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Experiments on light absorption in DNA solutions in the region of 260 nm demonstrate specific multiple
sharp oscillations of d4/dT vs temperature T, A being the optical density. A one-dimensional Ising model
with a long-range polyspin interaction in an inhomogeneous “magnetic field” is used to present a quantitative
description of these oscillations. An explicit analytical formula, derived in the paper, provides a surprisingly
good agreement between the theory and experiments. It also alows one to obtain from these experiments
important information about the sequence of the “magnetic fields,” which represents the DNA component
sequence. This is demonstrated by an example of a particular DNA. The long-range interaction in the Ising
model implies a phase. transition. Its nature is shown to depend crucially on well-defined properties of the
DNA sequence. ’ ’

1. PHYSICAL NATURE OF DNA MELTING

From the physical viewpoint DNA is a unique
physical substance. It is a ready-made macro-
scopic one-dimensional system. The total length
of a single mammal DNA is about 1.8 m; it contains
about five billion sites.® DNA consists of four
types of nucleotide molecules (adenine, thymine,
cytosin, and guanine), which form two types of
complementary base pairs [adenine-thymine (AT)
and guanine-cytosin (GC)]. The sequence of these
pairs is specific for each living being, as it rep-
resents DNA genetic information. Obviously, this
sequence is neither random nor ordered in any
sense, nor can it be described by any correlation
relations. The precise description of the DNA
sequence can be provided only by the explicit in-
dication of all its “components” one by one; this
is actually done when the DNA sequence is deter-
mined, as for bacteriophages MS-2,% ¢X-174,%*
FD,’'° and virus SV-40.” Of course, such a situa-
tion is very unusual in physics. )

DNA consists of two strands bound by a hydrogen
binding (“helix” state) with an energy® of about
3000° (i.e., about 6 kcal/mol). When the tempera-
ture of a solvent in which DNA is dissolved in-
creases, these strands may unbind; this process
is denoted as “coiling”, or “melting”, of DNA (see
Fig. 1). The light absorbtion of bound and un-
bounded sites is different for different base pairs
in the wavelength range 250-290-nm. This al-
lows'»?=** experimental determination, of, e.g.,
the number N, of melted sites and its derivative
dN,/dT (T is temperature) directly from the opti-
cal density measurements. Characteristic ex-
perimental plots for dN,/dT [“differential melting
curves,” (DMC)] are presented in Fig. 2. These
plots clearly demonstrate the following typical
features of DNA melting, which should be ex-
plained: (i) The DNA melting temperature is about
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350-400 °K, i.e., essentially less than the binding
energy (~3000 °K) of DNA strands. (ii) DNA DMC’s
(i.e., dN,/dT vs T) exhibit multiple oscillations.
(iii) Each of the oscillations is extremely narrow,
its relative half-width (i.e., the half-width re-
lated to the absolute temperature) is on the order
of 10-3 thus resembling a singularity in a phase
transition. The plots also give rise to the follow-
ing questions: (a) How does the transition to com-
pletely separated DNA strands occur? Can it be a
kind of a phase transition? (b) DMC’s are very
specific and, as is clearly demonstrated by Fig.
2, very different for different DNA sequences.
How does the shape of the curves depend on the
DNA component sequence? (c) DMC’s depend both
qualitatively and quantitatively on the DNA se-
quences which determine the number position, and
shape of the DMC oscillations. Can we learn
something from the melting curves about the DNA
sequence? Can the corresponding information be
relied on despite inevitable experimental errors?
To answer all these questions we discuss DNA
melting in more detail (see Fig. 1). Nucleotide
molecules, forming DNA base pairs, are huge
organic molecules. When they are separated a
large number of degrees of freedom is released,
thus providing'+*'® an entropy per site s ~10 (s is
expressed in units of the Boltzmann constant).

MELTED
(COILED)
STATE 8

HELIX STATE

FIG. 1. DNA melting.
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FIG. 2. Examples of differential melting curves
(dA/dT vs T, A is the light absorbance at 260 nm, 7T is
temperature) for different DNA’s: (a) ADNA in the
standard buffer, [Na*l=0, 0120, according to Blake and
Lefoley (Ref. 11); (b) Physarum Polycephalum DNA in
SSC/10; and (c¢) Adenovirus II DNA in SSC/100, ac-
cording to Reiss and Arpa-Gabarro (Ref. 20).

Thus the entropy contribution (-T's ~-10T) to the
free energy per site compensates the loss of the
binding energy (e,~3000 °K) when 7'~300 K, i.e.,
at room temperature. Therefore the low tempera-
ture of DNA melting is related to the organic na-
ture of its components.

In the immediate vicinity of the melting temper-
ature, €,~ —T's and the free energy per site is al-
most the same in the bound and unbound states.
But a base pair at the boundary between a helix
and a melted region (A or B in Fig. 1) is neither
completely bound nor entirely separated, so a cer-
tain decrease in the binding energy is only partial-
ly compensated by an incomplete entropy release.
Thus each phase boundary provides':®'° a large
(compared to temperature) boundary energy J of
order of |€,| ~3000 K.

Different base pairs, AT and GC, have slightly

different melting temperatures 7% and 7®, re-
spectively; 7 — 7% ~40°K. When the tempera-
ture T is above T%’, but below T®, the “fusible”
AT wants to melt while the “refractory” GC wants
to remain bounded. But a large phase-boundary
energy prevents their independent behavior. As a
result, only those DNA portions which are suffi-
ciently rich with AT and long enough to compen-
sate for boundary energies will melt. So, for in-
stance, long AT protions will melt first and long
GC portions will melt last. .

Low temperature (7 < J) implies little fluctua-
tion. Therefore, when it becomes energetically
preferable, certain DNA domains melt as a whole
in a very narrow (determined by the fluctuations)
temperature region. Thus the number N, of melted
DNA sites as a function of temperature 7T changes
almost by jumps, related to the melting of these
domains. The quasijumps imply*? narrow peaks
in dN,/dT, observed in numerous experi-
ments3- 21! (gee, e.g., Fig. 2).

