SERIES

The "width" parameter I'= w V~ depends on the
"reduced" CI matrix element V~(E) in Eq. (40) and
is an analytic function of the total energy E. The
ab initio calculations provide matrix elements,
(E„IHr I

P), between the normalized, unperturbed,
Rydberg wave functions

I
E„'& given in Eqs. (25)

and (26), and the normalized, perturbing valence
state,

I
P), in Eq. (34). These are listed in

column 5 of Table I for the Cd series. The re-
duced matrix element, at the specific energies
E„' can be determined by the relationship, (E„IHr I

P)
—= (N„C)V~(E„). The normalization for the unper-
turbedwave function, i.e. , (N„r )', is obtained from
Eq. (53) with v„= v'„, and X~=0. The final result
1S

I =v V,'=v(E„'IH,
I
P&2

p2
-tan X

2 E —Ev 2(E —E~)
(47)

S1n p p3 BP.
(51)

If mom than one perturbing level were included in
Eq. (36), the right hand side of-Eq. (47) would
consist of a sum of such resolvent terms

Using these results in Eq. (36), we obtain

IE) =
I
~0;&'&+ [v./(E —E.)«-'& v.

l ~,'G.&+
I » (48)

~ (1/costa~)

x [I cro;f) cosrr(g + &r ) —
I

o'O,g&»n7r(40+ ~v)] ~

(49)

The normalization factor in brackets is often well
approximated as [v3/A]. We expect that I'(Eo) is
only a slowly varying function of the total energy.
This is demonstrated by the calculated widths ob-
tained from Stevens' CI matrix elements' for Cd
given in Table I.

The perturbed wave function in Eq. (48) is not
normalized. Let ge Ne

I
E) such ——that (Qe I gs,&

= 6(E —E'), for E&E,, grs
I gs,&= 6„„„for E„

(E
p

The no rm aliz ation can be evaluated as
follows, '

From the asymptotic properties of Eq. (49), we
derive a "quantum defect" trv(&) for the perturbed
series,

9 8
Fg FE~ Fge Fg

(g I
g,) =N N@. lim

r (52)

cot7r tr = [cot7r($ + X ) + 9 ]/A, (50)
We find

which yields Eq. (5). This is to be compared to
the result, Eq. (25), for the unperturbed series.
In order to evaluate the important parameter I' in

Eq. (47), we must discuss the proper normaliza-
tion of the Rydberg functions.

Nrr
——[cos vAr sin wtr~/sin'rr($ + Xp)2B]gz', (53)

where ge= 1, for E&E,, and ge= —,'v„'+ rrtr /sE„,
for E„(E and we obtain

[cosmic
I
o. ,g') —sin(mX )(2/mV )(-, wV

I
o.„G,&+ IP&)]

-1 sinn ur (E —Ep) I era, t/err&+ Vr (27r Vr I &o'war&+ I P))
(2Bgs)'r2 sinw(f + Xv) [(E-E,)'+-.'F']"'
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From Eq. (54) we can derive simple expressions
for properties such as the transition moments and
evaluate the influence of the perturbing levels on
the oscillator strength to both bound-state levels
and the photoionization continuum.

V. DISCUSSION OF RESULTS OBTAINED FOR
Cd (5snd) ~D

The accuracy of the theoretical results and the
simP/icity of their application can be demonstra-
ted using ab initio pseudopotential calculations
provided by Stevens' for Cd (5s nd) 'D interacting
with the Cd (5P2) 'D valence states 'shown in Fig. 1.
The results of the variational calculations are
summarized in Table I. These can be used to ob-
tain the three parameters, $0, 1, and E~ we re-
quire to characterize the entire system.

The term values for the first six members of
the unperturbed series (5s nd) are given in
column 2. Using Eq. (3) we obtain the unper-
turbed quantum defect p, o in column 3, and from
these, using Eq. (4), in conjunction with (27) and

(28), we extract the parameter g' listed in column
4. The "philosophy" of the QDT requires this
parameter to become a slowly varying, almost
constant, function as nd increases. The varia-
tional trial function used to calculate this series
is most accurately optimized at small n, and the
deviation in g for 10d, from what appears to be
a stabilized value for n =- 7, 8, -9 is not unexpected.
In the application of the present theory we shall
choose our parameters from the results for 5s 7d
as the best compromise. Very similar results
would be obtained if, say, 5s 8d had been chosen.

The second parameter I" should also be an in-
sensitive function of energy since it measures the
interaction of the "tight, " perturbing valence state
with the inner, energy insensitive portion of the
unperturbed Rydberg states. The calculated rna-
trix elements (5s nd ~Hz,

~

5p') are listed in column
5 and, of course, these decrease rapidly because
of the normalization factor which scales the 5s nd
functions. Using Eq. (51) to reduce these data,
e.g. , I'=mv'„'(5s n

d~ H~r P5')/ Awe obtain the rela-
tively constant I values in column 6. Again, we
shall employ the 7d value as the best compromise
between increasing n and decreasing accuracy.

