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The authors consider a one-dimensional classical system with an interaction potential v(r) = C„e
C„e &, where C„, y„, C~, and y„are positive parameters. The evaluation of the partition function for this
model system is reduced to an eigenvalue problem for a second-order partial differential equation, which is
solved by means of the adiabatic approximation. A Van-der-Waals-type equation of state is obtained.

I. INTRODUCTION

With the growing interest in the theory of phase
transitions during the last decades there has been
an increase in the investigation of model systems
which exhibit a first- or second-order phase
transition. Among these the one-dimensional sys-
tems play a special role: On one hand, the re-
striction to one dimension yields an enormous
simplification of the calculation (the hard-core
system, for example, is easily solved in one
dimension whereas in three dimensions no exact
solution has been constructed so far}. On the other
hand, fluctuations become exceedingly important
in one dimension thereby hindering the formation
of an ordered state. '

In this work we will study a one-dimensional
classical system with a Lennard-Jones-type in-
teraction potential. 'The potential is written as
the sum of a repulsive and an attractive contri-
bution. Both the repulsive and attractive parts of
the interaction are of exponential form. This in-
teraction is a modi. fication of the potential used by
Kac, Uhlenbeck, and Hemmer' (KUH) several
years ago: the hard-core part of the interaction
used by these authors is replaced by an exponential
dependence whereas the attractive part is main-
tained. 'Therefore the model potential has the more
realistic shape of a Lennard- Jones-type potential
(see Fig. 1).

The question will be raised as to whether this
type of interaction produces a first- orde r phase
transition. The answer is affirmative in the
special limit where the attractive part of the in-
teraction is infinitely weak and slowly decreasing.
'This result is in agreement with that of KUH who
actually introduced this limit in the literature (the
so-called Kac-limit). In addition, we approximately
calculate the equation of state i.f the attractive
interaction is of finite strength and does not de-
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FIG. 1. Interaction potential (2.1) in arbitrary units.

crease infinitely slowly. Again, in agreement
with KUH we find that there is no phase transition
in this case but, due to the strong correlation, the
equation of state shows some'smeared-out dis-
continuity which is a remnant of a first-order
phase transition.

'This paper is organized as follows: In Sec. II we
formulate the problem of calculating the partition
function associated with the exponential. interac-
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tion potential and recast it in a conventional way
to the eigenvalue problem for a second-order
partial differential equation with a complex po-
tential. Such an equation, formally similar to
those of atomic physics, lends itself to a usual
approximation treatment, namely the adiabatic
approximation. We discuss thus the application of
such techniques in Sec. III. In order to obtain the
equation of state we draw upon the results for a
"reference" system which has a purely repulsive
interaction of exponential form. 'These results are
given in a preceding work, ' which will be quoted
hereafter as I. Finally, in Sec. IV we give the van
der Waals limit of the problem and an explicit
prescription as to how to implement the Maxwell
construction of the isotherms. Known results of
KUH are rederived. Some technical points are
deferred to the Appendix.

II. FORMULATION OF THE PROBLEM

We will consider a one-dimensional classical
system where the particles interact via a two-
body interaction given by

v(r) = C&e "a" (2 1)

v„(r)=C„e """ (2.2)

has been investigated. 'The mathematical simpli-
fication provided by the exponential dependence of
the interaction allows an explicit solution for the
equation of state of this system, which is now to
be considered as the reference system.

The grand canonical partition function is given
by

Here r is the interparticle separation and CR, yR
and C„, y„are positive parameters describing the
repulsive and attractive parts of the interaction,
respectively. The potential (2.1) is shown in Fig.
1 for particular values of the parameters. For a
special choice of the parameters it becomes the
Morse potential, ' well-known in molecular physics.
In quantum statistical mechanics a potential like
(2.1) has been used for the calculation of the struc-
ture factor of liquid He .'