The higher the temperature is, the more sites
are melted, and the longer the melted domains
are. The entropy of melted domains, bordering
on helix ones, is reduced by the condition which
quarantees the meeting of strands, at B in Fig. 1,
separated at A. If we neglect the elasticity of the
strands and their self-avoidance, then ACBDA in
Fig. 1 is a random walk and the probability of such
a closed loop is proportional to L~3/2,% I, being
the length of ACB. The corresponding entropy de-
crease (“loop entropy”) In L~3/2= —1.5 InL pro-
vides the long-range contribution 1.57 InL to the
free energy and the phase transition®~2® from helix
to melted state. The phase transition in a one-di-
mensional system?” (which is obviously affected by
the elasticity of the strands and their self-avoid-
ance-see below) is of special physical interest.
Also, this transition allows us to observe the de-
pendance of the nature of the transition on the com-
ponent sequence; later we shall prove that the
transition may vary from the first-order one to
the essential singularity, when no thermodynamic
quantities are discontinuous, but at a certain finite
temperature DNA becomes completely melted.

The Landau-Lifshitz impossibility® of the phase
transition in one-dimensional systems is related
to the fact that each excitation creates the phase
boundary and divides the system into two separate
parts. Thus the phase transition can be possible
only in the case of a complete ban on any excita-
tions above the transition temperature (in the in-
finite system, of course). Therefore, contrary to
usual phase transitions, such a transition is re-
lated to the change in the temperature-dependent
ground state rather than to fluctuations whose rela-
tive contribution may tend to zero when the tem-



perature approaches the phase-transition point. In
this sense the high-temperature phase is complete-
ly ordered, as it contains no fluctuations. (We do
not account in this way for the component degrees
of freedom released while melting.)

To describe the shape of the melting curve and
to determine the nature of the transition one must
construct the thermodynamics for the correspond-
ing Hamiltonian. This Hamiltonian'+°:!° is related
to the two possible states of each site (bounded and
unbounded), which can be formally described by
the spin “up” (S=+3 for an unbounded state) or
“down” (S= —3 for a bounded state). The Hamil-
tonian accounts for the difference in the energies
of bounded and unbounded states, which depends
on the temperature, is of different signs for dif-
ferent components in the inverval T®'<T<7T®),
and can be described by the “effective magnetic
field”, which is different for different components
and is therefore related to the component sequence.
Of course, the dependence of the effective Ham-
iltonian on the temperature is related to its being
in fact the free energy for a given set of “spins”
(i.e., of bounded and unbounded states); the sum-
mation over all other degrees of freedom is sup-
posed to be already performed.

In this model the phase boundary is the boundary
between opposite spins, so a large phase-boundary
energy is identical to a large (compared to the
temperature) exchange interaction in a ferromag -
net. The “loop entropy” provides an additional
long -range interaction in the Hamiltonian. Thus
DNA melting is formally equivalent to a one-di-
mensional Ising ferromagnet at low temperatures
in an inhomogeneous external magnetic field (re-
lated to the component sequence) with long-range
interaction. As we already mentioned, the DNA
component sequence cannot be described in any
analytic way. So the question arises: Is it possi-
ble to derive the analytical formulas for, e.g., the
free energy of a sequence which itself cannot be
described analytically?

Though the answer seems to be certainly “no”,
the answer is “yes” if one somewhat refines a
common physical approach. Usually one starts
with a certain model of a physical system, this
- model being precisely known (e.g., a component
sequence is considered to be random), and then
derives an approximate formula (for, e.g., the
free energy). Inthe case of DNA there exists no
analytical description of the sequence so the exact
formula for the DNA free energy F can relate F
oaly to the precise sequence (and, e.g., just to
write down the mammal DNA sequence of 5 x 10°
sites one would need several million pages). But
as we are always interested in the approximate F,
we should determine the approximate analytical
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description of the sequence, which allows us to
obtain F within the given accuracy. This descrip-
tion will essentially depend on the accuracy and
can be found out only simultaneously and self -con-
sistently with F. In this paper I develop such an
approach, which was first proposed in Refs. 12,
26, 29-31, and 65, and which related F to certain
DNA -sequence distribution functions depending on
very specific and unusual variables. The theo-
retical formulas provide remarkably accurate
agreement with the existing experiments.

The very existence of the relation between F and
the sequence indicates the possibility of the in-
verse-problem solution, i.e., of the determination
of certain DNA -sequence characteristics from the
melting curves. However, in thermodynamics the
inverse problem is usually unstable, i.e., infini-
tesimal experimental errors provide a significant
change in the obtained solution.®? The solution in
our case is also unstable in this sense. However,
the relative error in the solution, though finite,
is small together with 7/J~0.1 and may be as

~small as (7/J)®~107%. Practically this allows for

a very accurate solution, which may even be pre-
cise for a finite digital system. (For instance,
the accuracy of 0.1% in concentration is enough to
determine accurately the numbers of two compo-
nents in a domain containing 400 sites.)

At present there exist just two cases which al-
low us to verify the theory. Only for the phages
$X-174 and FD are both sequences®® and melting
curves®+?%18@ known, In these cases both the
computation of the melting curves for known se-
quences according to the formulas of this paper
and the inverse problem solution, i.e., the deter-
mination of certain sequence characteristics from
melting curves, demonstrate the coincidence with
experimental data within experimental accuracy.
This may be the first case of a quantitative agree-
ment between theory and experiment for a natural
biological system.

The theory of DNA melting is in no case simple
or trivial despite its one-dimensional Ising char-
acter. This may be seen, for example from Egs.
(51)—(52) in Sec. VII, which describe the melting
of a random sequence.

II. DNA HAMILTONIAN AND GROUND STATE

Suppose a DNA component sequence is { jr}
=jijs* **, where a given j =1, 2 indicates the com-
ponent (the first or the second) at the #th site. The
state of this sequence is described by the set of
spins {S, }=5,5,S,**+, where a spin at the rth site
S,=+3%, —% describes the state of the site (un-
bounded or bounded, correspondingly).

