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Population probabiTlties of the excited levels of ions in a steady-state plasma.
I. Basic equations and results
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In this work an explicit formula is obtained for the population probabilities of the excited levels of the
various charge states in an optically thin plasma. The plasma is assumed to be in a complete steady state,
i.e., time independent and homogeneous. First, a recursive expression is obtained for the partial densities of
the various charge states in the plasma. This expression is used to get an implicit algebraic expression for the

population probabilities of the excited states, which is finally solved for low electron densities to yield an

explicit, and simple, expression for the population probabilities. Simplified formulas for H-like ions and a few

numerical examples are also presented.

I. INTRODUCTION

The experimental evidence for high x-ray radia-
tion rates from hot dense plasmas produced by
laser-matter interaction led to a need for reliable
calculations of these radiation rates. These rates
are generally calculated by assuming either
corona equilibrium (CE) or local thermodynamic
equilibrium (LTE) throughout the plasma. These
two models are certainly valid. in low-electron-
density (CE) and high-electron-density (LTE) plas-
ma, respectively, but none of them can cover the
whole range of temperature and density variations
in laser-produced plasmas. In fact, it was found'
that when an aluminum target is irradiated by a
3 x 10"W/cm' Nd: glass laser beam only -7/o of
the total x-ray radiation is emitted from the low-
density high-temperature periphery, where CE is
valid. About the same percentage of the radiation
comes from the hot high-density focal region,
where LTE prevails, but the rest, i.e., about
86% of the x-rays are emitted from the inter-
mediate portion, out of the validity regimes of
these two major plasma models. For higher in-
tensity laser beams one would expect more radia-
tion from the CE region, but the influence of the
intermediate-density region on the x-ray emission
is negligible only at extremely high laser inten-
sities.

The intermediate-density model is called some-
times the collisional-radiative model, ' we prefer
the name complete steady state' '(CSS). This
model is characterized by the fact that the ioniza-
tion state densities, as well as the level popula-
tion probabilities are time independent, i.e., dN,/.
dt=0 and dn, /dt=0 (N~ is the partial . density of
ions with charge state j and n,. is the partial den-
sities of the ions excited to state m). These con-
ditions do not necessarily imply a state of equili-
brium, but rather a steady state only. In this

case, the ionizing processes exactly compensate
the recombination processes thereby producing a
steady state in the plasma. However, as the en-
ergy-dissipating radiative processes are not
negligible relative to the energy-conserving colli-
sional processes, the plasma is supposed to cool
down, but this cooling follows a thermodynamic
path which ensures that the changes in the internal
ionization energy will be minimum. This is the
thermodynamic meaning of CSS.

In CE steady state occurs when the collisional
ionization is exactly compensated by the energy-
dissipating radiative recombination. At the high-
density extreme, I TE, the steady state is ap-
proached when the ionization is compensated by the
energy-conserving collisional recombination. In
CSS both dissipative and conservative recombina-
tions should be accounted for. This greatly com-
plicates the corresponding formulas so that their
use in plasma simulating codes may consume long
computer times. That is the reason why CE or
LTE are prefer red for use in computer codes in
spite of their serious limitations. In fact, in some
cases orders of magnitude inaccuracies can be
caused by using one of these models out of its
validity domain.

In this paper it will be shown that the complicated
formulas of CSS can be solved at the low-electron-
density limit and ap explicit formula will be de-
rived for the population probabilities of the ionic
levels. When these probabilities are known they
can be used to solve a recursive equation for the
charge-state distributions and, finally, when the
composition of the plasma is known, the radiation
rates can be calculated. As it sometimes happens,
the solution of this very complicated problem turns
out to be a very simple (in fact, linear) expres-
s loll.

