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In this paper a theorem is proved which shows that a physical system with an inner-shell vacancy
corresponds to the saddle-point energy solution in the Rayleigh-Ritz variation method if the vacancy is built
explicitly into the wave function. This enables us to calculate the inner-shell-vacancy states of a many-body
system from first principles. This method is very easy to use and should be applicable to many areas of

physics.

1. INTRODUCTION

The energy states of a complex system are usual-
ly calculated with the Rayleigh-Ritz variation
method.! In some cases a secular equation is con-
structed and solved.? In others, mathematical
equations are generated through the variation
process, e.g., the Hartree-Fock equations.® This
method is suitable for studying the ground-state
energy as well as singly excited states in general.
The fact that each of the eigenvalues of the secular
equation is an upper bound and approaches the cor-
responding true eigenvalue monotonically as the
number of parameters in the trial function in-
creases makes the method particularly effective
and convenient.* Its application has yielded highly
accurate theoretical results for atomic systems
in the past.® However, for inner-shell-vacancy
problems in many-electron systems the energy
level usually lies in the continuum with infinite
numbers of lower states present. Therefore
identification of the roots of the secular equation to
a particular vacancy state becomes very difficult.

Ideally, if one can construct a wave function
which is orthogonal to the lower continuum and the
lower bound states, the vacancy state will appear
and the problem is solved. This is the basic ideal
behind the Feshbach projection operator,® which
has been very successful in studying a two-elec-
tron system.” However, for systems with three
or more electrons the method becomes impractical
and encounters fundamental difficulties. Attempts
have been made to circumvent this problem and a
quasiprojection operator technique has been de-
veloped and applied to a three-electron system.?®
However, this method is difficult to apply in mul-
tiply excited energy regions where there are an
infinite number of open channels, i.e., a system
that can autoionize with the emission of two or
more electrons.

Recently, a technique has been developed from a
more physical point of view.® Instead of making
the trial function orthogonal to the open channels,
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a vacancy is built directly into it. Therefore, by
assuming a one-particle orbital wave function ¢,,

U =A[1 - P(F)]¥(Fy, ..., F,..., Ty, (1)
where
Po( )= 9o(D)) ( po(D) | (1a)

will be a trial function with the ¢, vacancy. A is
the antisymmetrization operator. We also assume
that electron j has the same symmetry as that of
$o; hence T, is where the vacancy occurs and it is
the only particle that may fill the vacancy. For

« this trial function the Raleigh-Ritz variation meth-

od takes the form

e la|ey
(w|w)

If ¥ is constructed with linear parameters C and

nonlinear parameters @, and ¢, is constructed

with parameters ¢, the variation of E with respect

to C will lead to a secular equation whose eigen-

value is a function of @ and q. Reference 9 pre-

sents a theorem which shows that the true energy

of the vacancy state appears as a saddle point with

respect to the variation of @ and ¢q. Examples

with realistic systems have been carried out and

highly accurate results were obtained.

In this work a detailed proof of this theorem is

oE 0. )

" given. In Sec. II the theorem is restated and

proven for a one-particle Hamiltonian. A useful
corollary that further extends the theorem is given
in Sec. II. Generalization from a one-particle to
an M-particle Hamiltonian is given in Sec. IV. In
Sec. V the problem with more than one vacancy is
discussed. Section VI is a discussion of the con-
nection of the present theorem with the variation
principle and justifies the saddle-point technique
from a more fundamental point of view.

II. THEOREM

Since the exact orbital wave function represent-
ing the vacancy is unknown, any choice of ¢, must
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be approximate. In this case let us first establish
the following theorem for a one-particle system.
Theovem: Let H(T)be a Hermitian operator with
normalized eigenfunctions ¥o(¥F), 9,(T),..., §(T)
and corresponding nondegenerate eigenvalues

E, E,...,E;. Define a normalized function
N
¢0(F)—_— Z tj ij (7’) (3)
i=0

for any N>1, Let the eigenvalues of the secular
equation of H in the subspace orthogonal to ¢, be
Ny Agyeees Age

