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Amplification on a relativistic electron beam in a spatially periodic transverse magnetic field
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An exact solution is given for the canonical model equations describing the electromagnetic fields on a free-
electron-laser amplifier comprised of a high-quality relativistic electron beam propagating along the axis of a
helical pump magnetic field. The case of a cold beam is analyzed in detail and it is shown that, depending
upon the parameters, one can have gain when the system is stable, owing to constructive spatial interference
of modes; or exponential gain when it is unstable. Gain curves, line shapes, and linewidths are presented for
conditions of reported and planned experiments. Reasonable agreement is found with the reported
experiments.

I. INTRODUCTION

A considerable body of literature' has accumu-
lated in the past few years on wave propagation on
a beam of relativistic electrons undulating in a
spatially periodic transverse static magnetic field.
That work has been largely motivated by experi-
ments in which near-infrared radiation was gener-
ated' and amplified' when electron beams with en-
ergies in the range 20—50 MeV traversed a 5.2-m-
long periodic transverse magnetic fieM set up by a
bifilar double-helix winding. More recent experi-
ments' employing an intense (25 kA} lower-energy
beam (1.5 MeV) have demonstrated that megawatt-
level radiation at submillimeter wavelengths can be
generated as well. These successes have stimula-
ted the design of further intense beam experi-
ments, ' with the objectives of increased power and
efficiency. Other proposals to design efficient
tunable sources of visible radiation using beams
with energies up to 100 MeV have also been pres-
ented. ' Great practical interest would attach to
these experiments, if one could thereby demon-
strate that the accessible range of wavelength,
power, and efficiency with this interaction went
beyond what is available from molecular gas las-
ers. ' The additional property of electronic tuna-
bility inherent in the "free-electron-laser" inter-
action discussed here is of course absent in most
molecular laser systems.

The purpose of this paper is to present an exact
solution for a theoretical model of an idealized
amplifier configuration patterned after the experi-
ments. The important features of this analysis
are as follows.

(a) The transverse momentum undulations of the
electrons are included exactly in the equilibrium
electron distribution function. The theory is thus
exact for finite undulations of any magnitude.

(b) The electromagnetic response of the electron
beam is determined by a linearization of the kinetic

equation. No multiple expansions are required
since the stationary undulations are included in
the equilibrium. Interpretations in terms of non-
linear physical mechanisms involving stimulated
scattering and the like' are thus -not essential to a
full description.

(c) A system of basis vectors with the symmetry
of the helical undulations is introduced which per-
mits solution of the problem by Laplace transfor-
mation. The normal modes of this system are
neither plane transverse electromagnetic waves
nor longitudinal electrostatic beam plasma waves
and thus cannot be obtained by conventional trans-
form methods in a system with constant basis vec-
tors. Determination of mode polarization is a
routine matter in the natural coordinates.

(d} Exact steady-state solutions for the linearized
radiation field of the form

E(g f) a etajg ttt)-
=1

are obtained, where the kz(u&) are (sometimes
complex) independent roots of a sixth-order alge-
braic dispersion relation and the a&(a) are linearly
independent mode amplitudes.

(e) Analysis of the dispersion relation, under
conditions appropriate for an amplifier, permits
the approximate reduction of the problem to an
equation of the form

(k —k~)(k —k, )(k —k~)G(k) = 0,
where G(k) is a cubic equation in k. The range of
parameters where this cubic possesses complex
roots is readily identified, as is the value of the
maximum spatial growth constant. Under repre-
sentative conditions we demonstrate that the para-
meters traverse the regimes of complex as well
as real roots, so that previously employed' simp-
lified limiting forms for the gain coefficient are
not generally applicable.

(f) Two of the six modes have negative phase and
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group velocity and thus have zero amplitude in an
amplifier with an ideal output coupler (i.e. , one
with no reflections). Since at most one of the re-
maining four modes can exhibit exponential growth
(complex root), the output amplitude of a high-
gain amplifier is shown to be only about one-sixth
what it would be if the growing mode were propa-
gating alone. (This corresponds to an input coup-
ling loss of 15.6 dB.)