The calculation presented here assumes an opti-
cally thin plasma with no photon-plasma, interac-
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tion. This approximation is generally correct for
the greater part of laser-produced plasmas. In
cases where this approximation does not hold a
radiation-transport problem must be applied. This
is out of the scope of the present work. In Sec.
II the basic equation and the general formalism
are set up. This equation is then reduced to a
recursive equation from which the charge-state
distribution can be calculated. In Sec. III an im-
plicit equation is derived for the population pro-
babilities. In Sec. IV we finally obtain the explicit
expression for the population probabilities at low
electron density. In, Sec. V an approximate ex-
pression for H-like ions is derived and numerical
examples are given to illustrate the results. Fur-
ther consequences are presented in a subsequent
paper.
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II. BASIC EQUATION AND THE TOTAL

IONIZATION DENSITY

The rate of population change of a particular
level m of the ion j is affected by three groups
of processes capable of populating or depopulating
this level. These processes are (i) populating and
depopulating ionization processes, (ii) populating
and depopulating recombinations, and (iii) excita-
tions and deexcitations. The first two processes
produce transitions to the next ionization states,
whereas the third causes transitions within the
same charge state, affecting only the population
distribution of the excited levels; see Fig. 1for a

FIG. 1. Various processes wtuch populate or depopu-
late an atomic level.

graphical representation.
The rate equati;on for a particular level in the

ion j is

jmj+l e jm e ~ L "j, jim, ee"jm j 1 e] jm e+ g Ij g, „:j,
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j, u. j,m+j, u e+ ~ & j,e: j, m+~eD j e:j m]+j e ~

u&m s&m

Here n,. and n, are the level population density
and electron density, respectively. For the rate
coefficients we used the following notation: I is

,. rate coefficient for electron-impact ionization;
R~' and R ~' are the rate coefficients for two-body
recombination (radiative and dielectronic) and
three-body recombination, respectively; 8 de-
notes the rate coefficients for electron-impact
excitation; D ~' and D ~' are the rate coefficients
for spontaneous decay (D ~' is the Einstein A coef-
ficient) and for the electron deexcitation. Every
rate coefficient is assigned by two couples of in-

dexes, the first couple denote the ionization state
and the excited-. level indexes of the initial ion, the
second couple has the same meaning for the final
state. For example, I& .&„,.is the rate coeffi-
cient for electron-impact ionization of level m of
ionization state j, resulting in ion j+1 excited to
level q. The ionization state index j may have
values between 0 and Z, the level index m counts
the bound levels only. In real plasmas, there is
an ionization potential reduction due to the local
microfields m the plasma. The main effect of
this potential reduction is that the highest atomic
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j, m NjPg', m& (2 2)

(2.3)

levels become unbound, thereby reducing the num-
ber of bound levels of every atom to a finite one.
Consequently, the m index may take only a finite
number of values which depend on the electron
density in thIE; plasma. This fact limits both the
number of equations in (2.1) and the sums in (2.1)
to a finite number only.

The partial densities of the atomic states are
related to the total partial density of the ionization
state N& and the populations probability I', by.

The meaning of this assumption is that the plasma
is either at equilibrium, or the thermalization
processes are fast enough to adjust the population
densities rapidly to any change in the total ion
density or temperature.

Under condition (2.8), Eq. (2.V) reduces to a
simple recursive expression:

N, ,i, , = N, (r„+.n,r„), .

Nj ij1
Nj j r2j+n, r3j

(2.9)

(2.10)

where for brevity, we introduced the following no-
tation:

Pj =1. (2.4) j ~ j m j m'j+1, q&
m, q

(2.ii)

Generally, for every plasma the total ion density
N, is a known quantity, therefore the sum of the
N,.'s must be equal tq

u O)r2j ~ j, m "j m.'j-1
m, s

~ (3)
3j ~ jm "jm".j1 s'

(2.i2)

(2.13)

Nj=N, ,

whereas the electron density is given by

(2.5)

(2.6)

The explicit appearance of the electron density
n, in the denominator of Eq. (2.10) divides the
density dependence of the results into two asym-
ptotic regions:

(a) The high-density region is where

We shall first obtain a recursive formula for
the partial densities of the ionization states in a
stationary plasma. Summing (2.1) over all states
m, the left-hand side becomes dN, /dt, i.e. ., the
equation now describes the rate of change of the
density of the whole charge state without specifying
the state of excitation. On the right-hand side of
(2.1) the excitation and deexcitation (or decay)
parts cancel exactly, reflecting the fact that these
processes induce transitions only within the same
ion and cannot, therefore, affect the change in