Consider ) as a function of the {,}; then x; is
an extvemum and x;=E; when t; =0,
Pyoof: For simplicity, let us assume the eigen-
functions and {#;} are all real. To solve for the
eigenvalues A, we first construct the trial function

o -
WE)=Codo(B) + D Cioy(F), M=N,

i=1

(4)

where the C’s are the linear parameters to be
optimized. In the subspace of interest we have
J

(E,-\) -2QE, - x -(H)) +*-

cee

—t (B, +E; —=x —(H))
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P(F)= (1 = | o) Do J(F)
M
:i C([d’;(;)—tid)o(?)]"' Z

§=1 i=N+1

C (7). (B)

We now proceed to construct the secular equation
for H, Since the second term on the right-hand
side of Eq. (5) is eigenfunctions of H and ortho-
gonal to the first term, we may omit this part with-
out affecting the solutions of x; for i=1to N. The
matrix element of the secular equation takes the
form

(@ =2;00) [H =X | @ = £;00))

= (B, =\)6;; —t,t,(E, +E, —x - (H)), (6)

—tit,(E, +E; =\ = (H))

where
N
<H>:(¢’0[H’¢)o>:zt?E{ (68-)
{20
and
N
te=1-3 ;. (6b)
=1 i
Thus the secular equation is given by
=0. M

(By =)0y —t ) (E, +E; =\ —(H)) ***

This equation is a function of #% only. This can be seen by dividing the ith row by ¢, and the jth column

by ¢;, and obtaining

Ext_;_’\_ ~QE,-x=(H)) *-*

_(E1+E¢ -A—<H>) LL

L)

-(E, +E,

-1 =(H))

=0, (8)

LizX 5 (B, +E, - —(H)) ---

Hence if Eq. (7) is expanded explicitly as a function of A and {t,}, it can be written in the form

N
2 )‘nfn(ti’ ti; LR} t;):O .
n=0

Differentiating this equation with respect to ¢;, we

N nelg (42 42 2
‘é—t: an fn(tu tzy---atN)
n=1

N
+ z: )\"fr:(tzly tg: oo ,tir)Zt{ =0,
vt

get

(10)

where f, is the derivative of f, with respect to the argument ¢;. Equation (10) is valid for any {t,}; hence at
¢; =0 either A=0 or 9/3f;=0. To determine which of these two conditions is true we set ;=0 in Eq. (7).

(B, =X) =BQE, -x ~(H)) == 0 -
. .o 0
0
0 E,-x» 0
. 0
0

(11)
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That is, at least one of the solutions of A will not
be zero. If we callthisA,X;, then Eq. (11)implies

K{(tls-“:tl-u 0, tuu---’tN):El° (12)
For this ), at £;,=0, we have

My '

i, =0, (13)

Therefore, 2; will be an extremum with value
E;. In order to analyze and to identify the result
of a calculation it is important to know the nature
of this extremum. To see this we need the corol -
lary in the next section.

III. COROLLARY

Covollary: The eigenvalue A, of Eq. (7) for
i=1,...,N is given by

N =E, +8(E, E)+Z'E———Ei)—t2t2+0(t)
R=1

(14)

where } implies k=1 is excluded in the summa-
tion.

Pyoof: If A is expanded in a Taylor series of ¢,
about ¢, =0, we have from Egs. (12) and (13):

lazx,zla 1 3%
=Bty el 66t3t‘ 31 it BT

(15)
where A{ implies that the argument is evaluated at

—

N=E, +(E,—E)+1t? (Z'g,‘f;t,+ D8 Bttt
[] EN

+t] (E gt >+O(t6).