The idea to use a sum of two exponentials as a
model potential was inferred from the preceding
study I of a purely repulsive potential. There the
thermodynamics of a system with the interaction
potential

3C= y„c~c+y„d'd —ze~~"ea&'e & 'e"& (2.3)

where c, c' and d, d' are two pairs of independent
Bose operators, i.e. ,

[c,c]=[c',c']=0, [c,c']=1
(and the analogous relations for d, d'), whereas
the commutators involving c and d operators
vanish. The parameters XR and X„are related to
the temperature by

A, = (PC,.)'/', i =R, A .
'The pressure P is given through the ground-state
eigenvalue e, (z) by the relation

PP= (e)z, - (2.4a)

whereas the particle number density p is obtained
from

p=-z —e (z).
dz

(2.4b)

Since Xis a non-Hermitian operator, some care
has to be taken in what we mean by ground-state
energy e, (z): The eigenvalues of %will occur in
complex conjugate pairs' which may be ordered
with respect to their real part. e, (z) then denotes
the eigenvalue with the smallest real part which,
according to the thermodynamic relations (2.4a),
and (2.4b) should have zero imaginary part.

In the space of square integrable functions of
two real variables x and y, a canonical repre-
sentation for the operators c, c' and d, d' is given
by

and an analogous relation for d and d'. In this
space the Hamiltonian operator (2.3) is represent-
ed by

chemical potential p, :

z = (2m~/'P/')"'e".

P denotes the inverse temperature T: P = (k»T) ',
k~ is Boltzmann's constant and h is Planck's con-
stant.

Invoking the same method developed in I, one
may show that the evaluation of the grand canonical
partition function for the potential (2.1) is reduced
to the calculation of the ground-state eigenvalue
of the Hamiltonian operator

L xg
Zc = 1++z" dx» dx», '

gag 0 ' 0

x E
x 'ax, exp —p v(~x,. -xj~)),

0 sJ,

=2yR~ —,+~ —& +2y~ — ~+y' —&ax 8$

f g&fcR&g~~& (2.5)

where L is the length of the system and z is the
activity of a system of particles of mass m at

where

esca/2e BC~/2-
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is a renormalized activity and

z,. =(2PC )'/' i=A, A.
'The eigenvalue problem is then written as

3cg(x, y) = e(z)4(x, y) .

III. ADIABATIC APPROXIMATION

It therefore seems reasonable to apply the adia-
batic approximation to (2.5) and, in the first step,
to neglect the second derivative in y altogether,
thus studying the modified eigenvalue problem:

82
—

s 2+x —1 —f„,(y)e' R f(x, y)

= E(y, z)f(x, y), (3.1)

where y is considered as a parameter (the
' nu-

cleus" coordinate) and

(y) ZeBCR/2eWCg/2e)(~&eff

The "energies" E and & are related by

E(y, z) = ~(y, z) —'y&(y' —1).- (3 2)

e (y, z) will then play the role of the potential ener-
gy in the eigenvalue problem for the "nucleus":

(3.3)

A sufficient condition for the applicability of the
adiabatic approximation is'

where co~ v'y„ is the frequency of the "nucleus"
vibrations within the harmonic approximation,

We are interested in the ground-state eigenvalue
problem of the Hamiltonian (2.5) which includes
a complex potential. In order to find the ground-
state energy z, (z) at least approximately, we use
the fact that for realistic applications the para-
meter y„ is very large compared to y„, i.e. , y~
» y„, that is, the repulsive part of the interaction
decreases over a very short length y~', whereas
the attractive part of the interaction has a very
long range y„'. We then see from Eq. (2.5) that the
kinetic energy term —2'yz ~2l~y2 associated with y„
is much smaller than that associated with yR. If
we further identify the parameters y~ and y„with
inverse masses, we may interpret Eq. (2.5) as
the Hamiltonian for a system consisting of a light
particle with mass y„' (the "electron" in the
language of atomic physics) and a heavy particle
with y„' (the "nucleus" ). Both particles are coup-
led via the interaction energy

gg~"Z"g"A& .

= E(z)g(x) . (3.4)

Hence the knowledge of the solution of this eigen-
value problem provides a basis for the calculation
of E(y, z) and by means of (3.2) and (3.3) one may
find z(z).