Nj. The resulting equation for N,. is

dN, Ni+e2 I&, s—ej+y, qf j, mdt m q

+Ns , net Ps-y, sf,.-i s-. s, m

gp (2) + Zp
t'3)

i+&+e ~ "i 1e:j +e'"s+1 e:i ~ i+& e'
m, q

(2.7)

n,r„» r2j (2.14)

i.e., the three-body collisional recombination is
the main recombining effect. In this region Eq.
(2.10) reduces to

(2.15)

which is the Saha equation. This equation is valid
at high densities where local thermodynamic
equilibrium (I TE) dominates, and from general
principles it can be shown to be equal to

' (~) exp( p, /T, ) exp -—,
j-1 j-1 e

(2.16)

(T, in eV). U,. is the partition function, hX~, is
the lowering of the ionization potential due to the
electrostatic fields in high-density plasmas, and
p, , is the chemical potential of the continuum elec-
trons. When the electrons are nondegenerate,
this formula reduces to the ordinary Saha equation.

(b) In the low-densityregion the corona equili-
brium (CE) model is applicable. This is approached
when

We introduce the assumption that the plasma is in
a complete steady state (CSS), defined by the con-
dition

In this limit (2.9) can be rewritten as

(2.iv)

dNj
N (2.8)

which is the well-known formula for CE.

(2.IS)
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Equations (2.15) and (2.18) indicate that the CSS
model incorporates both LTE and CE in its asymp-
totic regions, and has, therefore, a very wide
range of applicability.

1 ground state
P.j™~

0 excited states. (3.1)

At the other extreme, a high-density plasma, the
collision rate is high enough to produce thermo-
dynamic equilibrium between the ground state and
all excited states. The level density probability
approaches a Boltzmann-type distribution, char-
acteristic for thermal equilibrium,

III. LEVEL POPULATION PROBABILITY

Equation (2.10) is still not in an appropriate
form for solution, since its right-hand side is de-
pendent on the level population probabilities, P j
To obtain values for Pj itis necessary to solve
the full system of differential equations (2.1).
However, at extreme density conditions this is
not a prerequisite since estimates can be obtained
from basic physical principles.

At the low-electron-density extreme, the excita-
tion rate by collisions is so low relative to the
spontaneous decay rate of the excited levels that
the ions are mainly in their ground state:

I'j „=P jgj exp(-Ej „/7,), (3.2)

l

dggem&Q
dt

In principle, this condition seems to be more
restrictive than the usual condition (2.8) since it
implies equilibrium among the excited states of
the ion, whereas (2.8} requires a steady state only
for the ionization state as a whole. In practice,
however, the two conditions describe the same
physical situation [see (2.2)], and only in extreme
cases can one produce a real physical system
where (2.8) holds but not (3.3). These will be gen-
erally nonequilibrium systems.

Inserting (3.3} in (2.1), one can isolate n,. in
the right-hand side of (2.1}, yielding the following
equation for nj

where P j is a normalization factor, g is the statis-
tical weight, and T is in energy units.

The main aim of this work is to find the correct
low-density asymptotic behavior apart from the
limit given by (3.1) and to propose an approximate
formula which can give reasonably accurate re-
sults for intermediate densities.

CSS is defined by the condition that the partial
densities of the ionic states are time independent,

n +) + n ('2)=n, g Ij, „,, n, , „+n, ~ R,.+. ..j ~ri;+, e+n, , „,, n, „+ne j, s. .j m j,s
g&m g&m

"j+1,q: j, m j+l, q j,s:j, m+j, s'

Equation (2.2) is inserted into this equation to
replace nj, nj, „, and n... , by the appropriate
population probabilities and the partial ioniza-
tion state densities, Nj, Nj „and Nj„. The re-
cursive equation (2.9) is then used to replace N...
and Nj, by N, , which appears after these manipu-
lations as a constant multiplicative factor on the
right-hand side of the equation. Dividing the equa-
tion by Nj, one gets the final result for the popula-

tion probability,

with,

P D4)+o
g&m

(3.5)

(3.6)