(g) Gain curves have been obtained for conditions
of the reported' amplifier experiment. Reasonable
agreement between theory and experiment as to
gain, line shape, and linewidth is found. The reg-
ime of complex roots contributes not insignificant-
ly to the gain function, but under interesting cir-
cumstances one can obtain gain due to construc-
tive interference even when there are no complex
roots. Gain curves are also presented for condi-
tions of a planned experiment using an intense
beam.

II. THEORY

Consider an electromagnetic field that depends
only on time t and the coordinate z.' It can be
represented in terms of potentials

A= e„A„(z,t)+ e„A,(z, t)

e= e(z, t),

nu=yy= -eE 'u/mc. (10)

Now consider an electron distribution function f
which depends only on the Cartesian coordinates
z,x,y, z, and t. If in place of these one employs
rathertheset n, P, u, z, and t, then the Vlasov
equation reduces to

O=f

= Bf/St+ z Bf/Bz + e Bf/So.'+ p Bf/8 p+ u Bf/Su

= Sf/Bt+ z Bf/Bz -(eE 'u/mcu)Bf/Su,

since n = 0, P = 0, and u is given by Eq. (10). In
Eq. (11),

e&~ e&„

yz e4, eA„

where

Consider a time-independent state in which the
beam density is so small that the self-electric and
magnetic fields may be approximated as zero.
The associated solution of Eq. (11) is then f,(c!,p,
u). When perturbations about this steady state
are small it is convenient to write f=fo+f, + ''',
E 0+ 'E B Bp+ &y etc . Then on lineariz ation
Eq. (11) yields

Sf,/St+ z08f, /Bz = (eE, 'u, /mcu)Sf, /Su, (14)

such that

B= V x A = -e„BA„/Bz + e,BA„/Bz,

E = VC c'BA/8 t— —
(2)

= -e„c 'SA„/Bt —e,c 'BA„/Bt e,SC /Bz . —

On using Maxwell's equations it is readily seen
that the potentials obey the equations

8'A/Bz' —c '8'A/Bt'= —(4v/c)(e„J„+e„J„),
8'e/Sz St = 4zJ„

where J is the current density.
Let the velocity of an electron be r and define

(4)

(5)

Formulation of the problem in this manner thus
includes the effects of the z-varying static magne-
tic field exactly, and permits a solution using
first-order perturbation theory. No expansions in
powers of Ap are required.

Therefore, let us seek solutions of the linearized
equations of the form E,= Rea(z)e '"', J,= Rej(z)e '"',
f, = ReF(c. ,p, u, z)e '"', etc. Then if

u = yr/c,

y = (1+u2)&&2

Then the equation of motion can be written

u= -(e/mc)(E+ u x B/y),

(6)

(I)

(8)

a~ = a„e„+a,e„,
it follows from Eqs. (2)-(5) that

a"+(o a /c'=4wi(uj /'c

a, = 4vij, /ur, —

(18)

where m is the rest mass, and it can readily be
seen that where a prime denotes a derivative with respect to

z. Equation (14) then becomes
o. =u„- eA„/mc ' and P =u„- eA„/mc'

are particle constants of the motion. Moreover,
the scalar product of Eq. (8) with yu leads to

F' i(ru/z, )F= (ea, 'uo/mcuz, )-Sfo/Su,

the solution of which is

(20)



20 AMPLIFICATION ON A RELATIVISTIC ELECTRON BEAM IN. . . 1663

E(n, p, u, z, )e xp[ip( n, p, u, z)]-E(n, p,u, 0)

= (e/m cu)[sf 0( n p, u)/Su] dz' exp[i/(n, p, u, z')]a(z') 'u, (n, p, u, z')/z, (n, p, u, z'),
0

where

(21)

$(n, p,u, z)=&a Jl dz'/z, (n, p, u, z').
0

The current density J for an unneutralized beam is

J= -e
Jl

d'u ucf/y = —e Jl dn dpduucflyu, ,

where u, =yz/c and z is given by Eq. (12). The first-order part of Eq. (23) yields

j= —e Jl dn dp du (uc/yx i(e-a~/mc(du„) fo (u„—lu'„)[e„(n+ eA~/mc')+ e„(p+ eA~/mc')] f,
+ [e„(n+eA~/mc')/u„+ e„(P+eA~/mc')/u„+ e,]E),

where

uo, u„= i(e a„ /mc(d)( n+eA, „/mc')+ i(e a„ /m c(o)( P+eA~/mc') .

