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In order to obtain multiplet energies and therefore energies of excited states of atoms and molecules, the
local-density theory of Hohenberg, Kohn, and Sham has recently been extended to give the lowest energy of
a specified angular momentum and spin symmetry. It is explained why this method does not work if the
exchange correlation functional is taken to be symmetry independent. Instead it is shown how the local-
density theory can be used to estimate the energies of states of mixed symmetry and how the multiplet
splittings are obtained from these estimates. The new method is tested on light atoms and the local-density
theory with exchange only reproduces the Hartree-Fock results within 0.1 eV. With correlation included, the
error in the local-density approach is typically a factor of 3 less than in the Hartree-Fock approach.

I. INTRODUCTION

The traditional approach for calculating multi-
plet energies of atoms and molecules is the
Hartree-Fock method! and for better accuracy
one has turned to multiconfiguration Hartree-
Fock calculations® or effective-operator tech-
niques.® Due to the large computational effort
involved, all these methods are, however, lim-
ited to systems with a small number of elec-
trons. In recent years, there has been a
growing interest in large molecules* and atoms
and molecules* adsorbed on surfaces.’ For these
systems the methods mentioned are quite unmanage-
able and different local-density schemes have been
used, i.e., the Hohenberg-Kohn-Sham scheme® and
the Xa method.” The original Hohenberg-Kohn-
Sham scheme could only give the ground-state en-
ergy but was recently generalized by Gunnarsson
and Lundqvist® so as to give the energy of the
lowest state of a specified angular momentum and
spin symmetry. In principle, the exchange-cor-
relation functional Exc[p] appearing in this theory
should depend on the symmetry of the state under
consideration, e.g., it should depend on the usual
angular momentum (L) and spin (S) quantum num-
bers in the case of light atoms. No prescription
of how to incorporate this symmetry dependence
was, however, offered by Gunnarsson and Lund-
qvist, and in actual calculations® the usual local-
density approximation based on electron-gas
data is used for E .. Thus, the symmetry depen-
dence of the energy of a state only enters via the
prescription for constructing the charge and spin
densities for that state. The inadequacy of this
procedure is evident for the p? configuration
of the carbon atom, for example. The p? con-
figuration gives rise to the three terms P, 'D, and
S. The states belonging to D and 'S are singlets
and therefore have no spin density. Furthermore
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the 'S state has a spherical charge density and

it is possible to form a linear combination of the
five states of the 'D that, according to the pro-
cedure by Gunnarsson ef al., also has a spherical
charge density. Since the 'D states are all de-
generate in the absence of spin-orbit interaction,
the above procedure would predict the same en-
ergy for the 'S and 'D states, which clearly does
not make sense. In Sec. II this point is illustrated
by numerical results and the excited 1s2s con-
figuration of helium is also discussed. A different
approach was taken by Ziegler et al.® within the
Xa method. Since this method is designed as an
approximation to the Hartree- Fock method, they
claimed it should be used to evaluate the energies
of single-determinantal wave functions. Again
invoking Hartree-Fock theory, the multiplet
splittings were obtained from these energies and
the splittings were in reasonable agreement with
experiment. In Sec. III we explain the reason for
the success of this method as well as the failure
of the method mentioned previously. In Sec. IV
we develop a rigorous theory of multiplet splittings
within the framework of Hohenberg-Kohn-Sham
theory and in Sec. V the method is applied to a
number of light atoms (He, C, N, and Si). Sec-
tion VI contains conclusions.

- II. LOCAL-DENSITY ENERGIES OF STATES OF
PURE SYMMETRY )

In this section we will apply the prescription of
Gunnarsson et al.® to calculate the energies of the
%P, 'D, and 'S states of carbon and the 1S and 3S
states of the excited configuration 1s2s of helium.

The problem of finding the energy of the lowest
state, of a specified symmetry, of the interacting
many-body system is reduced to the corresponding
problem for a noninteracting system, but in an
effective potential that incorporates the effects of
exchange and correlation. As a consequence, the
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density matrix of the interacting system is con-
structed from the same linear combination of
Slater determinants that constitutes the solution
to the effective noninteracting problem. This is
the only way in which the symmetry dependence
enters, since the exchange-correlation potential
is symmetry independent.

In the present paper, light atoms will be our test
cases, although we certainly believe our conclu-
sions to be valid both for heavier atoms as well
as for small and large molecules. We will there-
fore neglect spin-orbit interaction and take the set
H, T?, §, L,, S, in obvious notation, as a com-
plete set of operators for atoms. For not too heavy
atoms spin-orbit interaction can easily be in-
cluded in the way described by Gunnarsson et al.®
We will only consider the lowest energy state of
each symmetry and we will label them by |L, S;
M;, Mg). Inorder to construct the density ma-
trix we need the linear combination of Slater de-
terminants that corresponds in the noninteracting
case to the state |L,S; My, Mg). It is given in Ref.
1. In Table I we list the states with non-negative
M, and Mg, together with the spin-up and spin-
down densities to which they give rise (the density
matrix turns out to be diagonal in all cases).
D(mo, m’c’) is of course the Slater determinant
constructed from the one-particle orbitals
R,,(r)YT#)X,(£) and R, ,(r)Y™ #)X,.(£), and n(r)
is just RZ,(r)/ (4r).