The energy H of such a sequence
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equalsl, 9, 10, 26, 30, 31, 33

==Y nS,~dY, 5,5,
r r

+ 2 (% - S,.)(% + S,-ﬂ)(% + s,¢2)' °*

7oL
X (2 + Sr#L)( Sr+L+l.)bT ll’l(sz) ’ (1)
h, =hY= (T - TUP) (2

(energy is measured here in degrees).

The “effective local magnetic field” &, is the en-
ergy difference between the bounded and unbounded
states of rth site; the “exchange” interaction J is
the phase boundary energy per segment (with two
phase boundaries). The last sum in the Hamilton-
ian represents the long-range polyspin interaction,
related to the loop-entropy contribution of an L -
length melted segment (with S, =S, ,,=***=S,,
=3, otherwise the last term in H equals zero)
bordering on helix sites [as S,=S,,,,=~-3, or
else the last term in Eq. (1) is zero]. A quantity
X is the characteristic winding angle between ad-
jacent sites, determined by the elasticity of the
strands.3%%

As I have already mentioned, 7 <<J. Thus the
effective temperature is low, fluctuations are
small, and the free energy differs only slightly
from the ground-state energy E=minH, where the
minimum is determined with respect to all possi-
ble sets {S,}. So we start with the determination
of the ground state. To make the reasoning more
vivid, we demonstrate it first with the example of
b=0, where

H==-%"hS,-JY.S,S,,. (3)
r r

When T<T%2 or T7>T%?  ie., when, by Eq. (2),
h,<0or k>0 for all 7, the ground state is ob-
viously a homophase one: all §,<0 or all S,>0,
correspondingly, as this minimizes both terms in
Eq. (3). Sowe assume T®'<T<T®, and thus, by
Eq. (1), 2,>0 at the first component and #,<0 at
the second component.

First let us consider a simple example. Sup-
pose h®’=1,2®=_1, and the component sequence
{j,}is 111111222221111111. Let us plot the dif-
ference AH, in the “helix” and “melted” energies
of the first p sites against p; by Eq. (3),

N [
AH = i h,=3 090 (4)
r=1 r=1

Such a plot for our example is presented in Fig.
3, where each first component provides the ascent
r®’=1, while each second component provides the

AHp

P

FIG. 3. Difference AH, of helix and melted energ1es
of the first p sites, plotted against p for A =—pV=
and the component sequence 111111222221111111, where
1 and 2 denote correspondingly the first and the second
components,

descent 2= —1. For the whole sequence AH,,
=8>0, i.e., the completely-helix sequence has a
larger energy than the completely melted se-
quence. Thus a completely melted state is ener-
getically preferable to a completely helix one.

According to Fig. 3, AH, decreases at a seg-
ment AB, i.e., the helix state of this segment
(containing only the refractory component) would
decrease the energy by ba=5 if it were not for
the exchange-interaction energy J contributed by
two antiparallel spin boundaries. When J>5 the
helixing of AB increases the energy, and the
ground state of this sequence is completely
melted; when J<5 the ground state is provided by
helix AB and melted 04 and BC. The considera-
tions in a general case are similar. Suppose AH,
against p has the shape presented by Fig. 4, where
AHyp> |AHgp| >24H,, (and, e.g., AHp,=AH,
- AHp)

As AH <0, a completely helix state is prefer-
able to a completely melted one. The largest as-

AHp

FIG. 4. As in Fig. 3, for a certain component se-
quence,
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cent, i.e., the largest possible energy decrease in
the case of melting, is achieved at BE. Thus if

J>AHy, the ground state is completely helix. When

J=AHy, -0, BE melts, i.e., the ground state then
consists of melted BE and helix 0B and EF. In the
latter case, at melted BE there is a descent CD,
which (as it was with AB in Fig. 3) indicates the
lower energy of the helix state. Similar to the
situation in Fig. 3, the CD helixing occurs when
J=|AHgp| 0. Finally, when 3J=AH,, -0, then
0A melts (note that 0A in this case has only one
phase boundary) and the ground state consists of
melted 04, BC, DE, and helix AB,CD,EF.

Thus the plot of AH, against p allows us'®® to
determine the ground state for any J (starting with
a sufficiently large J and then consequently de-
creasing it). Of course, the ground state may be
degenerate. This happens when helix and melted
energies of a certain domain are equal. In such a
case we may exclude the ambiguity, e.g., by “pre-
ferring” the melted state [i.e., the one which be-
comes energetically preferable when the tempera-
ture 7, and therefore £’ and 2® by Eq. (2), in-
crease infinitesimally ].

The previous algorithm can easily be formulated
analytically. For example, an arbitrary ground-
state melted domain PR, bordering (at P and R)
on the ground-state helix domain, has a height
AH,,=>J and does not contain (in the plot of AH)
any descent exceeding J or any point lower than P
or higher than R.

When the temperature, and thus 2’ and 1®,
increases, AH,, by Egs. (2) and (4), increases
monotonically, thus implying consequent DNA
melting. A melting domain may appear in five
possible ways: (ii) amidst helix domains, thus
creating =2 phase (i.e., “antiparallel spin”)
boundaries and contributing the exchange energy
J; (ii) amidst melted domains, thus annihilating
two phase boundaries (n=~2) and decreasing the
exchange energy by J; (iii) adjacent to an already
melted domain, thus just shifting the boundary (»
=0) and leaving the exchange energy unchanged;
(iv) bordering on the DNA end and on the melted
domain (z= —1); (v) bordering on the DNA end and
on the helix domain (z=1).