The adiabatic approximation fits into the general
scheme proposed by Lebowitz and Penrose' and
others. ' 'These authors suggest the following pro-
cedure: Given a two-body interaction potential
writ)en as a sum of a purely repulsive and a purely
attractive contribution. In a first step, calculate
the thermodynamics for a system where the at-
tractive part of the interaction is turned off (the
reference system). In a second step, include the
effect of the attractive interaction as a perturba-
tion. 'This two-step procedure is analogous to the
application of the adiabatic approximation, where
one first has to know the eigenvalue of the refe-
rence system [Eq. (3.4)j, and then includes the
attractive interaction through Eqs. (3.1) and (3.3).

It therefore turns out that the adiabatic approxi-
mation provides us with a useful guideline when we
decouple the treatment of the comparatively short-
range repulsive part of the potential (described by
y„and CR) from the weak attractive part of the
interaction (parameters y„and C„). This scheme
of decoupling seems to work even when y„ is not
very much larger than y„(say y„ly„=2, as will be
used for the numerics in later sections).

As from general arguments" it is known that the
reference system shows no phase transition, -we

may conclude that a level crossing (e, = e,) will not
occur.

IV. DERIVATION OF THE EQUATION OF STATE

In order to obtain the equation of state we have
to find the ground-state eigenvalue of Eq. (3.3).
The effective potential e(y, z) in which the "nu-
cleus" moves is determined from E(y, z) by Eq.
(3.2). (From now on both & and E refer to the
ground state only. ) The function E(y, z) is obtained

that is, when one expands the potential energy
&(y, z) up to second-order terms iny. e, and ('.,
are the minima of the first excited state e, (y, z)
and ground state z, (y, z), respectively. As long
as &

y
& E„ this condition may always be satisf ied

by choosing y„small enough. An argument that
'E

y
& Eo will always be realized is given below.
Essentially the same eigenvalue equation as

(3.1) has been studied in I in a calculation of the
thermodynamics of a purely repulsive system with
the interaction (2.2). There we encountered the
following eigenvalue problem'.

92
2yR —,+x2 —1 zez -R/'e'~R (C)(x)



1688 J.~ BEH N CKE AND T. T. TR UON G 20

z zg BC~/

that is,

(4.1)

from the ground-state eigenvalue E(z) of the purely
repulsive system by the substitution

which determines the abscissa y*=y*(z) of the
extremum value. The ground- state eigenvalue
e, (z) in the mean-field approximation is then given
by E,(z) = z*(z), where

&&CA/2 ~AS) (4.2)
~*(z}=-~(y*,z)=E(y*, z)+-'.r„(y*'-1). (4.4)

[see Eq. (3.1) and Eq. (3.4)]. E(z) is known from
I. 'The main equations for the determination of
E(z) are summarized in the Appendix. E(z) is a
monotonically decreasing function of z. Hence, as
a consequence of (4.2), E(y, z) is a monotonically
decreasing function of y. For z/r„= 1 the potential
c(y, z) is shown in Fig. 2. (From now on, the
parameter values for the interaction potential are
those of Fig. 1.) c(y, z) is an asymmetric double-
well potential implying a first-order phase transi-
tion. For higher temperatures the double well
disappears and there remains only a single mini-
mum.

A first estimate of the ground-state energy e(z)
can be obtained by the mean-field approximation
where we take the minimum of the potential z(y, z)
as the approximate eigenvalue of (3.3), thereby
neglecting fluctuations. 'The extremum condition
is

The extremum condition (4.3) may then be written
as

SE(y*,z)
(4.5)

For the determination of the density p we have to
calculate

de*(z)P=-Z
dz

(sE(y* z) sE(y* z) dy* dy*

'The last two terms add up to zero because of the
extremum condition (4.5), hence

BE(y*,z)P=-Z
8Z

(4.6}

Eq. (4.6) determines the density p as a function of
z.

s~(y, z)
8$

(4.3)
We now want to express the right-hand side of

Eq. (4.4) as a function of p rather than as a func-
tion of z. In order to do this we have to express
E(y*, z) andy*(z) as functions of p. As is shown
in the Appendix,

E*= —&p',.f(p}, (4.7)

- 0.05 where E~ = E(y*, z) a—nd p„,(p) is the pressure of
the reference system expressed as a function of p.
Furthermore, we see from (4.2) that

-0.10
8 8

E(y, z) = zAz —E(y, z) . (4.8)
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By means of Eqs. (4.5) and (4.6), we then obtain
from Eq. (4.8)

(4.9)

(Note that y* is up to a constant factor identical to
the equilibrium density p, which shows that y may
be interpreted as a density variable).