Now to get the local-density estimate of one of
the states in Table I we should really minimize the
energy expression’®

E[pag) = TolPag)+ WIPug] + Ulpag) + Esclpag], (1)

with p,,(¥) constrained to be of the form given in
Table I. T,, W, U, and E_, are defined according
to

To[pa ) =kinetic energy of noninteracting system
with density matrix p,,(¥),

W[Pas]=—pr(?)'v(F)d3¢, @)
U[p%]=%/p(?)-v(-f‘—'f/).p('fl)dsydsyl’ (3)

E,[pa,] =f o(7) €, (o4 (F), p, (P d%, (4)

where Z is the atomic number, v(¥)=1/7 is the
Coulomb interaction, p(¥)=p,(T)+p,(¥) is the
total charge density, p;(F) and p, (T) are the eigen-
values of the density matrix paﬁ(f), and €,.0z4,n,)
is the exchange-correlation energy of a spin-
polarized electron gas with spin-up and spin-
down densities #», and #,. This would, however,
mean solving a complicated nonspherical self-
consistency problem which we are not prepared
to do. Instead we will always (if not otherwise
stated) take the radial functions from the self-
consistent spherical paramagnetic calculation and
just evaluate the energy expression (1) for the
corresponding density matrix which is not self-
consistent but which has the appropriate sym-
metry. To estimate the error of this procedure
we first note that the energy involved in flipping
the spin of one electron is much larger than, for
example, promoting one of the p electrons from a
m,=0 orbital to am =1 orbital. We will there-
fore get an upper bound to the error from the dif-
ference between the energy of a spherical self-
consistent calculation for the configuration 1s#,
1s¥, 2s4, 2s¥, 2p4? and the energy obtained by
evaluating the same energy expression, but with
orbitals taken from a spherical self-consistent
calculation for the configuration 1s?, 2s2, 2p%, In
the case of carbon this amounts to 0.04 eV and is

TABLE I. States of different symmetry, their noninteracting counterparts in terms of Slater determinants, and the
corresponding spin-up and spin-down densities for the 2p shell of the p? configuration. n(r) is the spherical average of

the charge density of one 2p electron assumed to be the same for both 2p electrons. 'Thus

second-order Legendre polynomial.

n(r)d3r=1, P,() is the

| LM;M M) Noninteracting counterpart P3N o3 ()
|11;11) D(@t,01) n(r) [2+ P,(cosb)] 0
[11;01) D(1t,-1t) n(r) [2-2P,(cosb)] 0
[11;10) 1/V2[D(Lt,04) —D(0t,14)] n(r) [1+3P,(cos6)] n(r) [1+3P,(cosh)]
[11;00) 1/VZ[DAt,=14) = D(=14,14)] n(r) [1- Py(cosb)] n(r) [1-P,(cosb)]
[ 20;20) D(14,14) n(r) [1- Py(cosh)] n(r) [1- P,(cosb)]
120;10) 1/V2[D@4,04) + D(0+,1+)] n(r) [1+3P,(cos6)] n(r) [1+5P,(cos6)]
|20;00) 1/V6[D@t,~1+)+ D(=11,1+) + 2D(01,0+)] n(r) [1+Py(cosb)] n(r) [1+P,(cosh)]
| 00;00) 1/V3[D(11t,=1+) + D(=1t,14) = D(0*,04)] ©onlr) n(r)
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TABLE II. Change (eV) in different terms of Eq. (1)
for states of different symmetry, in the P configuration
of the carbon atom relative to the result of a self-con-
sistent spherical paramagnetic calculation.

|LS; M Mg) AU AE,, AE
|11;11) 0.13 -1.37 -1.24
|11;01) 0.50 -1.75 -1.25
|11;10) 0.13 —-0.08 0.05
| 11;00) 0.50 ~0.34 0.16
| 20;20) 0.50 —0.34 0.16
| 20;10) 0.13 —0.08 0.05
| 20;00) 0.50 -0.32 0.18
| 00;00) 0.00 0.00 0.00

negligible compared to the accuracy by which the
multiplet splittings can be obtained.

A Gaussian method is used for the angular part
of the integrals in Eqs. (1)-(4) and in Table II
we give, for each symmetry, the change in the
different terms in Eq. (1) relative to their values
in the self-consistent spherical paramagnetic cal-
culation. Note that T, and W do not depend on
symmetry. We only list states with non-negative
numbers for M; and Mg, since the local-density
estimates are invariant under a change of sign of
M, and M.

Since E,_ is taken to be symmetry independent,
the only symmetry dependence comes from the
construction of the spin densities. It is then im-
mediately clear from Table I that the local-den-
sity energies of the states |11;00) and |20;20)
will be equal. The same is true for the states
[11; 10) and |20; 10) giving no splitting between
the 3P and D states. Furthermore, the predicted
splitting between the 'D and 'S states is negligible
compared to the experimental splitting which
amounts to 1.42 eV.'" There is also a small un-
physical spread in the energies of the 'D states.!?
This latter effect is not a serious shortcoming and
will remain, although reduced in magnitude, in the
improved theory that we are about to introduce.
More serious is, however, the large splittings
(~1.3 eV) predicted between some of the degenerate
p states. If, however, we follow the suggestion

by Ziegler et al.’ and trust only local-density en-
ergies of states, which in the noninteracting case
are represented by single Slater determinants,
we would say that the splitting between the P and
the 'D states is (0.16 +1.24) eV =1.40 eV which is
close to the experimental number 1.26 eV.!! Still
there is a small difference between the local-

. density energies of the two °P states |11;11) and

|11;01). Since their Coulomb energies (U) are
quite different, this difference should be cancelled
by a corresponding difference in the exchange-
correlation energies E,.. As seen from Table II
the cancellation is remarkably accurate (within
0.01 eV) considering the crude local approxi-
mation for E . The cancellation is certainly
much better between these two single-determinantal
states than, for example, between the states
|20;10) and |20; 00).