If the melting domain PR contains i’ first-com-
ponent sites and ;‘®’ second component sites, then
its melting is described by the equation

AHpp=h®i M+ n®% P =5 nd. (5)

Thus, accounting for Eq. (2), the ground-state do-
main melts at the temperature®*® T=7,_
T,=TPX®+ TP 0T,/1, (6)

where

_dJ
T
Now it is possible to describe the statistical
structure of the component sequence with respect
to its ground state. According to Eq. (3),

(1) i(l) (2) i(Z) 1)
X =T, X =-—l—-=1-X , T (7)

HE%Ah'I;, I}=_Z;lrsr—wz:srsnl’ (8)
r .

where, by Eq. (2),
AR=RMY - p®=sAT,

h=R90, RY=14+p, BP=p-1, (9)
AT=T‘2)—T“), 7‘=§(T(“+T(2)),
p=2T-T)/AT, w=2J/sAT. (10)

By Egs. (8) and (9) the plot of Al?p is specified
by the parameter p; together with the parameter
w it uniquely determines the ground state for an
arbitrary sequence.

Suppose we monotonically increase p keeping w
fixed. Then the ground state melts monotonically.
Suppose the number of domains, which for a given
w melt in the interval ( p, p+ dp) having length [
and creating » new phase boundaries,” is dN,

dN=gl;p,w)dp; n=0,x1,+2. (11)

When a domain melts at p’ its helix and melted
energies are equal. When p>p’ increases the
difference €, between its melted and helix energies
changes as

€G=% Ahl(ﬁ' "P) ’ (12)

since any change in the number of phase boundaries
is related to domains which melt later. Thus the
difference between the ground-state energy E for

a given p and the energy H, of a completely helix k
state is

4
E—Hﬁ—%AhElf (p=-pNgll;p’ s w)dp’,

n, 1
H,=% AW(pN+ AN) =5 NJ (13)
N=N,+N,, AN=N, ~N,.

Here N, and N, are the total numbers of the first
and the second component sites of DNA. Thus,
except for the “end” effect of n=+1, the ground-
state energy of an arbitrary given component se-
quence is related to three distribution functions
g0y &2, and g_,, depending on three variables each.
These functions are related to a very special plot;
they describe very special domains, which may be
of any length and in a general case can be related
to a set, however large, of many-site correlation
functions.

Obviously, Eq. (13) is the final formula in the
case of an arbitrary sequence, since then the
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ground state should just be related to the statisti-
cal structure of the sequence (and no further pro-
gress is possible unless some assumptions are
made about the sequence). Then one may investi-
gate what information about the sequence can be
obtained from corresponding experiments (see be-
low).

In the case of a random sequence the plot of AH,
against p represents a random walk. Then Eq. (13)
allows us to obtain the explicit formula for the
ground-state energy E, which coincides with that
of Refs. 34, 29, and 38. Even in this simplest case
the formula®® for E is far from trivial:

A )y, (2)
1%-2%5_“_’7;7(1 -h;rﬁnzh‘“h‘z” 4
where
R=hOX O X @)
X®=N,/N, XP=N,/N, (14a)
and A is the root of the equation
XD exp(-an®) + X @ exp(-rn?) =1, (14b)

In the leading approximation over #/Ah, Eqs. (14)
and (14b) reduce to the Vedenov-Dykhne-Lifshitz
formula®?

E=3h-%d-n/[1 —exp(-RJ/B)],

B=i(X Wy, T @p@2) (14¢)

Now let us consider the Hamiltonian (1) with b
#0. In this case the change in energy, provided
by the melting of a domain, is no longer indepen-
dent of its environment. Suppose, for instance,
that in Fig. 5 domains A’A, BB’, and CC’ are
melted and contain L sites each, while domains
AB and B’C are helix and contain [ < L sites each.
Then, if AB melts first, the “loop energy”, given
by Eq. (1) changes by

€ =bTIn(2L* + I*) —= 2bT InL*= — b, InL*, (
b, =bkT, L*=Lx*, I*=Ix°.

15a)

If B’C melts first (changing the “loop energy” by
€,) and AB melts second, then AB melting changes
the “loop energy” by

FIG. 5. Helix (AB, B’C, C'D) and melted (A’A, BB’,
CcC’, ...) domains in DNA.

AZ BEL 20

€/ =b, In(3L*) = b, In(2L* + [*) — b, InL*
% b, InL*+ b, Inl.5= ¢, +b, In1.5. (15b)

Meanwhile, if AB and B’C melt simultaneously,
they change the “loop energy” by

€,=b, In(3L* + 21*) — 3b, InL*
(15¢)

Thus the nonadditivity in Egs. (15b) and (15c¢) is
on the order of b, <J, i.e., small, and can be ac-
counted for as a perturbation. This is a general
situation, as either b, InL < J or b, InL ~J (and
therefore L is very large), and its change (which
is responsible for the energy nonadditivity) with L
is thus small compared to J. Therefore in the
leading approximation one can ignore the nonaddi-
tivity of energies and determine the ground state
according to the algorithm described earlier, just
accounting for the “loop-energy” contribution
while the domain is melting. For instance, if a
domain contains [ sites and melts between melted
domains containing L, and L, sites and not border-
ing on DNA ends, then Eq. (5) (with %= —-2) should
be replaced by the equation

= _2b InL*+b, In3= ¢, + € + b, In2,

h(l)i(1)+ h(Z)i(2)

=—J=bTIn[L,L,x*/(L,+L,+1)]. (16)

III. FREE ENERGY AND MELTING CURVE

In the ground state each domain melts at its
“own” melting temperature. Once the domain is
melted, the energy difference —¢_ between its
helix and melted energies increases with the tem-
perature increase 6T, by Egs. (1) and (2), as
1sdT. It becomes large compared with 7 very
quickly, thus making the fluctuation helixing of
this domain exponentially improbable. Similarly,
the fluctuation melting of a domain somewhat be-
low its melting temperature is also exponentially
improbable. Therefore, at any given temperature
only relatively few domains may be in their nar-
row “melting intervals.” 'So the low-energy exci-
tations (which are the only ones of importance at
low temperatures) can be of two types. They refer
either to a slight shift of the domain boundaries
(e.g., from B to B, or from E to E, in Fig. 4) or to
the change in the state of those (relatively rare)
domains which are in their melting intervals; I
shall refer to such domains as “flexible,” as op-
posed to “rigid,” with | |> T. As flexible do-
mains are rare, the DNA free energy can be ex-
pressed through a successively decreasing con-
tribution from “separate” flexible domains, their
adjacent pairs, triplets, etc.