The third parameter E~ is given by Eq. (42) .
We are not prepared to evaluate the shift implied
by the quantity W V~, and the unshifted value E~
= 0.07694 calculated by Stevens will be employed.
Various elaborate hand waving arguments can be
used to rationalize this gssumption, but the ex-
cellent results we obtain for Cd are, for the mo-
ment, the best justification. Obviously, if E~ were
to occur, not ~bove the ionization limit, but im-

bedded in the Rydberg series, the exact position
E~ is more critical, and E~ might best be used as
an adjustable parameter.

The results of the calculations are given in
Table II. Column 2 lists the experimentally ob-
served term values for the 'D, series. ' Column
3 lists the predictions of the single configuration
variational calculations obtained by Stevens, and
column 4 gives the results of solving a (7X 7) CI
secular equation for the interaction of 5d-10d
with the 5P term located at +8443 em '. Ob-
viously the CI calculations make a significant im-
provement in the eigenvalues.

The result of the present theory is shown ip
columns 5, 6, and 7. Given a value for 1', E~, and
g', we must evaluate X~(E), A(E), and 8(v, l) from
Eqs. (47), (23), and (24), respectively, at some
value of E. These quantities are then used in Eq.
(50) to arrive at an estimate for p~(E) Ideal.ly
this process should be iterated until E agrees wi.th
the predicted eigenvalue, E„, i.e.,

(55)

As a good first approximation we may evaluate
p~(EO) at the "unperturbed" eigenvalue E„'. This
result is given in column 5 using the parameters
I' and $' obtained for each individual nd state in
Table I. Column 6 shows the results obtained
from the 7d parameters which we have chosen
as the "best" set based on the quality of the cal-
culations employed by Stevens'. (The resultant
quantum defects are shown by the dashed curve
in Fig. 2.) Finally column 7 presents the results
of the present theory when the experimental ener-
gies E„ in column 1, are employed to evaluate
X~(E„), A(E„), and 9(v„,l). This is essentially just
a lazy way to achieve the self-consistency re-
quired by Eq. (55). In the absence of experimen-
tal data essentially the same results would be
achieved from a single iteration of Eq. (55) with
E„replaced by [n —p~(EO)J 2.

The resultant quantum defects for each level
are plotted in Fig. 2. The solid curve is drawn
through the predicted values obtained from column
7, using the 7d parameters. The circles are the
experimentally observed values, and these seem
to converge on the theoretical curve. Some of
the deviations may be due to "other" unknow~ per-
turbations which may interact weakly with the
'D, series.
. The boxes in Fig. 2 indicate the quantum defects
obtained from the (7X7) CI results in column 4.
The serious deviations one obtains as n increases
demonstrates the limitations of using a "trun-
cated" basis for the unperturbed series. Effec-
tively the theoretical expressions derived from
QDT yield an analytic solution to the infinite CI
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TABLE II. Comparison of experimental and calculated term values for Cd (5s nd) D2.

)

Expt. (cm ~)

(E )

C ale.
unperturbed
series (Eo)

Results
of (7x7)

CI

Results of QDT
Using (nd) Using (Vd). Using (7d)

and Eo and E„ and E„

5d
6d
7d
8d
9d

10d
lid
12d
13d
14d
15d
16d
17d
18d
19.d
20d
2ld
~ ~ ~

23d
24d
25d
26d

p2

-13320.3
-7 405-.3
-4 701.7
-3 243.1
-2 370.6
-1804,3
-1419.3
-1145.4

-943.5
-790.6
-671.9
-578.18
-502.61
-440.95
-389.92
-347.38
-311.30

-280.76
-231.45
-211.56
-194.12

0

-11907
-6 713
-4 309
-2 998
-2 204
-1686

+8 443

-13004
-7 250
-4 592
-3 162
-2 308
—1749

+10695

-12862
-7 301
-4 653
-3 220
-2 361
-1798

-12636
-7 239
-4 653
-3 226
-2 362.0
-1801.3
-1416.8
-1143.9

-942.7
-789.9
-671.6

-12 552
-7 205
-4 640
-3221
-2 359.6
-1800.2
-1417.3
-1144.2

-942.8
-790.1
-671.6
-577.90
-502.46
-440.87
-389.94
-347.34
-311.35

-280.68
-231.51
-211.63
-194.20

secular equation, including the contribution of the
Rydberg continuum states. The ab initio calcula-
tions should obviously be directed at obtaining a
highly optimized Rydberg wave function at some
modest n value in order to obtain the best (' and
I' values, , rather than expanding calculational re-
sources on obtaining a large number of less ac-
curate Rydberg states.

There are, of course, possible contributions
from higher-lying (5p nP) 'D2 Rydberg states, of
which the so-called valence state (5P') 'D, is the
lowest, and highly atypical, first member. These
states add terms, Z„I'~ „/2(E —E~ „), to the right-
hand side of Eq. (47) which can be evaluated by
applying QDT to estimate the widths and positions
of the higher states from I" and E~ for the lowest
state. However, this rapidly leads us into the
next level of theory that must be developed which
is a complete generalization of the keaton multi-
channel QDT and will be deferred to a later paper.
Certainly with regard to the perturbation of the
bound states these higher states can be neglected
since they are distant, with smaller widths, and
any errors introduced will be of the same order
as approximating E~ by the unperturbed position
of the valence state E~.