- We have also applied the procedure by Gunnar-
sson et al.® to the excited 1s2s configuration of
helium with the result shown in Table III. Com-
paring with the experimental energies, also given
in Table III, of the triplet and the singlet relative
to the ground state of helium, the failure of the
method is again obvious. The bad local-density
result for the singlet can be improved through
arguments similar to those used by Gunnarsson

et al.® for the H, molecule. The 1s and 2s orbitals
are sufficiently separated in space for the system
to be considered as two weakly interacting fer-
romagnetic systems with opposite magnetizations.
Thus a spin-polarized calculation with one elec-
tron in the 1st and the other electron in the 2s¥
orbital might be more appropriate since it would
give a better cancellation of the self-terms?® of the
individual orbits. Such a self-consistent solution
really exists and its energy is 19.56 eV above the
local-density ground state of helium. If the en-
ergy of the self-consistent solution with both elec-
trons in spin-up orbitals given in Table III is taken
as representing the energy of the triplet, we would
get a singlet-triplet' splitting of 0.5 eV, which is
much closer to the experimental result 0.8 eV
than the number 1.8 eV suggested by Table IIL

We point out, however, that the outlined procedure

TABLE III. States of different symmetries, their noninteracting counterparts in terms of
Slater determinants, the corresponding spin-up and spin-down densities, and their local-
density energies (AE in eV), according to Ref. 8 relative to the local-density ground-state
for the 1s2s excited configuration of helium. AE(exp) is the experimental energy in eV from

Ref. 11.
|S,Mg) Noninteracting counterpart ot @) o' @) AE AE (exp)
[1,1) D(t, 1) p(r) 0 19.08 19.82
l1,0) 1/VZ[D(t,+) + D(+, 1] 30(r)  p() 21.90 19.82
[0,0) 1/VZ[D(t,+)=D(+, 1] Lotr)  Lo(r) 21.90 20.62




1696

to improve on the local-density results is in con-
flict with the “clear” rule given by Gunnarsson
et al.?, since the spin-polarized state has a net
spin density which is incompatible with a singlet
state. In Sec. IV we will describe a less ad hoc
way of getting realistic multiplet splittings from
local-density theory.

III. ROLE OF THE PAIR-CORRELATION FUNCTION

In this section we will give an explanation for
why the prescription of Gunnarsson ef al.® seems
to work in some cases but not in others. The dis-
cussion will be based on a comparison between the
exchange-correlation part of the electron-electron

interaction energy, E};,, which is given by

B o)=3 2 [ [ 0 0y (Flgee: (£, 7)-1]
xv(F-7)d%ad*v', (5)

and the local-density approximation to the same
quantity. In Eq. (5) g is the pair-correlation func-
tion and p,(¥) is a diagonal element of the density
matrix but, since the latter is always diagonal for
an atom without spin-orbit coupling,'* p, is either
the spin-up or the spin-down density depending on
whether o is 4 or ¥. Now clearly from Table IV
the dominant contributions to the multiplet splittings
come from exchange. Correlation only gives a
25% reduction of the splittings. We will therefore,
concentrate the discussion on the exchange en-
ergy and mention correlation later on. The ex-
change part, EX,, of the interaction energy is
obtained from Eq. (5) by replacing the pair-corre-
lation function g by its Hartree- Fock counterpart
g"F, Thus we can write

EX[p]=2_ EX, ®)
oo’

where
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1 - -
% =3 [ 0,90 (P [glE (7,7)-1]

xo(F=F)dd%' . (1)
The usual local-density approximation is obtained
by replacing p, (¥') by p, (¥), and g,,.(¥,T’) by the
homogeneous electron-gas pair-correlation func-
tion g, [¥ - F'; py(T), p,(F)] in Eq. (5). The local-
density approximation to exchange only, E*P¥  jg

obtained by a similar replacement in Eq. (7) and
we have (2 =homogeneous)

1 >
B =5 [ p (Do, (Dlt3F (F- ) - 1]
Xv(F=7F)d*d>' . (8)

But g4iF =g%%" =1, because without correlation
there is nothing to keep electrons of different spins
apart. Thus

BB} =0, ®

which is really the root of the difficulties in the
scheme proposed by Gunnarsson et al.? Consider, .
for examples, the °P state |11;00) for carbon
which, according to-Table II has an energy that
is 1.4 eV too high compared to those °P states
that supposedly give good multiplet splittings. It
is easy to work out the pair-correlation function
in the Hartree-Fock approximation to this essen-
tially two-electron state. We can disregard the
full 1s and 2s shells since they do not contribute
to the multiplet splittings. We then get for the
2p shell

po('f) Py ( F’)g?f( Fs )
=3(1 = 05 ) [0, (Do, (F) - 0, (Do, (F) |2, (10)

where ¢,,(¥)=R,,(*)Y7(@). 1t is clear from Eq.
(10) that g§} is not equal to 1 as it would be in the
local-density approximation. From Egq. (10) we
can also compute the different exchange energies
E¥y=E¥,=_%U,, (11)

Ef, =E¥,=-% F,(2p,2p). (12)

TABLE IV. Multiplet splittings in eV for the carbon, silicon, and nitrogen atoms. The con-
figuration is indicated. TDHF is term-dependent Hartree-Fock. HF is Hartree-Fock. LDX
is local-density approximation with exchange only. LD is local-density approximation, pres-
ent theory. exp is spectral data Ref. 11. LDC is local-density correlation, LDX-LD. C is
correlation contribution, HF-exp.