~ Q)
j+l, e "j+l,e: j, m. j-1 2, j+1 ++j,g j,s:j, m

a u&m

~ Q.)+zj1r.,j.1~Pj,D j ., +zj,x3 j 1 Pj D, , j (3 'I)
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Zp (3)
2 2, j 3, j+1 j-l, r j-l, r: j, m 2, j+1 3, j j-l, r j-l, r: j, m j j-.l j+1,q "j+l,q! j, m

n @ + & n n (2)+~j 1+3 j+1 j u j, u,'j m ~j 1+3 j+1 j s js; jm9
u&m s&m

(3.8)

+3 j+3, j+1 Pj-], r~j ]., r. j, m9

D (1)
~0 2 j+1 j m:ju9

u&m

(3.9)

(3.10)

the electron density. An explicit formula will be
found for the slope of this linear function, and a
few conclusions will be derived.

For low electron density, Eq. (3.5) reduces to

D (1)
+1 +3 j 1

u&m

+Qp

i, ,(p,n, + p, )
' (4.1)

~ (2)+?2?+l + Ij, m:?+1, q "j,m:j-l, r
a

+ Q E. .., „++D',*'..); (.3.1.1)

(2)
~2 +3 j+l ~ j m j+ly Q m j lgr

a r

As we are concerned with nonzero electron density
every atom in the plasma may have only a finite
number of bound states. I et us denote the highest
bound state by M. As there are no higher levels,
for this highest level @0=0, because the sum in
(3.6) contains no elements. Neglecting P,n, in the
denominator of (4.1) relative to P„one obtains for
the highest bound state

/

jss — j& e (4.2)

~ (3)
2, j+1 "j,m:j-l, r9

~ (3)
~ 3 +3, j+I "j,m' j-l, r

(3.12)

(3.13)

with Cj „aconstant independent on the 'electron
density. Inserting this last result into the equa-
tion of the (M —1)th level, one gets that the popu-
lation probability of this state is also linear with
the electron density,

. Equation (3.5) together with the definitions (3.6)-
(3.13) are the basic formulas used hereafter.

It should be noted that the n coefficients are
still dependent on the population probabilities of
all the excited levels except, of course, the j,m
level which is under consideration. Even if seem-
ingly (3.5) is very complex, it has far-reaching
consequences, some of which will be derived here.

The main advantage of (3.5) is that the electron
density dependence of Pj is explicitly shown.
This enables one to see the complete functional
behavior of Pj versus electron density. There
still remains some implicit dependence on n,
through the upper limits of the summations, but
this dependence is generally very weak relative to
the explicit powers of n, in (3.5).

It can be shown, that (3.5) implies both (3.1) and
(3.2) in the low- and high-electron-densify limits,
respectively; however, it facilitates the deduction
of the population probabilities at intermediate re-
gions as well.

n 0.)
j,N j,N: j,Q -].

j,N-1—
Sj 1 +0

(4.3)

Ground State

Excited State

P. g exp (-Ei miTe)

Continuing the same reasoning, one finds that for
all excited states Pj is proportional to n, . The
ground state is an exception, as for rn =1 the de-
nominator is zero, pp = 0, so that Pj, should be
determined from the normalization condition (2.4).

IV. LOW-ELECTRON-DENSITY ASYMPTOTIC 9EHAVIOR

We shall now prove the main result of the
present work, namely, that at low electron densi-
ties the population probabilities vary linearly with

j,m

FIG. 2. Schematic representation of the population
probability variation vs electron density.
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It is preferable to replace C j by another con-
stant vj, defined by

P, „= "'
P,g,. exp(-E, „/T,)= ' P, (LTE).

(4.4}

The main advantage of this definition is that vj
has a simple physical meaning. In fact, vj is the
electron density at which the low-density asymp-
tote intersects the high-density asymptote; see
Fig. 2. Therefore, it may be more meaningful to
refer to this quantity rather than C j . We shall
refer hereafter to vj as the "characteristic den-
sity" of level m of the jth ionization state.