Let us demonstrate, for instance, the term of
this expansion related to separate flexible do-
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mains. Suppose the temperature increases mono-
tonically, implying the successive melting of do-
mains. If we measure the energy and free energy
from the completely helix state, then a flexible
domain, situated between rigid helix domains
(e.g., BE in Fig. 4), contributes zero to the energy
when it is helix, and the energy €, when it is
melted. For instance, for the segment B,E, in
Fig. 4, by Eqgs. (1) and (2)

€,(B,E,)= =h" "B, E,) - 1®i'*X(B,E,)
+J+bT InfX*L(B,E,)]
=¢(BE)+ €(BB,) + €(E,E). (1)

Here ¢, is the change in the energy related to the
melting of the segment in the brackets (providing
BE melts first): ‘

€{BE)= -h"%“XBE) —h®i®(BE) +J
+bTIn[X’L(BE)] =s(T,, - T), (18)
€,(B,B)~ - “(B,B) - h*i*)(B,B)
+bTL(B,B)/L(BE),
€(EE,)~ -h"{“XEE,) - h**%i‘*(EE,)
+bTL(EE,)/L(BE) .

(19)

Here i*?, i, and L correspondingly denote the
number of sites of the first and second component
and the length of the segment in brackets [we ac-
count for the sign in L; so, e.g., L(E,E)<0 in Fig.
4]; T, is the melting temperature of the domain.*

As the segments can only be in two states, their
contribution AF* to the free energy F (measured
from the completely helix state) is of the “Fermi
type”; for B,E, the contribution is

AF*= ~Tln <1+ Z exp[-sc(BlEl)/T])

By, Ey

=~ -TIn(1+@,Q;), (20)

Q,= 2 exp[-€,(BB,)/T],

1 (21)
Q.= Y expl-<(EE)/T],
Ey
t=exp[-€(BE)/T] . (22)

The summation in Eqs. (20) and (21) refers to
possible boundary shifts, the superscript “+” in-
dicates that the change » in the number of phase
boundaries is positive, =2, and the temperature
is measured in energy units. Boundaries B, and
E, should not meet each other [if they meet, it
means that the whole flexible domain is helix,
which is accounted for separately by the first
term in Eq. (20)]. However, within the accuracy

of our approximation, we should not care about
the large boundary shift anyway, as it essentially
increases the energy (the shift of the boundaries,
which makes them close to each other, increases
the energy by approximately J) and is therefore
exponentially improbable.

When the melted domain becomes rigid, i.e.,
—-€,> T, then, by Egs. (20) and (22),

AF*= EC(BE) -TIn(Q,Q,). (20a)

Now suppose a flexible domain is situated be-
tween rigid melted domains. Then the reasoning
is exactly the same, but we should take into ac-
count that the adjacent rigid domains melted at
lower temperatures. Therefore the contribution
-T'1n(Q,Q,) of the shift of their boundaries “1”
and “2” [see Eq. (20a)] has already been consid-
ered and should not be accounted for twice. There-
fore (as a helix flexible domain now contributes
only the energy related to the phase boundary
shift, while a melted flexible domain contributes
the energy ¢,) the corresponding contribution F~
to F equals

AF "= -TInQ,Q,+ 1)+ TIn(Q,Q,)
= ._Tln(1+ t/Qle) ’ (23)

where @,, @,, and ¢ are calculated according to
Egs. (21) and (22) for the corresponding flexible
domain.*°

Analogous considerations for a flexible domain,
which borders on rigid helix and melted domains,
provide the following formula for its contribution
AF° to the free energy:

AF°= —kTIn(Q, + Q1) + kT 1nQ,
= —kTIn(1+Q,t/Q,), (24)

where @, refers to the boundary with the melted
rigid domain (which has already been taken into
account at lower temperatures), and €., which de-
termines ¢, refers to the flexible domain.

A flexible domain which borders on the DNA end
is accounted for in the same way, but since it has
only one phase boundary, only one @ enters the
corresponding formula; the other @ should be re-
placed by 1.

The total free energy F equals the sum of con-
tributions (20), (23), and (24) from all consequent-
ly melting domains. If m is the ordinal number
of the melting domain in the given type (i.e., with
Ny,= 2, -2,0) then

F-H,
=—kT Z {ln(l- + leQthm)

+1n(1+2,/Q, Q2 + In(1+ @t/ @10}, (25)
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where H, is provided by Eq. (13).

Thus the procedure of the determination of the -
DNA free energy is as follows. According to the
algorithm of the previous section we determine
all consequently melting ground-state domains,
evaluate their @,, @,, and €, and then write down
formula (25). Equation (25) can in no way be re-
lated to any perturbation or mean-field theory, as
the ground state and its excitations (in particular,
their locations) depend, according to Sec. II, on
the whole {,} sequence and its detailed structure.
Note also that all our considerations were based
only on a large value of J. Therefore they are
readily generalized to any refinement of the Ham-
iltonian (1) (e.g., to that accounting for the inter-
action of adjacent sites).

Now that we know the free energy of the two-
component ferromagnet (1), evaluation its mag-
netic moment M=3 N, ~3(N -N,)=N,-3N, is no
problem (N, is the number of “spin up,” i.e., of
melted, sites) and dM/dT=dN,/dT, which are the
experimentally measured quantities.!’®*!! In the
leading approximation over T/J we obtain

dM _dN, Bl S

AT " ar “Zm: S coshi Bl (T—T,]’ " 27"
(26)

where all types of domains are included and T, is
by definition determined by the relation

€.=s(T,-T). (27)

In relatively short DNA’s with short melted do-
mains, the loop-entropy term is small compared
to J and can be neglected; then T, is provided by
Eq. (6). Using parameters 7’=52.5°C, T®
=94.9 °C from Ref. 50; 8=0.0106 °C"*, T,=100°C,
and the known DNA sequence from Ref. 4, we ob-
tain agreement with the plots of Ref. 21 (see, e.g.,
Fig. 6) within limits of experimental accuracy.