Recalling that z*(z) = -pp the equation of state
(4.4) may be written as

&P = &P,.f(P) 2(zAirA)P'+ arA- (4.10)
-0.35-

I

I

I
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FIG. 2. Effective potential ~(y,z) for~/yz = 1 and

pC~ = 40.

where Eqs. (4.7) and (4.9) havebeen used. Equation
(4.10) is essentially the equation of state as found

by Lebowitz and Penrose'. These authors con-
sidered the interaction potential in the so-called
Kac-limit where the attractive part of the inter-
action becomes extremely weak and long ranged,
that is, one sets C„=ny„and considers the limit
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y„-0. In this limit Eq. (4.10) becomes

(4.11)

which is identical to the result of Lebowitz and
Penrose.

Lebowitz and Penrose do not specify in detail the
repulsive part of the interaction which determines
p„,(p). They only restrict the reference potential
to contain a hard core and to be of finite range.
'They conjecture that this result will remain valid
when less stringent restrictions are put on the re-
pulsive part of the potential. Eq. (4.11) justifies
their conjecture as the reference system con-
sidered here neither contains a hard core, nor
is it of finite range.

The Maxwell construction is contained in (4.10):
If a(y, z) happens to have two minima we take the
absolute minimum at y*, thereby constructing a
unique function E*(z)=—E(y*, z). If the two minima
become equal there will be a sudden change in the
slope of e*(z) giving rise to a first-order phase
transition within the mean-field approximation.

A. Example: the van der Waals limit

'The van der Waals equation of state may be ob-
tained very easily from (4.11). To this end we let
the repulsive interaction v„(r) decrease over a
very short range, y„', and become infinitely steep
at some hard-core radius b, that is, we put

(~) g e rs(r-5)

and consider y~-~. In this limit the repulsive
part of the interaction becomes a hard-core inter-
action. As we showed in I, the pressure of the
reference system is then given by the hard-core
equation of state

PP„,(p) = p/(1 —bp) (hard core) .

Used in (4.11) this directly leads to the van der
Waals equation of state.

This result has been obtained by several au-
thors. ""'" Here it serves as a check that the
approximations used preserve the basic physical
features.

'The van der Waals equation of state gives the
critical point values. The potential e(y, z) may
then be expanded in powers of y at the critical
point. " One thereby obtains a Landau. expansion
for the liquid-gas transition. As noted before,
the variable y is related to the density. Odd
powers in the density occur as is typical for a
first-order phase transition. By also taking the
derivative term in Eq. (3.3) into account, the
appropriate Ginzburg-Landau expansion is obtain-
ed, yielding a relation between y„and the Ginz-
burg-Landau correlation length (see Ref. 13 for
the details).

B. Construction of the isotherms
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FIG. 3. Isotherms constructed from Eq. (4.10).

We now want to calculate the isotherms where
neither the repulsive interaction is replaced by a
hard core, nor the Kac-limit taken for the attrac-
tive interaction. Equation (4.10) is the equation
of state for our model system with the interaction
potential (2.1). The pressure P„,(p) for the re-
ference system with the purely repulsive interac-
tion has been calculated in I.

In Fig. 3 the pressure-versus-density curves are
plotted for several values of the temperature. The
isotherms all go to a finite value 2y„ for p -0.
'This is an unphysical feature that results from the
exclusion of the kinetic energy term -zy„&'/Sy' in
Eq. (2.5), thereby retaining the constant energy
shift --,'y„ in the potential c(y, z). The authors
have reason to believe that this constant shift will
disappear in an exact treatment of Eq. (3.3), i.e.,
if one goes beyond the mean-field approximation.

