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The author has identified his result for resonant ionization by the simultaneous absorption of two photons
by a ground-state electron [Phys. Rev. A 17, 659 (1978)] with the high-laser-power large-intermediate-state
ionization rate result derived by Eberly and co-workers using a steady-state rate theory. This result gives
R cr» for all power levels considered, where R is the one-photon ionization rate for the intermediate state and
o.» is its steady-state population factor. The result can be cast in this form, but it is found that 0» must be
much less than o», the ground-state population factor. Thus the resonant process can be described by a rate
limit for conserving energy by simultaneous absorption only when the ground-state population factor remains
unity to order Q'/R', where 0 is the Rabi rate for the bound-bound transition. In other words, the
simultaneous and sequential processes are physically equivalent in this limit.

In a previous paper' (I) I presented a rate-theo-
retic description of the resonant ionization of an
atom by the simultaneous absorption of two pho-
tons by a ground-state electron. That result de-
pends on the assumption that the laser bandwidth
is very narrow, implying single-mode conditions,
such that the atomic interaction with the classical
radiation field ean be assumed to be proportional
to a 5 function in frequency space [Eq. (3b) of I].
This 5 function is given by the Fourier integral
representation of the time-dependent interaction
with the field, in which the Fourier integral ean
be used if one ignores the effect of transients due
to its sudden switching on. ' The Fourier integral
is evaluated by treating as constant the slow time
variation of the field amplitude, defined for a
given experiment by a pulse shape function. In an
adiabatic following approximation' the slowly
varying amplitude can then be defined. as a func-
tion of the time required for a given pulse to
propagate through a focal volume containing the
target. 4

The conservation theorem that two photons be
simultaneously absorbed by a ground-state elec-
tron is the same as that obtained in second-order
perturbation theory for the nonresonant process.
However, in our result the infinity at the real
level has been removed by solving an integral
equation very near the infinity. This equation
describes the shifting and broadening of the level
by the virtual Processes of ionization and re-
combination and of emission and reabsorption.
This simultaneity preeludes the possibility of
"Rabi broadening" in the intermediate state due
to the real processes of emission and reabsorp-
tion ("Rabi cycling" of the atomic population be-
tween the ground and intermediate states). Si-
multaneity also precludes the possibility of se-
quential ("multiple" ) photon absorption leading
to "resonance ionization" from a saturated inter-

mediate state. ' The theory of the latter pheno-
menon must be based on an analysis of the prob-
abilities for populating two bound levels lying be-
low an ionization continuum. Below, we show
that the simultaneous theory of I predicts a level-
two population which is small compared to unity.
The sequential process, on the other hand, is
based on the assumption of a significant level one
to level two population shift by one-photon exci-
tation and the subsequent one-photon ionization of
the level-two population.

We show that the two theories give the same
result when the level-two population is small
compared to the level-one population. That is,
we obtain the interesting result that the sequen-
tial two-photon rate Rv» (level-two one-photon
ionization rate R times the level-two population
factor o») is equal to the level-one simultaneous
rate R» when o»«1. Thus simultaneous and
sequential two-photon ionization are physically
equivalent in this limit.

A theory of two-photon sequential or "multiple"
resonant ionization has been derived in a rate lim-
it by Eberly and co-workers. ' ' This result de-
pends on the assumption that a time-independent
probability for populating the levels of an atom
can be calculated by making a pair of adiabatic
approximations to the Liouville or Bloch equa-
tions' for the density matrix p. Then, the two-
photon rate is calculated' ' by weighting the one-
photon ionization rate of the resonant (second)
level by the population factor for this level.

The first of the two adiabatic approximations is
discussed and examined numerically against the
exact solution of the Bloch equations by Ackerhalt
and Shore. ' This approximation was proposed
by Wilcox and Lamb' and involves setting the time
derivatives of the off-diagonal elements of p equal
to zero, based on their rapid relaxation to steady-
state values. This leads to diagonal elements of
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p„=R.(p..-p„)

P22 2 (P22 Pl 1) P22 (1b)

where R is the one-photon ionization rate of level
two and R, is a transition rate based on the sub-
stitution of the off-diagonal elements p„and p2l
into the original right-hand sides of the equations
for p» and p». Neglecting the collisional and
spontaneous decay widths relative to B, it is

RII'/4
[a 2+ (R/2)'] (2)

where 0 is the Rabi rate for the bound-bound
transition and b, is the detuning (including the
light shift) from resonance. The ionization rate
for the bound levels follows from the addition of
Eqs. 1,

Pll P22 P 22~ (3)

p, the densities of atoms per quantum state, which
are good time averages of the exact densities un-
der the conditions discussed in Ref. 7 (principally
that the detuning from resonance be small). The
second adiabatic approximation is introduced by
de Meijere and Eberly' and examined further by
Eberly and O' Neil. ' This approximation involves
the further setting of the time derivatives of the
diagonal density matrix elements equal to zero,
then solving for the resulting time-independent
elements. These are then used, in adiabatic
following, to evaluate the original time deriva-
tives of the atomic densities (diagonal elements
of p) to obtain a decay law for the bound states of
the atom. .

The starting point for Refs. 3 and 6 can be taken
to be Eqs. (8) and (9) of Ref. 7 for the two-level
atom after the Wilcox-Lamb approximation has
been made. Also the difference and sum, re-
spectively, of Eqs. (25) and (26) of Ref. 3 are

g, (r, &) = a» (t )4» (r)e ' ", (6)

where

population depletion; thus the field cannot be ul-
tra strong. Although not discussed' in Refs. 3
and 6, it is clear that Eqs. (1), on using the con-
straint that p„+p„=N, appear to lead to differ-
ent results for the steady-state densities. Setting
the left-hand side of Eq. (1a) equal to zero leads
to the statement p» =

p22 =Ã/2, while performing
this operation in Eq. (1b) leads to Eq (4.). It is
clear, however, that the result from Eq. (la)
is a special ease, when 02/2»[a2+(R/2)'], of
the general result given by Eq. (4).