On the other hand, Eq. (9) can be written in the
form

Z AL, ... 82 = i (A =N (23)

n=0 §=1
If we set?,=0 for all 2 #m,i, we obtain

N
Z A"f"(o, covsty,

n=0

0,...,5,...,0)

=c(M(, =K =2), (24)

where c(A) is independent of ¢, and ¢,,.
From Eq. (22), the third-order term on the
right-hand side of Eq. (24) is

(tryeeestiory 0y 8101y ... . Ey) after the differentiation
is taken. Now if £, is set to be zero in Eq. (7) for
all k+#i, the secular equation becomes diagonal
with the ith diagonal element given by

(B, =2) =82QE, -2, =(H))=0; (16)
in this case, from Eqgs. (6a) and (6b),

(Hy=(1-t)E,+E, . (17)
Equation (16) gives

N=E +£(E,-E,). (18)

This is valid for any #;; compare Eqs. (18) and
(15). We must have

n
IO o forn>3 (19)
ot
and
2y 7
0
2 ’;*t(? ) _2(8,-E,), (20)

where {(0) implies that the argument of A/ is
evaluated at ¢,=0 for all ., Furthermore, we can
expand the higher derivatives of A] in terms of

{t,} about £,=0 as

1 2\ @) @)
2 o2 (Eo - E,) + Z:" g‘,htk.+ ;’gt?/nt;tk+ Ty

1)

where the superscript gives the order of derivative
of A{ with respect to £;. Equation (15) becomes

) +t3<Z gmt + Z'gt(fl)ht;tn“L"')

i,k

(22)

O g ottt B 1) +g 2, 228,(Ey =), (25)

{,mm

Compare this with the left-hand side of Eq. (24)
and note that it is valid for all x; we now have

gm=8mi=0. 26)

Repeat the same procedure successively, and we
get

g&4=0, (27a)
gz“i =0, (27b)
g2%p=0, forj+k, (@7¢)

g&u=0. 27d)
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Hence the only term to survive in the fourth order
is g,%),. Using a similar algebraic technique, it
can be shown that

gith= B, —E\/(E, -E,). (28)

Substituting Eqs. (26)—(28) into Eq. (22), Eq. (14)
follows. .

The nature of the extremum is clearly seen. Since
it isusually the lower states that we wishto pro-
ject out, E,<E;, \; will reach a maximum at {;=0.

In actual calculation the expansion in Eq. (3)
can never be made explicitly. Instead, a function-
al form of ¢, is assumed together with one or more
parameters g. By varying g to a certain value,

A will reach a maximum; this is where #; =0.

It would be of interest to ask if it is possible to
have £, #0 but 3¢,/3g =0, in which case one would
reach a false maximum. Although, theoretically
speaking, it is not impossible, in reality it is
highly unlikely unless #; is small. In this case one
can also check the solution obtained by calculating
the orthogonal property against the unprojected
lower states. On the other hand, this does seem
to suggest that one should make a good choice of
¢, S0 that the expansion in Eq. (3) may exist and
that #; is allowed to become zero when the parame-
ter varies.

IV. EXTENSION TO A MANY-PARTICLE SYSTEM

Since Eq. (14) is derived for a single-particle
Hamiltonian, it would be of interest to see how the
theorem can be generalized to a many-body sys-
tem. Let the Hamiltonian of a M-particle system
be H(¥,,T;,...,T) and let

U —AY(Fyye.s e, Fy) (29)

be an eigenfunction of H with a certain symmetry
of interest. If ?, is where the vacancy ¢, may oc-
cur, Eq. (29) can be rewritten as

U, =APD(T,, .., Ty, Fray e e, T, (F)) . (30)

This expression need not be an approximation. To
preserve the full angular correlation and to ensure
that ¥, be the exact eigenfunction of H, one can
represent £,(¥,) in the form of a column matrix
and ™ in the form of a row matrix so that no ap-
proximation is made. In this case the projection
operator will also be in matrix form.

Next we freeze the configuration y“ and let
&,,» Span the spectrum of excited energy states for
all possible k. £, , can be generated by solving
the following one-electron eigenvalue problem:

"(n = =
f‘p(n (ru- o 9Fj-1s Tjuasee ~,rM)

X(H-E)¥,d¥, - -df, dF,,***dTy=0. (31)
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Therefore, the solution to Eq. (31) should be a
good approximation to the Schrddinger equation

H‘I,n,k:En,h‘IIn,k, (32)
where
‘I/n'k:Ad){")( Fl’ e ’Y‘I-U —1"!4'1: e y—fM)En,h(Y‘j) .
(32a)

For a fixed n, the problem reduces essentially
to a one-particle problem. The theorem in Secs.
II and III is valid with no modification needed.