(22)

(23)

(24)

(25)

f.= &(n)~(p)g(u),

E(n, P,u, o) = ~(n)8(P)G(u),

(28)

(27)

There is one case which can be solved exactly,
viz. , where

l

which corresponds to the magnetic field near the
axis of a system of helical coils carrying no net
current. This is the conventional zero-order-
model magnetic field adopted in free-electron-
laser theory. It is convenient to introduce coor-
dinates which track the vector potential. The
basis vectors are

A,(z) = (B,/k, )(e„-cosk,z+ e, sink, z) .
One notes that A~=const, and that

B,= v x A, =B,(e„cosk,z+ e„sink, z),

(28)

(28)

e, = -e„cosk,z+ e, cosk, z,
e, = -e„coskoz —e, sinkoz, e, = e, .

Then Eq. (24) leads to

(3o)

(31)

where $= eB,/mc'k-, . Now it is seen that uo, =(u'- P)'~' is independent of z, and $(0, 0,u, z)=&oyz/uo, c.
Equation (31) can be employed to deal with the effects of a thermal distribution in z. We shall, however,

limit ourselves to a cold beam, viz. ,

g(u) =N05(u -u'),
G(u) =N, 8(u -u') .

If we then introduce the plasma frequency (d&= (4mNoe'/m)'~2 and write

a= a,e, + a,e,+ a,e3

then Eqs. (31),(19), and (18) can be reduced to

a,"+ ((()'/c'- k20)a,- 2koa,' =
(urdu /czyu 0,)a, ,

a (')z ta Z (', ('a, (z') ( ) (azia)'(z-z'))
exp

Bog sonic

4vi(deuN&$ i&uyz
+ exp

gCQ og QogC

(32)

(33)

(34)

(35)
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(37)

where we have suppressed the prime on the u' of Eqs. (33) and (34).
Note that Eqs. (35)-(37}are a system of integro-differential equations where the integrals are of the

convolution type and the coefficients of the other terms are constants. This latter property is not enjoyed
by the corresponding equations for a„,a„, and a, . The set (35)-(37) can be readily solved by a Laplace
transformation. In other words, if one defines

az(}}=f dna&}z}e ' '
(j =1,2, },3

0

where Imk is sufficiently negative to ensure convergence, and defines

A. = kc/4) —j'/sog ~

then on employing the convolution theorem, Eqs. (35)-(37) are carried into

2ikokc'l c'
c»n, —, &~u,

= —,[a,'(0)+ ika, (0) 2ik—oa, (0)],

(38)

(39)

(40)

(41)

C2 4mN1eg
«32+2+ «33+3

(d A

where
2 2=1-—(k +k )——C 2 2 (dP gg

ll ~2 0 ~2y
Os

(42)

(43)

(44)

5(1+ &')&
(45)

u 1++
gQ A.Og

If one eliminates n, and nz, Eqs. (43)-(45) yield

&o'2=~ e»e»l ~2(0)+ika, (0)+ 2ikoa~(0)+ &}
—

~ —,x'e»[a', (0)+ika, (0)-2ik a (0)]—,

(46)

where

N1eu C~

yy 11 23 ~2 (47)

8 = &'[a»(e»e»- «', ,)—4(k2P'c'/ur')&»] .
If one uses the identity

one can write Eq. (48) in the form

It = [(x p)& 52(1+ P)][f}2 (x+x )2][&2 (x x )2]+ ~252(&2 xm)(f}2 x2 xa)

where

x = kc/&o, x,= k,c/&u, 5= (&u~/a&)(u/yu', )' ', 5 = (1—u'„5')' ', p=y/uo, .

(48)

(49)

(50)

(51)

In the limit xo-0, Eq. (50) corresponds to the re-
sult found by Bernstein and Hirshfield" in the geo-
metric optics approximation. One can also write
Eq. (50) as

R=]II (x —x,),

where the x& are the roots of A=0.
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FIG. l. Graphical representation of the dispersion.
relation (55). Six real roots result when the left-hand
side l(x) = (z —p) —0 has six intersections with the
right-hand side y (x) (discontinuous curve).