Let us estimate the accuracy of Eq. (25). It is
related to two factors: we neglected the contribu-
tion of adjacent flexible domains and of high-en-
ergy fluctuations. Now we demonstrate the con-
tribution of high-energy fluctuations in the ex-
ample of a homopolymer (which is similar to a
large ground-state domain with average composi-
tion) and the contribution of the adjacency of flex-
ible domains in the example of a periodic polymer,
where all flexible helix domains are adjacent.

IV. HOMOPOLYMER AND PERIODIC POLYMER

The Gibbs probability w,, of I>1 helix sites,
which follow a melted site and are followed by L
=1 melted sites, in a homopolymer equals

AZ BEL 20
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FIG. 6. The experimental differential melting curve
(Ref. 21) for the fragment of the DNA of phage $X-174
(fragment y, of Ref, 21), The quantity 6 is the relative
number of melted sites; d§/dT=N~-'dM/dT, where N is
the total number of sites.

w,=exp{[ f(1+ L) = (31h =3 Lh+bET InL+J)]/T},

(28)
where we (i) do not need the subscript “#” in h, in
Eq. (1) for a homopolymer, (ii) consider, for
simplicity, x=1, and (iii) denote by f the free en-
ergy per site. :

Obviously,

E w;p=1, (29)
I,L=1

and thus, by Egs. (28) and (29),
exp[(n -¢)/T] -1

=exp(—-J/T) i L exp(L¢/T), (30)
L=1
g=febh, | (31)

where the convergence of the right-hand side in
Eq. (30) implies ¢ <0; ¢ =0 is possible only if b
>1. ) }

When 5>1, then Eq. (30) implies

~¢ xexp(-J/T), h<h,,

=0, n>h,, (32)
where, by Eq. (30),

exp(h,/T,) —1=¢(b) exp(-J/Ty) , (33)
and thus

hy/ T~ £(b) exp(~J/T,) (33a)
&(b) being the Riemann ¢ function

£d) = f: m. (33b)

mel
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Equation (30) implies the Poland-Scheraga-Apple-
quist phase transition.?"2¢

Now we may apply this reasoning to Eq. (25).
At helix ground-state domains, according to Sec.
I, (h)<0<h,, (k) being the average £, in the do-
main. Therefore, the contribution of high-energy
excitations there is exponentially small. In melted
ground-state domains (h)>0. As h,<exp(~J/T),
these domains (except for their exponentially
small fraction and for effects related to their finite
length) do not have excitations according to Eq.
(32).

Now suppose b<1. Then, if -2= T, the sum in
Eq. (30) quickly converges owing to ¢ =%, and Eq.
(30) provides

h—o¢=exp(—J/T) i L exp(Lh/T) <exp(-J/T).
L=l
(34)

If /T2 0, then ¢ =0 and Eq. (30) provides®
exp((k+ [¢[)/T] -1~exp(-7/T)|¢[**,  (35)
and thus
¢~ ¢o~exp[-J/(2-0)T], || <¢o
o~ B[ CVexp[-d/(1 -B)T], 7> ¢,-

Thus, as should be expected, the high-energy
excitations in all cases give exponentially small
relative refinements in Eq. (25) which are unim-
portant, at least until the ground state is a two-
phase one.

Now we consider a periodic polymer which con-
sistsof identical A-length “fusible” domains,
which melt first, with A-length “refractory” do-
mains between them, which melt second, and as- -
sume X=1 and a temperature at which A-length
domains are already rigid melted ground-state
domains. The Gibbs probability w,, of m>1 conse-
quent melted A-length domains, which follow the
helix A -length domain, is

(36)

w,= exp({mA*f - [3r€, —3mA€, -3 (m - 1))¢,
+J+bTIn(mA* =\) ]}/ T),
A¥=A+2, (37)

where we denote the free energy per site by f, the
helix energy per site of the A- and A-length do-
mains by 3¢, and 3€,, while the coiled energies of
A and A domains are -3¢, and -3¢, per site. The
equation

E w,=1 (38)

is analogous to Eq. (29) and provides

exp(/T)= 3 exp(mA*s/T)m —2/A*)" , (39)

m=1
where

¢p=f+3h,

I= (R + R, A)/ A*

I".L=h,t+(J+ bT InA*)/x. (39a)

All further considerations are similar to those
for a homopolymer but they no longer involve a
large parameter J/T. For instance, b>1 implies
a phase transition (to ¢ =0) of the same nature as
in a homopolymer, but at a temperature at which

h=h,=(T/1) lni (m =X/A¥)~T/x. (40)

m=1

[i.e., by Eq. (392), at a temperature somewhat
higher than that at which the ground state becomes
a homophase one]. The transition is related to
the “many-domain” effect (as the transition singu-
larity is provided by m —«), i.e., to the collective
effects of interacting adjacent flexible domains.
According to previous reasoning [see, e.g., Egs.
(15b) and (15¢)] this interaction slightly renormal-
izes the energy which determines the transition
temperature.*?

Equation (39) determines the free energy. For
instance, near the phase transition point, when 1
<b<2,

-4 ~(T/A*) Mk, - 1)/ T]H @1
0<ilk—;l.<<(T/)\)’ (41)
$=0, h>h,.