We may usually approximate the pre-bracket
factors in Eq. (54) simply by (28 ) '~', the "con-

dE G(E) = 1 (57)

or, equivalently, as the Fano-Beutler profile as-
sociated with the "autoionizing"

~

5p') state.
In view of our neglect of the higher members of

the (5p np) 'D, series this line shape is only ap-
proximate, particularly for E&E~, since this re-
sonance will overlap the (5p 6p) state at E =0.27,
which should have a width =—,'I'=0.05 Ry. The de-
tails of such overlapping effects are incidental to
the purpose of this paper and can be easily treated
in the more general, multichannel approach.

In the present case, the "autoionizing" width,
i.e., I'=2.722 eV, is sufficiently large that it
"extends" below the ionization limit and perturbs
the Rydberg series. The contribution to each
bound state is

tribution" of the perturbing ~P) state to each,
normalized, perturbed Rydberg level is then

G(E) 2 sin'vA& I' 1

e, v re, 2m[(E E)' '+-I'] e, '

The quantity G(E) is plotted in Fig. 2 for Cd 'D).
If the entire contribution of the perturbing level
were to lie above the ionization limit, where 8E
= 1, and E were continuous, we would recognize
G(E) as the normalized Lorentzian line shape,
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I „(E)

2.24

2.22

2.20

2.18

2.16

2.14

2.12

2.10

X

ID 2—
CL
Ec(
II

cg 1

0.07694

P

0.1

E (Rydberg)

I I I

3— /

i

x
x ~g

x 7"
6d

x
Sd

ErI

0 t i t ttttii
—0.'I 0

I = 0.1$9SS (Ry)

= 21946 cm

= 2.722 eV

0.3

2.08—

2.06—
6d

204 f
—0.06

7d

tI
—0.04

8EI

t
9d 10EI 26(I

f f oooo ~ ~ o ~ ~ o ~ ~ ~ fI

—0.02 0

G(E„)/8~„=G(E„)(2/v„') .

If we may approximate the summation over
bound states as follows, we simply recover the
normalization condition in Eq. (57), i.eoo

2= 0g G(E„)—3= dnG(E„) —3= dEG(E) .
n=l+1 n n

(58)

It should be obvious that the present theory is
completely equivalent to Fano,'s CI theory. In
fact, Fano has completely summarized the appli-
cation of CI theory to perturbed Rydberg series
when E~ lies below@ the ionization limit in Appen-
dix B of his paper and has extracted most of the
qualitative features we have discussed. Our con-
tribution has been to generalize his results and ob-
tain quantitative relationships which permit use
of calculated CI matrix elements to obtain the per-
tinent parameters.

E (Rydberg)

FIG. 2. Quantum defects for Cd D2, i.e. , E(nd)
(n —p&), with n ~ 5. The circles represent the experi-

mental values obtained by Brown, Tilford, and Ginter
(Ref. 8). The dashed curve is the result of the present
theory, utilizing the unperturbed eigenvalues E„as an
initial guess for E in Eqs. (47), (50), (23), and (24). The
solid curve is the result of utilizing the experimental.
eigenvalues to evaluate the parameters A&, A, and g, and
closely approximates the final results that would be ob-
tained from an iteration of the theoretical expressions.
The squares present the predictions of a (7 x 7) CI solu-
tion using the first six (Gs nd) D wave functions and the
(5p ) D state obtained by Stevens (Ref. 1).

FIG. 3. Contribution of the perturbing Cd (5p2) D val-
ence state to the D Rydberg series. G(E) = (amplitude)
&& 0(E) measures the (amplitude) of the (5p ) 'D state to
the total wave function at energy E. The quantity 8(E) = 1
for E ~ 0, and the envelope of GI) represents the usual
Fano-Beutler line shape for this autoionizing state. Be-
low the ionization limit, E & 0, 8(En) =2 v„weights the
contribution of the valence state to the discrete Rydberg
states at E„=v„.

interloping energy level. The interaction can be
expressed in terms of a generalized "width" which
is easily calculable by variational techniques and
allows for simple extrapolation of bound-state cal-
culations into the ionization continuum. The ex-
pressions are in complete analogy to Fano's CI
theory, but apply equally well to autoionizing
states and to configuration interaction in the Ryd-
berg region, below the ionization limit. Even
without access to theoretical calculations, Eq. (5)
gives a very useful parametric form for analy-
zing perturbed Rydberg series without restriction
to weak interactions and permits treatment of per-
turbing levels gbove the ionization limit.

The theory can easily be generalized to con-
figuration interaction between many Rydberg
series, and explicit relationships can be derived
between CIT and multichannel QDT. In this way
we can utilize the theoretical apparatus developed
for bound-state variational calculations to obtain
cross sections for photoionization and autoioniza-
tion phenomena. Such calculations are particularly
imperative for molecular systems where the ex-
perimentaI data is often unavailable or uninter-
pretable.
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