Cj is almost independent on the electronic den-
sity n,. The vj, however, is dependent explicitly
on i3&(T), which at high enough temperatures is a
function of the number of the bound levels and the
electron density in the plasma. In spite of this

(1)Dj,
8&m

(4.6)

~ (2)
1 = r2, j r2, j+1Ij-l,1:j,m+ Ijgj-1 ~ j+1,1:j, m

(4.6)

(1)
Zj-1 +O=Zj 1r2~j+1 j, m: j, u

u&m

(4.7}

These last equations are inserted into Eq. (4.1)
to give

drawback, its simple physical meaning makes the
characteristic density a very useful quantity.

Equation (4.4) shows that all P, , m ~ 2, are
first-order quantities in n„except the ground
state which is a zero-order quantity, P» —= 1 —O(n, ).
When these results are substituted into (4.1) and
terms are retained to first order only, one gets

Qlgg + QOP j m=Cj m+e
~j-1 +0

~ ~ ~ j j jr2, jr2 j+1 j 1 1:jm+ j j-1 j+l, l:j,m+ j-1 2, j+1 j,l:j,m+Zj lr2, j+1 8&m j,8 j s..jm
j-1 2, j+l~u&m j, m: j, u

(4.8)

The only term which is still dependent on the
population probabilities of other atomic states, ex-
cept the mth, is the last term in the nominator.
This term can be rewritten as (C, , )g,&„D...& „
where (Cz, ) is the average value of the C's for the
levels above the rnth with the D ~"s as weighting
functions. As the main contribution to the sum
comes from the no+1 term one would expect that

(C~, ) will be close to C& „.Furthermore, it
will be shown that the C's vary not too rapidly with
m, so one can approximate (C~, ) =C~ . Anyway,
this last term contributes not more than 10%-15%
to Pj, so that the above approximation can cause
at most a few percent inaccuracy to Pj . With
these approximations (4.8) can be solved for C,

(r, ~/i~, ) ~. ..,. „(i~lr, ~+,)8,.+. .. ~ ~+ E~, .~ ~

u&m j, m' j~u ~ & j,8' j, m

and for vj we get,
D(1 D(

s (r
u&m j.m: j.u s&m j,s:j,m

'"[E~, .+(r, /i, ,)1, , ., ~.+(i~/r, ~.x@ „, J

(4.9)

(4.10)

All the rate coefficients in the denominator con-
tain a term of the form exp(-E~ /T, ), which can-
cels the first exponent in the denominator. The
remaining terms are only slightly dependent on the
temperature. As the nominator is independent of
the temperature, we find that vj is only a slowly
varying function of T,. Equation (4.10) is our fi-

nal result, as the right-hand side does not contain
unknown quantities anymore. (In the r, and i ~

terms. only first-order quantities, i.e., ground-
state terms, are to be taken).

To summarize, we repeat the recipe for the
calculation of the population probabilities and
charge-state distributions. for a low-electron-
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density plasma with a given electron temperature:
(a) from Eq. (4.10) derive the characteristic elec-
tron density v,. for all excited levels of every
ionization state; (b) calculate the population pro-
babilities of the excited levels by Eq. (4.4); (c)
calculate the ground- state population probability
using the normalization condition (2.4); (d) solve
the recursive formula (2.10) with the auxiliary
condition (2.5) to get the ionization state distribu-
tion in ihe plasma.

This procedure may seem to be lengthy and in
some simple cases it may be easier to solve
Eq. (3.4) numerically. The real importance of the
analytical expressions (4.4) and (4.10) is that they
provide a better insight into the underlying physics.

V. APPROXIMATE FORMULA FOR HYDROGENLIKE IONS

AND NUMERICAL EXAMPLES

The characteristic density v,. is the ratio be-
tween the depopulating one-body spontaneous de-
cay rate coefficients, to the sum of rate coefficients
of the populating processes. The first term in the
denominator des cr ibes electron- impact exc itation
from the ground state. Generally this is the domi-
nant term in the denominator. The second term cor-
responds to recombination from the ground state
of the jth ion to the (j-1)th ion ground state (r„).
which is ionized again to the neth level of the jth
ion (I,. »I, /i, ,) This. term is nonzero only for
level which can be approached by direct ioniza-
tion of the ground state of the (j—1)th ion, 'e.g. ,
1s2s state of He-like ions produced by inner-shell
ionization of a Li-like ion ground state. Except in
these specific cases this ionization term can al-
ways be neglected.