If b<1 (so there is no phase transition) and \%/T
>1, then

-¢ ~(T/A*) exp[-Ah/T(1 -1b)] . (42)

In all cases ¢ «<1/A* and therefore, when the
ground state is a two-phase one, the adjacency of
flexible domains just renormalizes the terms in
Eq. (25) [as should be expected from general con-
siderations in Sec. II and Egs. (15b) and (15¢c)].
But when the ground state becomes a homophase
one this renormalization either implies a phase
transition when b>1 and A and A are finite, or de-
termines the difference between the free energy
and the ground-state energy when <1 and A%/ 7T
>1. )

The above considerations are readily applied to
a general case of adjacent ground-state flexible

' domains in Eq. (25). The necessity in the consid-

eration of the contribution of the adjacency of flex-
ible domains is related to the fact that in the im-
mediate vicinity of the temperature T, of the tran-
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sition to the homophase melted ground state all
remaining ground-state helix domains obviously
have their melting temperatures very close to T,
and are therefore flexible. Thus every ground-
state helix domain has two adjacent flexible do-
mains bordering on each of its neighboring rigid
melted ground-state domains.

V. PHASE TRANSITIONS

According to previous reasoning, the phase
transition, related to DNA melting, occurs when
b>1 (and of course N—«) and can take place at
T=T, in the following ways:

(i) The ground state is always homophase and
just changes from a completely helix to completely
melted one. It means that, with respect to the
ground state, a heteropolymer is quasihomogen-
eous, there are no regions long enough and in-
homogeneous enough, to provide the inhomogen-
eous ground state. This case is similar to the
case of a homopolymer [related to the average
heteropolymer with % from Eq. (14a)] and can be
treated similarly. In this case the half-width of
the melting curve, by Eq. (34), is exponentially
small over J/7T. The order of the phase transition
depends on b. When 7=(T, - T)/T,>0, then, sim-
ilar to Egs. (30) and (33),

¢o¢1-1/(b-1), 1<bh<2,
¢ocTinT, b=2, (43)

¢ cT+p7®"t, b>2, nonintegral,

¢ «<T+pt InT, b>2, integral,

where p is a constant. When 7<0, then ¢ =0 (cf.
Ref. 26).

(ii) The ground state changes from a two-phase
state to a completely melted state; at the transi-
tion point of the ground state, average lengths of
ground-state helix and melted domains remain fi-
nite. This case is similar to the case of a periodic
heteropolymer of Sec. IV and can be treated simi-
larly. The phase transition half-width is inversely
proportional, by Eq. (40), to an average length of
the ground-state helix domains; the nature of the
transition is the same as in Eq. (43). In particu-
lar, the singularities of the type described by Eq.
(43) are typical for quasiperiodical sequences.

(iii) The polymer reduces to a set of (infinite)
polymers; the density of the polymers with the
“critical” 2=k’ and the corresponding free energy
per site ¢(h’ =)o (k' = 1), [where ¢(X)=0 when
X>0 and o(X)=0 when X<0; the singularity of
¢(X) is determined by Eq. (43)] is c(h’). Then the
free energy ¢ per site of the initial heteropolymer
is

YA.
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o= [ o' ~o’ = meln)an’ . (44)
Obviously, the resulting singularity can be arbi-
trarily smeared.

(iv) The ground state melts with infinitely in-
creasing average domain lengths. Then, by Eqgs.
(40) and (41), the transition occurs at the melting
point of the ground state and is described by Eq.
(25). The phase transition singularity is deter-
mined by the singularity in the density of the
ground-state helix sites at the ground-state transi-
tion temperature and can be of a different nature.
Let us consider, for instance, the case of a se-
quence with finite correlation radius »,. When
the characteristic lengths of helix 7, and melted
L, domains become much larger than v_, the prob-
ability density w(I,X) of an ]-length segment with
concentration X of the first component is deter-
mined by the Gaussian distribution

- w(l, X) <exp{-I(X -X)*/28X%}, (45)

AX/VT being the mean quadratic concentration
fluctuation and X the average X. By Eqgs. (16) and
(7) the segment (7, X) may be the ground -state
helix domain (with n= -2, as helix ground-state
domains are rare and close to their melting tem-
perature near the transition point), if

ROX+h®(1 -X)~ =[J+bRTIn(X?L,)]/1,. (46)
The characteristic [, is determined by

wO(L)Emla-X U)(Z,X) ’ (463,)
with X from Eq. (46), while

L, ~1/wyL,). (47)

Equation (47) determines L_, and thus ¢ o 1/L,

(¢ is measured from the completely melted ener-
gy), the transition temperature T,, and the transi-
tion singularity. The latter is of the essential
singularity type: In|¢| o<(T,-T)"* (cf. Ref. 26).
Obviously, these considerations are applicable
whenever [, L. > v,. (Thus the essential singu-
larity is characteristic for quasirandom sequen-
ces.) According to Sec. II, 1,, L, xJ/T>1, so
for 7,, which is not too large, they may be applic-
able in the whole melting interval. In the leading
approximation over 7/J the exact knowledge of L,
is immaterial, as L, enters the formulas only in
the form of J+ T InL. The quantity b7 InL is not
negligible compared to J only when L is exponen-
tially large, most of the DNA is melted, helix do-
mains are rare, and n= -2. Therefore, to account
for b+#0, we should just replace J (in the equation
for »=0) by J*=J+bTInL, with L, determined by
Eqgs. (45)-(47). Simple evaluations (providing the
same accuracy and accounting for L >1 at any



temperature) result in (cf. Ref. 26)
J*=J/[1 - 2b6Th/(6RAX)?] ,
Ah=h"Y —p® (48)
E=rMX+ (1 -X).

When b =0 the leading (over 7/J) approximation
for the free energy is provided by the Vedenov-
Dykhne-Lifshitz formula (14c); a more accurate
Vilenin formula for the ground-state energy E of
a random sequence [with AX?=X(1 -X)] is pro-
vided by Eqs. (14), (14a), and (14b).

To summarize, the nature of the phase transi-
tion essentially depends on the value of b and on
the nature of the “randomness” of the sequence.