TDHF HF  LDX LD exp  LDC c

C 52 ECD)-ECP) 1.56 1.56  1.59  1.33  1.26  0.26  0.30
? Els)-ECp) 3.78 3.90  3.97 3.30 2.68  0.67  1.22
Si 52 E(D)-ECP) 1.07 1.07  1.09 0.85  0.76  0.24 0.30
?". E(s)-DCpP) 2.59 2.67 2,71 211 1.8  0.60  0.78
Nyt ECDI-ECs) 2.81  2.90 246  2.38  0.44 0.42
P ECP) - E(S) “ee 4.68° 4.83  4.09 3.58 074  1.10




Here F, is a Slater integral® and U,, is the con-
tribution to U [Eq. (3)] from within the 2p shell.
Thus Ef +EY, cancels half the direct Coulomb
contribution (the self-term) from the two 2p elec-
trons as expected from Hartree-Fock [g%f=0,

Eq. (10)]. We would also expect the local-density
approximation to give an accurate cancellation

of the self-term.® Note that there is an F,(2p, 2p)
contribution to U,, which should be cancelled by
an exchange contribution, and that the local-density
approximation fails to achieve this cancellation

by several electron volts.’® This error is, how-
ever, the same for all terms and does not affect
the multiplet splittings. These are only affected
by a lack of cancellation of those self-contributions
to U,,, which are proportional to F,(2p,2p). In

the case we are considering this latter error am-
ounts to 0.07 eV.'® On the other hand Ef, +E},

is —1.56 eV, whereas the local-density approxi-
mation to this quantity is zero [Eq. (9)]. Thus,

in this case the theory is off by an amount equal

to the whole Hartree- Fock *P — 'D splitting (1.56
eV from Table IV). One could of course hope that
errors in EY, and E¥, would be compensated by
errors in EY; and E{,. We have shown above that
this is not the case for the state |11; 00); and there
is a general argument against such expectations.
According to Gunnarsson and Lundqvist® the ac-
curacy of the local-density approximation for

total energies can be traced to the sum rules

n,f[g’h(F)—l]d%f:n‘f[g’;;(ﬂ—1]d37f=-1,
(13)

ny [ g4 (D -1a% =ny [[gh(D-1]ar=0.

Consequently, since E{ and E¥} involve exchange-

correlation holes that obey different sum rules,

we can not expect a large cancellation of errors
between them. With correlation included we would
of course get a nonzero contribution to E}Y that
would approximate the difference between the exact
E,, and the Hartree- Fock quantity Ef,. Since
correlation energies for atoms are a factor of 2
too large!” in the local-density approximation, one
could hope for a misrepresentation of the corre-
lation effect that would partly compensate for the
error in the exchange energy. The point is that
the correlation energies are much smaller than
exchange energies and errors in the former could
thus never compensate for the complete loss of a
large exchange energy. Furthermore, in Sec. V
we will show that the error in the local-density
approximation to the correlation contribution to

the multiplet splittings is only of the order of 25%.
The reduction of the correlation error is due to the
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fact that the density of the electrons contributing
to multiplet structure is much more slowly varying
than the density of the deep core electrons which
are the main contributors to the total energy.

We end this section with the important obser-
vation that any single-determinantal many-body
state will have gy, (¥, ¥') =g, (¥, ¥)=1. There-
fore, any state that, in the noninteracting case,
reduces to a single Slater determinant will have
E¥, =E¥, =0 and consequently this part of its ex-
change energy is, by virtue of Eq. (9), given
exactly by the local-density theory. This is the
reason for the nice agreement between the ex-
perimental *P-'D splitting (1.26 eV'') and the dif-
ference (1.41 eV, Table II) between the local-
density energies of the states |20;20) and |11;01).
A further consequence is the striking agreement
between the energies of the states |11; 11) and
[11;01) in Table II.

IV. DENSITY-FUNCTIONAL THEORY OF MIXED-
SYMMETRY STATES

We have seenin Sec. Ill that, if we insist on using -
the symmetry-independent approximation to E,
given by Eq. (4), the density-functional theory for
states of pure symmetry, as given by Gunnarsson
and Lundqvist,® only works when the states in the
noninteracting case reduce to single Slater deter-
minants. For instance, in the case of the pZ con-
figuration we can get the energies of the 3P and
D states but not the energy of the 'S state. One
way to proceed would be to try to find an improved
approximation to E , that would reflect its sym-
metry dependence. In the present paper we will,
however, stick to the commonly used approxi-
mation for E,, [Eq. (4)], and instead try to con-
struct a Hohenberg-Kohntheory for states of mixed
symmetry. We will choose mixtures such that
their noninteracting counterparts are single deter-
minants. In the case of the p® configuration, for
instance, the state V2/v3|20;00)-1/v3]00;00)
reduces to D(0t, 0¥) (Table I). Since a mixed-sym-
metry state is not an eigenstate of the Hamiltonian,
its charge density will oscillate in time, but we
will prove that the lowest state of a well-defined
mixture of symmetries, i.e., the state with the