The last term in the denominator of (4.10) de-
scribes the process where the ground state of j is
first ionized to the ( j+1)th ion ground state, which
recombines later with a free electron to the mth
level. Generally, this term is also very small

$70}c D (] ) D (l)
z-l, m z-l, m: z-l, u z-l, s:z-l, m

u(m s&m

= 6.65 x 10'Z'~-'. (5.2)

Inserting (5.1) and (5.2) into (4.10) yields the
following formula for hydrogen line ions:

v, = 3.58 && 10' P,(T)Z'T'~'m(] —] /m')' (5 3)

In (5.3) the temperature is measured in eV and

v, , in cm '. This last expression predicts a
very sharp Z dependence of v, , and moderate
dependence on both the quantum numbers of the
excited state and the electron temperature.

A few numerical examples for hydrogenlike and
heliumlike ions of aluminum' are shownin Table I

relative to the excitation term. For certain levels,
however, it is the dominant term. An important
group of levels having this property are the doubly
excited states whose cross section to be excited
from ground state is very low, but can be ap-
proached with high probability by dielectronic re-
combination from the next charge state.

For H-like ions fairly, accurate expressions can
be found in the literature for both the Einstein and
the rate coefficients. For these ions the two last
terms in the denominator are very small relative
to the first. The excitation rate coefficient can be
taken from the work of Van Regemorter. ' His ex-
pression for H-like ions, in the temperature range
where these ions have appreciable density in the
plasma, can be rewritten as

3

]j3

(5.1)

(T, in eV), where the Einstein coefficient was ap-
proximated by' D ", ', , l, = 1.28 x 1
for Van Regemorter's P function a constant value
0.2 was taken. For the denominator the following
expression was used:

TABLE I. Characteristic densities and population probabilities (at a total ion density of
102 cm ) of the first excited states of H-like and He-like aluminum ions for a few electron
temperatures. Units of v, are cm . In the table 6.17+23 means 6.17x10 3, etc.

Te(eV) 100
P',)

300 1000
Pjm tTe) at n &

——10 cm"
100 300 1000

Alxru n=2
Alxor n =3
Alxrrr n=4
Alxiu n=5
Alxll lg 2p
Alxrr ls 3p
Alxrr lg4p

6.17+ 23
18.3 + 23
27.7 + 23
34.3 + 23
5.60+ 23
8.89+ 23

10.1 +23

8.71+ 23
25.0.+ 23
36.4 + 23
43.5 +23
9.54+ 23

14.3 + 23
15.2 + 23

0.58+ 23
1.55+ 23
2.26+ 23
2.64+ 23
6.37+ 23
8.58+ 23
9.27+ 23

21.1 —10
0.7 —10
0.3 —10
0.2 —10

60.8- 10
2.6- 10
0.9 —10

1.71 —4
0.49- 4
0.42 —4
0.47 —4
2.12 —4
0.60 —4
0.42 —4

4.50 —3
2.92 —3
3.24- 3
4.13—3
4.89 —3
2.78 —3
2.34- 3
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TABLE H. Same as Table I for H-like and He-like carbon.

V, &eV) 30
P', )

100 300
P~~(T,) atgz, =10 ' cm 3

30 100 300

Gytn=2
GV1 N =3
Cy~ m=4
Cvr n=5
Cii lg 2p
C& 1g 3p

3.35+ 21
9.87+ 21

14.8 + 21
18.1 + 21
2.15+ 21
3.55+ 21

1.69+ 21
4.75+ 21
6.79+ 21
8.44+ 21
1.49+ 21
2.33+ 21

0.15+ 21
0.40+ 21
0.55+ 21
0.64+ 21
0.35+ 21
0.54+ 21

2.42 —5
0.30- 5
0.18—5
0.16- 5
1.45 —4
0.26 —4

2.79- 2
2.28- 2
2.58- 2
3.12 —2
5.37 —2
3.13-2

1.93—2
3.50- 2
5.78- 2
8.72 —2
6.98- 2
6.03- 2

and for the same ions of carbon in Table II. The
temperature range was chosen so that these ion
species will have significant partial densities in
the plasma, .