VI. INVERSE PROBLEM

The differential melting curve dM/dT =dN,/dT
is described by Eq. (26). Each term in the sum in
this equation has a sharp maximum at T=7,. The
relative half-width of the peak is 6T7/T~1/sl < 1.
The maxima provide the oscillatory picture ob-
served in numerous experiments. When the DNA
total number of sites is not too large*® each peak
- is related just to one or several melting domains.
That is why the fitting of the experimental dN,/dT
to the theoretical formula reduces mainly to the
fitting of each separate peak to its domains. This
allows us to determine [, and T, for these do-
mains.

The light absorption A changes with the light
wavelength somewhat differently for different
components,51'“v“5-52v18v“ S0

) (2)
where u, and 4, are independent of temperature
and depend only on the wavelength, while the num-
bers of the first N{*’ and the second N{* compo-
nent melted sites are independent of wavelength
and depend only opn temperature. Thus the use of
different wavelengths allows us to determine sep-
arately dN+?/dT. The latter quantities are de-
rived from Eq. (25) and are described by equations
which differ from Eq. (26) only in the replacement
of 12 by i&2) .

dN§e® L g l
—=—=0, : Bi? i . (50)
dT zm: " cosh?[B1(T-T,)]

The knowledge of dN&**)/dT allows us to deter-
mine i and i$’, which (together with T,) deter-
mine the change #,, in the number of phase bound-
aries.

An example of the solution of the inverse prob-
lem and its accuracy (compared to the known DNA
sequence®) is demonstrated in Table 1.
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TABLE I. Domain melting temperatures T, lengths
U and first-component concentrations X,,, as according
to the present analysis of experimental data of Wada
et al. (Ref. 21) for the DNA fragment (the fragment y;
containing 2745 sites) of phage ¢ X-174. Superscript “E”
indicates corresponding data for the known (Ref. 4) phage
sequence (with unknown sites in it, replaced by the first
component). The last column gives the ordinal number
of the domain in the fragment. The adjustable parame-
ters used are $=0.0106°C™! and T,=100°C. Parameters
T =52.5°C and T*=92.9°C are taken from Ref. 50.
The experimental plot, which is analyzed in Table I, is
presented in Fig. 6.

Number of
T, Im 1z Xom XE domains
70.5 233 239 0.585 0.582{d:)! I
70.87 641 671 0.570 0.566+0.002 VII
71.2 468 457 0.559 0.558 £0.002 VI
71.5 215 220 0.574 0.591%0.005 1
72.0 333 333 0.526 0.571{*):3 i
72.44 481 490 0.530 0.559%0.015 v
73.5 374 335 0.497 0.501+0.003 %

When DNA is very long (i.e., contains 10° or
more sites) the peaks may overlap and the plot of
dN,/dT may have only one or few®® maxima.*® Then
Egs. (26) and (50) become integral equations with
respect to distribution functions g, [from Eq. (13)]
and allow us to determine these functions.*®

VII. SUMMARY

(i) DNA is a double-stranded two-component mol-
ecule. When the temperature of its solvent in-
creases it exhibits the transition to separate un-
bound (“melted”) strands. This transition is
described by a one-dimensional Ising Hamiltonian
(1) in an external temperature-dependent inhomo-
geneous “magnetic field” (the sequence of mag-
netic fields is related to the DNA component se-
quence) with a long-range polyspin interaction.
Spin “up” (S=+3%) describes an unbound (“melted”
or “coiled”) site, spin “down” (S= -3) refers to
a bound (“helix”) site.

(ii) An explicit analytical formula for the ther-
modynamics of the Hamiltonian (1) is presented.
No assumptions are made about the component
sequence and therefore the solution is not related
to usual approaches (such as perturbation or mean-
field theory, scaling, renormalization group, etc.).
In the special case of an infinite random component
sequence the free energy f per site in the leading
approximation (which becomes accurate when we
approach the phase transition point) equals
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— - R+ A%
=3h-5J*-h= 51
Fezh-1 R[1 - exp(-AJ*) ] + xR DR’ (51)
where
AR L)X (2) ,
J*=J/[1 = 2bx*Th/X VX ®(an)?] (52)

Ah=1Y —p®);

X and X are the concentrations of the compo-
nents (X ®?+ X ®’=1), x is a characteristic winding
angle related to the elasticity of the DNA strands,
and A is the root of the equation

XD exp(-A®) + X @ exp(-An®)=1. (53)

(iii) DNA melting is not continuous but local. It
occurs “step by step”: each time a certain speci-
fic domain (containing typically several dozen or
several hundred sites) melts. That is why the
characteristic feature of the differential melting
curve dM/dT=dN,/dT [M being the magnetic mo-
ment of the Ising Hamiltonian (1), N, the number
of melted sites, and dN,/dT the experimentally
measured quantity], in the general case of a finite
arbitrary sequence is multiple sharp peaks (origi-
nated by the “quasijumps” of N, due to local
“melting”). These oscillations were observed in
numerous experiments and are demonstrated in

Fig. 2. In the cases when both the DNA sequence
and the DNA melting curve are known the theo-
retical formula for dN,/dT, applied to the given
sequence, demonstrates an agreement with the
experimental data within their accuracy.

(iv) If one fits the experimental oscillatory plot
dN,/dT to the theoretical formula, one can deter-
mine the length [, the component concentration X,
and the number » of phase boundaries of melting
domains. This is verified by the example of phage
¢X-174 DNA, where I, X, and » for all melting
domains are in surprisingly good agreement with
those for the known ¢X-174 component sequence
(see Table I).

(v) When 5>1 in the Hamiltonian (1), then DNA
melting is a phase transition. The nature of this
phase transition depends crucially on the quantity
of b and on the component sequence. Correspond-
ingly, the singularity at the transition point may
be of any nature, from the first-order phase tran-
sition to the essential-singularity type.

Note added in proof. Recently J. Gabarro—Arpa,
P. Tougart, and C. Reiss [Nature (to be published)]
used Egs. (26) and (27), first presented in Ref. 31,
and proved their coincidence with their experi-
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