~ smallest energy expectation value, is a functional

of the density at the time of preparation of the
state. For simplicity we will do the proof for the
nonmagnetic case, the extension to spin-polarized
systems being obvious.® Our Hilbert space is
spanned by the simultaneous eigenvectors IS,n)
of the Hamiltonian H=H,+W and the symmetry
operator S.w is the external potential which also
commutes with S, [W, §] =0. Our proof relies
critically on the nondegeneracy of the lowest state
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[S, 0) of each symmetry S. This assumption is

invalid for most atoms and molecules and the proof

of the Hohenberg-Kohn theorem® suffers from the
same deficiency. We will ignore this by referring
to the usi_1al argument, that any degeneracy can be
lifted by a small external field without affecting
the quantitative predictions of the theory. The
mixed symmetry states will be assumed to have
the form

l\m =, Isu 0+, |Sz’ 0, (14)

with different symmetries S, and S, and fixed
coefficients @, and @, obeying ¢?+a2=1. In order
to obtain a contradiction we assume that there
exists a different state

[¥) =, |S;, 0 +a,]S,, 0 (15)

that has the same density as |\I/). The state
|S,n)’ is obtained from the Hamiltonian H’ =H,
+ W' with a different external potential W’ which
again commutes with S. From the variational
principle and the assumed nondegeneracy of the
states ]S, 0 we get

W |H|¥)y=0a2(S,,0|H|S,, 0)+02(S,,0|H]S,, 0)
<a?'’S,,0|H|S,, 0 +aZ(S,,0|H]S,, 0)'
=(u’ |H ¥
=V [H |y Q| W - W |

=@ | ¥+ [ (R -0 (D] (P .
(16)
We note that no cross terms will appear in the
above derivation because H,, W, and W’ all
commute with § and because S,#S,. Interchanging
primed and unprimed quantities in the usual
way®1® leads to

@ B [y < @B 19 + [ w0 (5) = w(D (D dvr .

. (17)
Adding Eqs. (16) and (17) gives the desired contra-
diction when n( ) =n'(¥). Thus the state |¥) is a
functional of its density »(¥) and so is the energy
E given by

E[n(¥)]=a2Ey(S,) + @2E\(S,), (18)

where E_(S) is the energy of the state |S,n).
Furthermore, the functional E[z] is easily shown
to have a minimum at the true density n(¥). It
will of course depend on the symmetries S; and
S, and on the coefficients a; and @,. Only for a
particular choice of @, and @, is the functional
E[r] reasonably well approximated by the expres-
sions (1)-(4). As mentioned previously, we ought
to choose @, and @, so that |¥) reduces to a single
determinant in the noninteracting case.

If a state |¥) is prepared according to Eq. (14)

at some time ¢ =0, it will evolve to the state
| ¥,y at some later time ¢, and

I\I,» =, e iFolSt |Su 0 +a, e~iBo(Sy)t lsz’ 0y. (19)

The corresponding density #,(¥) will in general be
different from the density #,_,(¥), because

(S, 0]p(P)|S,, 0 #0 [p(F) is the density operator].
By using the same technique as above we could
just as well have proven that the state I\P) is a
functional of the density n,(¥). This follows from
the time independence of quantities like (¥, |H|¥,),
(WL|H' ¥, or (¥,|H|¥!), which in turn follows
from the fact that H,, W, and W’ all commute
with S. For example,

0=<SI|W|SZ)=f w(FXS, | B(F)|S,) dor.

This new functional E,[xn] will in general be dif-
ferent from E[r] since E, will be minimized by

n,. Using the approximations (1)-(4) for both

E[n] and E,[n,] would, however, give n(¥)=n,(F),
which is clearly wrong. The question then arises
as to which of E and E, is best approximated by
Egs. (1)-(4). The answer is E[n] because &, and
o, were chosen so that “1’) reduces to a single
determinant in the noninteracting case. This is

in general not true for I'\Ilt). We have thus shown
that no ambiguity arises from the time dependence
of the charge density of the mixed-symmetry states.

V. APPLICATION TO ATOMS AND DISCUSSION

In this section we will apply the method developed
in Sec. IV to the p? configurations of the carbon
and silicon atoms to the p*® configuration of the
nitrogen atom and to the excited 1s2s configuration
of the helium atom. In order to make our proposed
method fully clear and easy to use we will go
through the carbon case in great detail but just
quote results for the other cases.

The p? configuration gives rise to 15 different
states [LS,MLMS) and from these we can form 15
linear combinations, i.e., mixed-symmetry states
|D;y,4=1,2,...,15, that in the noninteracting case
reduce to single determinants D;. Note the dis-
tinction between states |D;) and determinants D;.
The states [D,-) will all have energies of the form

E(D;)=a,E(P) +b,E('D) +c,E('S) (20)

in obvious notation (see Sec. I). The coefficients
a;, b;, and c; can easily be obtained from Table
I. We will estimate E(D;) by minimizing the func-
tional (1) with the local-density approximation (4)
to E,,. From the trick used by Kohn and Sham® ™
we know that the density matrix for the state

|D,) is built from the resulting one-particle or-
bitals in the same way as the density matrix for
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the determinant D;., For each D; the minimization
requires a self-consistent calculation but, as
mentioned in Sec. II, we will only do a self-con-
sistent calculation for the spherical paramagnetic
case and use the radial parts of the resulting or-
bitals in the spin densities corresponding to the
different states |D,). The functional defined by
the Eqs. (1)-(4) is then evaluated for each of these
spin densities. As discussed in Sec. II this pro-
cedure should be perfectly adequate. Note that,
due to the variational principle, errors in the
energies are second order in the spin-density
errors. In the case of helium, however, we are
dealing with a spherical problem and the quoted
results are therefore fully self-consistent. Quan-.
tities given relative to their corresponding values
in the spherical self-consistent calculation will be
preceded by the symbol A. For instance,

Apy (F)=n0)[a +b4P,(coss)],

Ap,(F)=n@)[-a+b,;Py(cosb)], @D

where n(r) is the spherical average of one of the
two 2p electrons, assumed to be the same for
both electrons. P,(¢) is the second-order Legendre
polynomial. In Table V we give for each state

[D) the local-density estimate of the Coulomb
energy AU, the exchange-correlation energy

AE . and the total energy AE relative to the cor-
responding energies in the spherical paramag-
netic calculation. The parameters a, b;, and b,
that, according to Eq. (21), determine the spin
densities are also given in Table V as well as
the coefficients a;, b;, and c; that, according to
Eq. (20), give the energy of the state |D,) in terms
of the multiplet energies E(P), E(*D), and E('S).