Now we let » take all possible configurations as
long as ¥, , has the proper symmetry. Note that
&n,; and & ; need not be identical; rather Eq. (32)
should be accurate for any » and k2. Because of
this difference we may have a different expansion
of ¢, for each n; hence

er
bo (B)="D Ly nbn,ulF) - (33)
R=0

To construct the secular equation, a set of basis
functions is chosen. Since the eigenvalue of an
operator is independent of the basis set, for any
suitable trial function we can make the following
expansion:

Y= Z < Z Cﬂ'k‘lln,k+cn,0Alp(’l)¢o> ’ (34)

k=1

where A is the antisymmetrization operator and
the coordinates are suppressed. The projected
trial function with the vacancy ¢, becomes

V=33 C AP WA =Py, ,, 35) -

n k=1

where P, is given by Eq. (1a). Since .

H[Ap™(1 =Pyt , ]
N .
:H(‘I/n,k - i tn,itn,klpn,l>
=1
N

=E, 2¥,n - 2:‘1 uyitnnEn i ¥nyi s (36)

if there is no degeneracy, the right-hand side is
orthogonal to any ¥, ; for m+#n, Hence the matrix
element

(A" = Po)t, olH = 2| AP (1 -Po)ty,,,)
::0,f0rm$n' (37)

Thus, if a secular equation is constructed for
¥’ it will be diagonal with respect to m and %.
That is, the secular equation will be a product of
determinants of the form
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(E, -\ =22 ,QE, , ~x~(H),) ***

~tp iy, i By, Ey =X = (H),)

.o Y

where

Np .
(H),=Y t2Epy - (38a)
=0
The solution to the secular equation now becomes

An,‘ :En,i + tz,l(En,o _En ,l)

n

& (En,o _En,l)z

k=1 En,i - En,k

* £ ith y +0(t°) for all m,i.

(39)

Here E, , is the energy for the nth state of the
M -1 particle with the Mth particle at the lowest
configuration. Equation (39) suggests that each of
the 2, ; should appear independently as a maximum
in the variation of ¢, with the maximum value being
the eigenvalue of the Schrddinger equation.
Situations may arise where there is only one va-
cancy in the system but more than one particle
may fill it. For example, if in Eq. (29) T, and
Y', ,1 have the same symmetry, then in order to en-
sure that the vacancy ¢, be present, the trial
function should take the form

‘I"IA[I —Po(-f‘;)][l —Po(F;u)]
x P(Fy, . .

with P, defined by Eq. (1a). An example in an
atomic system is the Li(1s2s2s)2S in the multi-
configuration calculation within the LS-coupling
scheme.'® In this case the configuration of both
2s electrons should be projected to avoid having
any one fill the 1s vacancy.

T, T e, Ty, (40)

V. MULTIVACANCY PROBLEMS

Although Eq. (39) gives the solution for any nth
state of the (M - 1)-particle system and the ith
state of the Mth particle, in practice it is only use-
ful for those (M —1)-particle excited states which
involve single excitations; i.e., the excited state
must lie below the ionization threshold of the (M
—1)-electron system. For excited states with
another inner shell vacancy in the M -1 system,
the problem can be solved as follows.

Let the second vacancy orbital be ¢, with the
same symmetry as that of particle 2. The trial

—tn, ltn,!(En,l +En,.i A - < H>n)

) (38)

(B, s =204y =ty il 4 (E, ;+E, ; —x =(H),)

r

function with two vacancies will be given by
‘II:A[I _pl(-fk)][l —PO(.I:j)]

)U(Fry oo Faee s Ty, B, (4l2)

where

Py(D) =, (FN{ o, (P)]. (41b)

Now if an expansion of Eq. (33) type is made and
the expansion coefficient is expressed in terms of -
{s,.i}, we may consider the E, ; and E, , in Eq.