For low temperatures and small densities the
quadratic dependence in p dominates in Eq. (4.10)
such that the isotherms bend down and a van der
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Waals-type equation of state is obtained. 'There-
fore the Maxwell construction has to be carried
out explicitly. The technical points are explained
in the Appendix. Figure 4 shows PP-vs-z curves
which are constructed by elimination of the para-
meter E* among Eqs. (A5) and (A6) in the appendix.
For very low temperatures the curves have three
branches: For some values of z there are three
values of PP corresponding to the three extremum
values of e(y, z) (see Fig. 2). However, we must
obtain PP as a single valued function of z by choos-
ing the branch of PP which corresponds to the ab-
solute minimum of z(y, z) (solid line in Fig. 4).
Then Pp shows a jump in slope corresponding to a
liquid-gas transition. The pressure at which this

jump occurs is used to determine the horizontal
segments of the isotherms in Fig. 3 (Maxwell con-
struction).

Thus, within the mean-field approximation, we

find a van der Waals type equation of state in-
cluding the classical Maxwell construction as known

from the textbooks of ther'modynamics. ' Of
course, for finite y„, upon inclusion of quantum
fluctuations [i.e. , by treating the eigenvalue pro-
blem (3.3) quantum mechanicallyj the first-order
phase transition will be smeared out giving rise
to an analytic dependence of the pressure as a
function of z. Only in the Kac-limit (p„- 0) does
the discontinuity persist and we have a first-order
phase transition in agreement with the results of
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function of the activity z for
different temperatures.
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previous authors. '-"
Although the repulsive part of the potential used

in this work may be considered as a "soft core",
we were not able to find a second phase transition,
i.e. , a second bending-down of the pressure-
versus-density isotherms in Fig. 3. 'Thus we have
found a counterexample to the conjecture of Stell
and Hemmer" who argue that a softening of the
hard core will produce a second phase transition
(in addition to the one transition already present).
The second phase transition found by these authors
for a "shouldered" hard-core interaction has to be
considered as a particular feature of the form of
the potential they used. It should be regarded as
a dimerization. "

VI. SUMMARY

In this work we have extended a previous study
of a one-dimensional classical system. Besides
the repulsive interaction investigated before, we
have included an exponential attractive interaction
thereby forming a two-body interaction potential
of the Lennard-Jones-type.

The evaluation of the grand canonical partition
function is reduced to a non-Hermitian partial
differential equation. 'This eigenvalue equation is
solved by means of the adiabatic approximation.

The system exhibits a first-order phase transi-
tion if the attractive part of the interaction is in-
finitely weak and slowly decreasing (Kac-limit}.
'There is no sharp phase transition if the Kac-limit
is not taken but some remnant of the transition is
seen in the equation of state.

APPENDIX

In the low-temperature regime the function E(z)
is determined as solution of the implicit equation

which is just the density of the reference system
as a function of E. The equation of state of the
reference system is given by

p =R(-PP...) (A3)

p =R(E*),

where

(A4)

E(zewcAI'2e"AP~) =E(ye z)

This is precisely the same functional dependence
as for the equation of state of the reference sys-
tem (A3). Hence, we may identify

E*= -PP...(p) .

In order to carry out the Maxwell construction
we insert the substitution (4.1) into (Al), set
y =y*, and express y* through R(E*) by means of
(4.9) and (A4). Thus one has

z pC„ Eg—= exp "——"R(E*)—lnI
8 2 ~A ~R

(A5)

By setting &~(z) = -pp in Eq. (4.4) one further ob-
tains

pp = E* .'-(z.'/r-.-)[R(E*)]" (A6)

where again, as in (A5), y* was eliminated in
favor of R(E*). Eqs. (A5} and (A6) give a para-
metric representation of the pressure as a func-
tion of the activity z, E* being the parameter.

From (Al) we find by implicit differentiation

as an implicit relation for the pressure P„,(p).
Using the definition (A2) together with the rela-

tion (4.2) one may write Eq. (4.6) in the text as
follows:

where I(a) is defined as the integral"

I(a) = —e "'I'(I+I}'."dt
o

(A1) where the prime denotes a derivative with respect
to the argument. This gives an explicit expression
of the function R(E).
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