For comparison with Hartree-Fock theory, Table -

V shows the coefficient f; in front of £F,(2p, 2p)
in the energy of the determininat D;. There are
only six states listed in Table V. However, for
reasons of symmetry between m,=+1 and m,; =~1,

and m =+3 and m, = —3 the remaining nine states
have energies and spin densities identical to those
already listed.

From Table V we have local-density estimates
of six linear combinations of the three term values
E(P), E(*D), and E(’S), i.e., six linear equations
in only three unknowns. Consistency then requires
the existence of linear relations between the local-
density estimates, e.g., —0.50=3 (- 1.24+0.16),
which are only approximately satisfied. This
minor deficiency of our theory reflects the fact
that the local-density approximation [Eq. (4)] does
not work equally well for all the states |D;). To
avoid a discussion as to which state |D;) the ap-
proximation (4) is best suited') we solve our six
linear equations by a min-max procedure. Note
that a least-square procedure would not be ap-
propriate because errors in percentage of AE’s
are irrelevant quantities. If E, is the total en-
ergy of the spherical paramagnetic calculation
(E,=-317.4403 Hartree for carbon) we get

E(P)=E,-1.20, E(*D)=E,+0.12,

E(S)=E,+2.10, (22)
from which the multiplet splittings in Table IV
are deduced. The maximum error in this min-
max fit is as small as 0.04 eV, thus demonstrating
the internal consistency of our method. The origin
of this consistency is revealed by perturbation
theory. It is readily shown that, to second order
ina, by, and b,, AE is given by

AE=%(a+B)(by +D,) +7[5a°+3(by - 1,)7], (23)
where

o =2—25- F2(2p, 2p),

2
== nz(’l’)ll;c(P("')) ds"’
5 f (24)

v=2 [ w2 lobr + £ 06N o] &

TABLE V. Local-density estimates of the Coulomb energy AU, the exchange-correlation
energy AE,, and total energy AE for mixed symmetry states | D) that reduce to single de-
terminants D in the noninteracting case. A denotes energy change from a spherical para-
magnetic calculation. a, by and b, describe the spin-up and spin-down densities according
to Eq. (21). fis the coefficient of F3/25 in the energy of the determinant D. E(D) is the exact

energy of the state | D). Energies in eV.

"D a b, b, f AU AE,, AE E(D)
D(14,14) 0 -1 -1 1 050 —0.34 0.16 E(D)
D(14,0¢) 0 -1 2 -2 013 —-0.62 —0.50 %E@P) +3E(D)
Dt,-14) 0 -1 -1 1 050 —0.34 0.16  2ECP)+1E(D)+ LE(S)
D(04, 0¢) 0 2 2 4 2,00 -1.26 0.74  2E(D)+4E(S)
D(1t,0t) 1 1 0 -5 013 -1.37 -1.2¢ ECp)
D(t,-1t) 1 -2 0 -5 050 175 -1.25 ECP)
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TABLE VI. The parameters o, 8, ¥, and 6 [Eqs. (24) and (25)] appearing in the perturba-
tion treatment of the local-density theory of multiplet structure. FJF is the Hartree-Fock
value of the Slater integral and F is its local-density equivalent including correlation [Eq.
(28)]. F$**is obtained by fitting Hartree-Fock energy expressions to spectral data. Energies

in eV.
Atom o B Y 6 FEF Fy F§®
C 0.499 —0.325 —0.245 —0.070 6.50 5.25 4.73
si 0.349 ~0.214 —0.144 ~0.009 4.44 3.49 3.16
N 0.605 ~0.340 —0.269 —0.004 7.80 6.66 5.96

Here, u..(p) is the density derivative of the ex-
change-correlation contribution to the chemical
potential of an electron gas of density p, wu;

is the same quantity without correlation, p{) is
the total charge density of the spherical para-
magnetic calculation and v,(p) is defined in Ref.
10 and vanishes without correlation. Because

[ Apd®» =0, AE does not contain terms linear
ina, by, and b;. We have given the parameters
@, B and, y for carbon, silicon and nitrogen in
Table VI, and using them in Eq. (23) actually re-
produces the numbers for AE given in Table V with
a maximum error of 0.05 eV. Thus our six local-
density estimates (AE’s) are given in terms of
only two parameters, @ +p and y. Furthermore,
it turns out that our six linear equations can be
simultaneously solved if only

b=a+B+y=0. (25)
This is because Eq. (23) then reduces to
AE=vy(6a*-byb,)=-fv, (26)

where f is easily identified as the coefficient of
=F,(2p,2p) in the energy of the given deter-
minant (cf. Table V), and the solution becomes

E(P)=E,+5y, E(D)=E,-y, E(!S)=E,-10y.
@mn

Thus, the parameter & measures the degree of
inconsistency. We can carry out a similar analysis
for the p° configuration (e.g., nitrogen) in which
case we find six linear equations for the three
unknown term values E(*S), E(D), and E(*P). The
consistency criterion remains the same, Eq.
(25). From Table VI we see that 8 is relatively
small, again indicating the internal consistency
of our method.