(39) to be the solution of the secular equation with
the vacancy ¢, already present, i.e., with P, pro-
jected. Define ¢, , as the true ground state of the
system, and let ¢, ; and ¢, ; be the true eigenvalues
of H with one inner shell vacancy, with ¢, ; as the
true energy of interest. Then

E,0=6,0t (€06, 0520+ 0(?), (42a)
E, =€+ (60’4 - "’i)si" +0(s?). (42b)
Substituting Eq. (42) into (39), it becomes
Moyt =i T (€0 4 —€,,0)85 4
+ (65,0 = &, )05 4 +O(s%7) , (43)

which shows again that A, ; is a maximum and  +
equaltoe, ;ats, ;=0and {, ;=0.

In some cases a system may have two vacancies
of the same symmetry, for example, the calcula-
tion of Li(2s2s2p) %P state in LS-coupling scheme.
In this case the physics of the problem requires
that P, and P, be of the same functional form with
the same parameters.

VI. DISCUSSION

The variation principle can be considered as one
of the most important foundations of quantum
mechanics. This is because the eigenvalue equa-
tion and the variation principle of expectation val-
ue are basically equivalent. The MacDonald theo-
rem also suggests that the calculation of excited
states should be equally convenient as that of the
ground state. To search for a stationary energy
level by the Rayleigh-Ritz variation method is
equivalent to solving the time-independent Schré-
dinger equation. That is,
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IR
(¥[w)

OFE

_(oV[H-E|¥) +(¥|H -E[o¥)

(44)
(¥|w)

with the trial function ¥ covering the proper Hil-
bert space. To require 6E=0 to be true for ar-
bitrary variation of any and all possible parame-
ters in ¥, the parameters must be at a value where

(H-E)¥=0. (45)

This idea is the foundation of the single-particle
projection-operator technique developed in Ref. 9
and here. The physics of the problem suggests
that vacancies exist in the system: hence one
builds in these vacancies accordingly. The math-
ematics of the problem suggests that the station-
ary value solution corresponds to the solution to
Eq. (45). Hence, within the inner-vacancy-state
picture,' the method in this paper is to find the
best approximate ¥ to the Schrodinger equation.
It is a method of general nature and there should
be no restriction on the number of particles nor
the number of vacancies. For autoionization
states, this solution does not represent an exact
solution to the Schrodinger equation due to the ab-
sence of the continuum part in the wave function.
The inclusion of this continuum may result in a
slight shift of the energy position. Nevertheless,
this shift must be small if the inner-shell-vacancy
picture is a good description of physical reality
and if the resonance state can be considered as
essentially a quasibound state. In carrying out
the variation calculation one assumes a trial func-
tion with a basis set and a linear parameter C.

To speed convergence, a nonlinear parameter o
is assumed. The projection operator is con-
structed with a nonlinear parameter ¢g. The usual

CHUNG 20
variation theorem requires that the energy is at a
minimum with respect to the variation of C and a.
The theorem in Secs. II and III suggests that the
true energy for inner-shell-vacancy states is at a
maximum with respect to the variation of g. Com-
bining the two theorems together, the true energy
appears as a saddle point with respect to the varia-
tion of @ and g. The energy will be lowered mono-
tonically* as the number of linear parameters C
increases provided that the saddle-point value of

g remain stable.

The saddle-point energy obtained here is some-
what different from the eigenvalue of QHQ in the
Feshbach formalism. This is because the @ oper-
ator is fixed and not allowed to vary, whereas the
saddle -point technique involves finding the best
square-integrable wave-function approximation to
the Schrodinger equation. This inner-shell-va-
cancy state may be degenerate with one or more
continua of the same symmetry. Through the
interaction of this discrete state with the degen-
erate continuum, a band of stationary states with
a resonance profile is formed.'® Hence once the
inner -shell -vacancy state is formed it will auto-
ionize with a lifetime in-accordance with the half-
width of the resonance profile.

One advantageous feature of the single-particle
projection-operator technique is that it is very
easy to carry out. Usually, it does not have more
integrals to be performed other than that needed
to calculate the ground state. It will, however,
consume more computer time as compared with
the ground-state calculation.

Inner-shell-vacancy states arise in many areas
of physics and until now the theoretical methods
of study have been somewhat intuitive or phenom-
enological. It is the hope of this author that this
saddle-point technique may contribute a more
satisfactory answer,
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