The rate for the ionization of the ground level
by the simultaneous absorption of two photons
has been given in I. It is the integrated cross
section times F, the flux [see Eq. (13) of I]. A
little manipulation (Appendix) shows that it is
given by

Rfl'/4
[a'+ (R/2)']

At this level of approximation R2 is equal to R,
[Eq. (2)] or level one decays by two-photon ioni-
zation at the same rate at which excitation occurs
from level one to level two.

We note that R, =Ax„, when a„ is evaluated in
the limit' (R/2)'» —2'O2. Thus, to order 02/R2,
c» is unity on resonance (b, =0). This result tells
us that simultaneous and sequential two-photon
ionization are physically equivalent processes
when the level-two one-photon ionization rate is
sufficiently large that the level-one to level-two
population shift is no larger than 02/R2.

It remains to identify the high-power assump-
tion in the derivation of R, of I. From Eqs. (2),
(4b), (8), and (14a) of I, we note that the response
state leading to two-photon absorption is a p state
having the form

Eberly and co-workers' ' set p» equal to zero
in Eq. (1b), obtaining for the probability of popu-
lating level-two:

l~ f(Q2 QJ1 (d)f

Thus the probability for populating level two is

(7)

0'/4
(2R +R) [b, '+(R/2)'+9'/2] (4)

subject to the condition that pll+ p» =N, the total
density of atoms in the bound levels. Thus from
Eqs. (3) and (4) the ionization rate for the bound
levels is Ro» (the one-photon rate for leve1-two
times the steady-state probability for populating
this level).

Equation(4)is based on the assumption that the
relaxation rate of p, , to steady-state values is
much faster than the ionization rate leading to

As pointed out in I, the 5-function form of the in-
teraction in frequency space [see the first term
on the right-hand side (rhs) of Eq. (7b) of I] im-
plies that the wave function could be written in the
forms given by Eqs. (8) and (9) of I. It is the in-
verse Fourier transformation of Eq. (8) [see Eq.
(2)] whose absorptive part [ first term on the rhs
of Eq. (8)] leads to a probability ainplitude given
by Eq. (7) above, in which the Rabi broadening
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APPENDIX

R, [Eq. (5)] is defined by the parameters
(in s ')

Q=(8 ~ )"'«i(V,|I ~Is.) l . ,

n. = ((u, ru, ) + co ——(h/2m, )n.„,
R = (n./m. )r, ,

where (in cm ')

(A1)

(A2)

(As)

r p. V

x g[r, r'; 2(ED+ nE)]

x (p ~ g' ) g, (r' ), (A4)

contribution is missing from the denominator [con-
trast Eqs. (4) and (8) of the present paper].

Thus the divergence at ~„+~~ = ~» can be re-
moved by the solution of an integral [Eq. 10(a)
of I]; yet the above identification of R, (derived
from this solution very near the divergence) with

Bv„ for small 0„from the steady-state theory
has revealed that this solution does not have a
general validity. This is obvious from Eq. (8)
above, where ~a»~' is meaningless if Q)R and,
from the above identification with Rcr»=R(Q'/R'),
is reliable only when —,'Q'«(R/2)'. We can trace
the implicit high-power assumption to the original
ansatz [Eq. (la) of I], in which the source (first
term of the rhs) is proportional to 5(&u —~„).
Thus the 1s state can be broadened only through
the first and third terms on the rhs of Eq. (9) of
I for j =0 (the second term contains no 1s contri-
bution [see Eq. (A3) of I for u&, = ~„]). These
terms are of higher order in the intensity, how-
ever, than the linear dependence exhibited by Rabi
(-,'Q') broadening.

I'„=— Im drdr' *, r p V

x g[r, r'; 2(EO+ 2E)]

x (p &')4(r'), (A5)

where f,(r) and g, (r) are the level-one and -two
eigenstates with eigenfrequencies &o, and &u, (E,
and E, in a.u. ), co is the photon frequency (E in
a.u. ), p is the unit vector in the direction of polar-
ization of the photon, I' is the flux, and g is the
Green's function appropriate for the atomic field.
We note the well-known relationship between the
shift and width and the frequency-dependent polar-
izability of.level two, n, (&u),

lim [( 8/m, )S„+iR]=(8'(u/c)o. ,(ru), (A6)

from which, setting B = Eo„where o, is the level-
two photoelectric cross section,

o, = (8n(u/c) Imn, ((o) . (A7)

After the angular integrations have been performed
[for linearly polarized light and using Eq. (4a) of
I], Eqs. (A1)-(A5) reduce a form already given in
I. This can be recognized by setting [I/(Io(@2']' 2

[see Eq. (1b) of I] equal to [Ji/(F,vP]'~' a.u. or
(2vEn/~)'~' cm '. Then ~Q [Eq. (Al) above] re-
duces to the radial integral in the numerator of
Eq. (14a) times h/(2m, ), and n, -iR/2 [Eqs. (A2)
and (A3) above] reduce to the denominator of
Eq. (14a) times I/(2m, ).

Finally we note a couple of notational errors in
Eq. (A1) of I, namely, that —,k' should be replaced
by k2 and the right-hand side should be multiplied
by a minus sign. Also in Eq. (14c) U, , and U»
should be replaced by U, ~

and U,.„respectively
[see Eq. (14b)]. Also, in Eq. (18) X,

'" should be
replaced by X,'"I'»(8„,P„) [see Eqs. (4b) and (8)].
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