At this point we would like to draw attention to
a limitation of the method. For consistency we
require a small 6, but it is clear from the Egs.
(26) and (27) that this imposes Hartree-Fock ratios
between the multiplet splittings. The quantity
— 257 evidently plays the role of the F, integral
in Hartree-Fock theory which is also true for the
p? configuration. In the silicon atom the 3p or-

bitals are rather extended with a radius of 2.8
a.u. and we do not expect the correlations to dras-
tically alter the Hartree- Fock picture. Indeed,
from Table IV, [E('S) - ECP)]/[E(*D) - ECP)]
=2.48 which is close to the Hartree- Fock ratio
3. Thus the main correlation effect is a 30%
reduction of the F, integral (Table VI). In carbon
and nitrogen, however, the 2p orbitals are more
localized (the radii are 1.8 and 1.4 a.u., respec-
tively) leading to a stronger correlation effect.
From Table IV we get [E('S) - ECP)]/[E(*D)
- E(*P)]=2.13 for carbon and [E(*P) - E(*S)]/
[E(D) - E(*S)] =1.50 for nitrogen which deviates
from the corresponding Hartree- Fock ratios 3
and ¥, Thus the multiplet splittings are not ac-
curately given by a single parameter F,, a sit-
uation for which our method is not well suited.
The above discussion suggests a shortcut to ob-
tain the multiplet splittings. From Eq. (27) they
only depend on the single parameter ¥ which is
easily calculated from Eq. (24). However, even
if this perturbation estimate of y is accurate to
within 10%, it might still produce large errors in
the multiplet splittings because these are obtained
from 7y through multiplication by a factor of order
10. Since we require 6=a +B+y=0 for a simul-
taneous solution of the linear equations we could
equally well use — o — B to obtain the splittings.
Not knowing which form is most accurate we sim-
ply propose to use the average v,, =30y - Q- B).
The corresponding F, parameter we call F,. Thus
from Eq. (24)

I?‘2= -25y,,=-25 sly-a-B)
=F,-5 [ 005 velo@))/plr)

- B pt )] dr . (28)

Defined in this way and used in Hartree-Fock en-
ergy expressions, 17“2 reproduces all our calculated
multiplet splittings in Table IV with an accuracy

of a few percent. Thus Eq. (28) represents a short-
cut to the splittings. Moreover, it has a very
appealing physical interpretation. Equation (28)
simply tells us that the local-density treatment of
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correlations will give us a desired reduction of
the F, integral from Hartree-Fock theory (com-
pare FEF F_ and F2* in Table VI). Finally, Eq.
(28) suggests that one could get accurate Hartree-
Fock multiplet splittings from local-density theory
with only exchange. This is indeed the case as
can be seen by comparing the columns marked HF
and LDX in Table IV. LDX actually means that we
have recomputed the numbers in Table V with

€,. replaced by €, the exchange energy per par-
ticle of the homogeneous electron gas, in the
local-density approximation (4). By definition the
correlation contribution to the multiplet splittings
(marked C in Table IV) is the difference between
the Hartree-Fock results (HF) and the experi-
mental results (exp). The local-density approxi-
mation to the correlation contribution is marked

.LDC in Table IV and is obtained as the difference
between our full results (LD) and our results with
exchange only (LDX). As can be seen by com-
paring the columns labeled C and LLDC in Table
IV, the local-density approximation to the cor-
relation contribution is surprisingly accurate.
The errors are of the order of 25% which can be
compared with errors of the order of 100% in-
volved in the local-density approximation to the
total correlation energy of an atom.'” We conclude
that the charge density of those electrons respon-
sible for the multiplet splittings in atoms and
molecules is sufficiently slowly varying to allow
a meaningful treatment of the correlation effects
within local-density theory.

The columns marked TDHF in Table IV and
Table VII are results from the term-dependent
Hartree-Fock method in which orbitals that min-

- imize the actual energy expression for a specific
term are used to calculate the energy of thatterm.
It is evident from Table IV and Table VII that only
a small amount of correlation energy is obtainable
this way. The local-density treatment is much
superior.

Let us now return to the 1s2s excited config-
uration of helium. From the discussion above,
it is clear that the energy of the self-consistent
calculation, mentioned at the end of Sec. II with
one electron in a spin-up orbital and the other
electron in a spin-down orbital, is an approxi-
mation to the energy of the state |D(4+)), i.e., to

TABLE VII. Energies in eV above the ground state for
the 1s2s excited configuration of helium. See Table IV
for definition of symbols and Table III for comparison.

TDHF HF LD exp

E(ls,2s;%S) - E(1s%;1s)  18.70 18.71 19.08 19.82
E(ls,2s;1S) - E(1s%1s) 18.82 18.83 20.04 20.62

MULTIPLET STRUCTURE 1701

the energy 3 [E(*S) + E(®S)] of the state 1/v2(|0, 0)
+|1,0)). 1t is also clear that the energy of the
self-consistent calculation with both electrons in
spin-up orbitals is an approximation to the triplet
energy E(3S) and from this we deduce the results
of Table VIL. It turns out that the Hartree-Fock
results for this excited configuration are very
bad, giving almost no splitting (0.12 eV) between
the singlet and the triplet, whereas the local-
density approach is surprisingly reasonable. The
singlet-triplet splitting is 0.96 eV compared to
0.80 eV experimentally.