The H-like and He-like ions have about the same
features, even the numerical values of v,. for
the two species are not very far from each other.
As expected from (5.3), v,. increases almost
linearly with the principal quantum number m, and
a comparison of the two tables reveals a steep Z
dependence. The temperature dependence is rather
moderate, T', ', at the low temperature side of the
tables. In this range P,(T,) —=g,', = .const. However,
at temperatures comparable to the energy gap of the
first excited state, T,=—E,. „more terms start to
contribute to the sum in P, (T,) reducin. g conse-
quently the value of v,. (T,).

The population probabilities are generally lom,
10 to 10 ' in the range of interest for these ions.
The probabilities are higher for the high-tempera-
ture range, but there a strong reduction of the
total densities of these ions occurs in favor of the
fully ionized species. The absolute partial densi-
ties of the excited states of these ions, therefore,
never exceed a total of a fem percent.

The characteristic densities of the lower charge
states have lower values. For example, for Li-
like aluminum, at T, =100 eV, where the density
of these ions is maximum, v(j=10, m=ls'2p)
=—2.0x10 ' cm '

Li-like carbon has maximum abundance at
around T,= 30 eV with v( j= 3, m = ls'2p)
= 5.4 ~ 10" cm '. The characteristic densities
of the lower charge states is much lower.

VI. SUMMARY

In the present paper a consistent solution is
given to the population probabilities of the excited
states of the. various ionic species in a homo-
geneous, time-independent and optically thin plas-
ma which is in complete steady state, i.e. , dn,/.
dt = 0, and a set of conclusions is derived from
these solutions.

First, the equations of the populating and de-

populating processes were set up, with an attempt
to incorporate into the equations as many pro-
cesses as practical. Seven processes are already
included in the equations, these are the electron-
impact ionization, radiative, dielectronic and
three-body recombinations, electron-impact ex-
citation and deexc itation, as mell as the spontaneous
decay of the excited states. Other processes, such
as Auger effect, can be incorporated without much
difficulty.

From the basic equations, implicit formulas for
the charge-state distribution, (2.10), and for the
population probabilities, (3.5), were derived. This
last one was solved at low electron densities, to
yield an analytical formula for P,. of the excited
states (4.4), which is expressed in terms of a
characteristic density v,

It is time to discuss in detail the validity of the
various assumptions of these calculations. The
assumption of steady state is the most difficult
to justify for laboratory plasmas, particularly for
laser-produced plasmas. The CSS assumption in
these plasmas is valid only if the ionization-state
distributions and excited-state populations can ad-
just rapidly enough to the temperature and density
variations in the plasma. This point is not neces-
sarily true in laser-produced plasmas. However,
in a .comparison of two laser-plasma simulations,
one of which used time-dependent equations and
the second used a steady-state assumption, it was
found that the differences in the final results were
surprisingly small, particularly for the x-ray
emission rates predicted by the two calculations.
The reason for the similarity seems to be the
following: intense x-ray emission always origi.-
nates from those regions .of the plasma where the
electron density is high enough to produce an ap-
preciable number of excitations, ionizations, and
recombinations. As high electron concentration
tends to equilibrate the plasma, one would expect
that in these regions the plasma will be not too
far from steady state. In other words, x rays are
emitted mainly from the plasma volume which can-
not be very far from a steady state so that for the
simulations of x-ray emission CSS is a plausible
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approximation.
The assumption that the plasma is optically thin

holds only for small plasmas. For plasmas having
large volumes, or radiation with small mean free
path, the photon-plasma interaction with the whole
apparatus of radiation transport must be included.
This is out of the scope of this work; however, it
seems possible that a part of this problem can also
be incorporated into the equations.

Finally, Eq. (4.4) was derived with the assump-
tion of low electron density. As we already know
the high-electron-density limits of the population
probabilities, a reasonably smooth function con-
necting the two asymptotes can provide an accep-
table approximation which is accurate at the low
and high density portions and only at intermediate
densities would cause moderate inaccuracies.

*On sabbatical leave at the University of Alberta, Ed-
monton, Alberta, Canada.
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