Note that the average energy 3[E(*S) + 3E(°S)] of
the multiplets has the value 19.32 eV in our local-
density approximation and that the corresponding
experimental number is 20.02 eV. Both these en-
ergies are far from the energy 21.90 eV of the
spherical paramagnetic calculation. Consequently,
such a calculation does not represent the multi-
plet average as is often stated in the literature.
For the p2 and the p° configurations the statement
is, however, less inaccurate. In both cases the
energy of the spherical paramagnetic calculation
lies ~15% of the total span of the multiplets above
the multiplet average. ‘

We end this section with a short comment on
ionization potentials. These are of course given
by the difference between the ground-state en-
ergies of the atom and the corresponding ion.
Since our method gives a lower ground-state en-
ergy as compared to a spherical paramagnetic
calculation and since the lowering might be dif-
ferent in the atomic and in the ionic configurations,
our method gives ionization potentials different
from those obtained from spherical paramagnetic
calculations. In Table VIII we compare results
from the two methods with the experimental num-
bers. The theoretical numbers are computed
from self-consistent spin-polarized but spherical
calculations. Evidently our method does give dif-
ferent ionization potentials but the agreement with
the experimental results is not improved. Only
the sign of the errors are reversed. We believe
this to be due to the fact that, within the local-
density approximation, there will be a lack of
cancellation of those self-energies which are
proportional to F,-integrals.'® Errors of this kind

TABLE VIII. Ionization potentials in eV for C, Si, and
N. SP is the spherical paramagnetic results. LD is the
present theory. exp is spectral data from Ref. 11.

SP LD exp
C 11.1 11.9 11.3
Si 7.9 8.4 8.1
N 13.8 15.2 14.5
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will come into play when an outer electron is re-
moved, but will not affect the multiplet splittings.
Note that-in the cases considered here the ground
states all reduce to single determinants in the
noninteracting case and therefore the method by
Gunnarsson and Lundqvist® should give the same
ionization potentials as our method.

VI. CONCLUSIONS

In recent years interest has focused on realistic
total-energy calculations for large molecules and
for clusters of atoms simulating molecules and
atoms adsorbed on surfaces. One is usually in-
terested in the ground-state energy and perhaps
the energy of a few low-lying excited states.
Clearly the computational difficulties associated
with Hartree-Fock calculations or configuration-
interaction calculations on these systems quickly
become unmanageable as the number of electrons
increases. Consequently, it is highly desirable
to develop simplifying techniques that are at least
as accurate as the Hartree-Fock method, but
hopefully better. For this purpose the local-den-
sity scheme by Hohenberg, Kohn, and Sham was
recently generalized® to give the lowest energy of
a specified symmetry. In the present paper we
have demonstrated that this straightforward gen-
eralization only works in special cases, unless the
usual symmetry-independent electron-gas ap-
proximation to exchange and correlation is aban-
doned. We have also shown that the failure of the
method is due to the fact that for some states of
pure symmetry the exchange-correlation hole is
misrepresented by the local-density theory. Stim-
ulated by the empirical success of a procedure
proposedby Ziegler etal.’ we have developed adensi-
ty-functional theory for states of mixed symme-
try, which enables us to retain the simple local-
density approximation based on electron-gas
data. A given configuration is associated with a
certain number of Slater determinants. For each
determinant we construct a linear combination of
states of pure symmetry that reduces to this
determinant in the noninteracting case. The en-
ergy expectation value of each linear combination
is then estimated by the usual local-density ap-
proximation and we explain in terms of the pair-
correlation function why this should be an adequate
procedure. Since the energy expectation value of
a linear combination of states of pure symmetry
is a linear combination of the energies of the pure
states we get as many linear equations as there

are Slater determinants to solve for the energies.
In general there are more determinants than pure-
state energies and, although some of the equations
might be identical, we generally get an over-
determined set of equations which we propose to
solve by a min-max procedure. It might be pos-
sible to argue that the local-density approximation
is more accurate for some linear combinations
than for others, which would allow us to disregard
some of the equations. Because of the small errors
involved in the min-max procedure for our test
cases, little accuracy is to be gained this way and
we have made no attempt in this direction.

We have tested our method on the light atoms
carbon, nitrogen, and silicon and on the excited
1s2s configuration of helium. In all cases (except
for helium, where this was not tried) the local-
density theory with exchange only reproduced the
Hartree-Fock results with an extraordinary ac-
curacy (~0.1 eV). We have used perturbation
theory to explain why this is to be expected. Per-
turbation theory also shows how a desired reduc-
tion of the Slater integrals is achieved by local-
density theory when correlations are included. In
fact, the errors in the multiplet splittings from
Hartree- Fock theory are typically reduced by a
factor of three in the full local-density theory.

We thus conclude that the charge density of the
electrons responsible for the multiplet splittings
is sufficiently slowly varying to allow us to treat
the correlation between these electrons in the
local-density approximation. When, however,

the correlations become so strong that they no
longer can be described in terms of a reduction of
the Slater integrals we do not expect the present
theory to apply. Cases where the present form of
local-density theory would predict the wrong
ordering between levels is conceivable and for
such cases some symmetry dependence of the ex-
change-correlation functional must probably be
introduced.

As a byproduct of our investigation we find that
the energy of a spherical paramagnetic calcula-
tion does not represent the statistical average of
the energies of the multiplets.
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