2' dk

—. ((d/c)J dx u& exp(i(()zx/c)
)' 1
(2mi

(52)

The transforms +& are readily seen to be analy-
tic functions of 0, and hence of x, everywhere ex-
cept at the points kc/&u=x=xz, where there are
simple poles. Thus the Bromwich inversion inte-
gral

0
X
II
)C

0
)C+
II

FIG. 2. Graphical representation of the dispersion re-
lation (55) near x=b+xo. In this case Eg) (dashed cure)
only has four intersections with ~(x) (off scale on this
plot) since l(x) has slipped through the gap in ~(x). Two
complex conjugate roots result, one corresponding to
exponential spatial growth.

can be evaluated in terms of the residues of the
integrand. In other words, if one writes R' =dR(x)/
dx, defines

a =4]]N,euct'5'/u&yu„,

and introduces

0(x)= 'il =(0' x, —xa) [(x.—0—)' —0'(1+(')]
(
—a,'(0) +ixa (0) +2(xa, (0)) a(yx„ax —a)a

~a

—0(xxl(x —0)' —ll (1+(')](—a,'(0)+ixa, (0) —0ixa, (0))

there results

exp(ix J(dz/c)

(53)

(54)

and a, and a~ follow from Eqs. (35) and (3V).
The dispersion relation R =0 is conveniently analysed by writing it in the form obtained from Eq. (50) by

subtracting from both sides the rightmost term in Eq. (50), dividing by the factor [b' —(x+x,)'J[b' —(x-x,)'],
and then adding $'52 to both sides of the equation. After a partial fraction decomposition the result is

p5 x0 4b'+3x, b —2x0 1 1 4b' —3x0b —2x0 1 1
8b b+x, x-(b+x, ) x+(b+x, ) b -x, x-(b -x,) x+(b -x,))

(55)

For parameters currently accessible experimental-
ly 5 «xo «1, b = j., and

p, =y/u =(1+u ) (u —P)
=1.(1 ~')/2e=l. (56)

A cross plot of the right- and left-hand sides of
Eq. (55) is shown schematically in 1'ig. 1, where
the parabola is the left-hand side and the discon-

l

tinuous curve the right-hand side. Note that there
are six intersections unless the dashed curve
passes through a gap in the so'id curve. A more
precise version of the region near x =b is shown
in Fig. 2. When the dashed curve passes through
the gap there are four real roots and a pair of
complex conjugate roots, one of which corres-
ponds to exponential gain. For the situation rep-
resented in Fig. 2 one must have roughly that
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p, +6= b+ x, or alternatively (1 +t' )/2y'= x,. This
is the familiar ratio of wavelength to helix period
for free-electron lasers. The dashed curve in
Fig. 1 cannot pass through the gap near x=b -x,
since this would require p - b = b - xp or
(1+(')/2y=-x, . Three of the component waves
are slow (k,.c/(d &1).

R is readily seen from Eq. (50) that the two left-
most intersections of Fig. 1 correspond to

x, =-b —x, +O(g'6'x, ),
x, =-b +x, +O($'6'x, ),

and lead to space-time dependences

a, = exp[i((d/c)(z +ct + ~ ~ ~ )],

(57)

which are waves propagating backwards. We shall
reject these since our model assumes radiation
incident at z =0 and forward propagating, in the
absence of reflections at the output. Hence the
associated amplitudes, proportional to B(x,) and
B(x,), must vanish. This provides two conditions
which can be used to eliminate a', (0) anda,'(0) from
Eq. (53). When this is done, and one recognizes
that the other roots of interest lie close to x =1,
there results (correct to lowest significant order
in all the small parameters)

B(x) =4[(x —p)' -6' -O'P]
x [i(1 —x)a, (0) +x,a, (0) ——,

' yu„a].
When

x,(1 + &')/2 y' —x, » —,
' $6',

(59)

(60)

it follows from Eq. (50) that the remaining four
roots are well approximated by

x~ =p +~
~ x2=p —5

1+xp, x4 1 -xp,
(61)

and on employing Eqs. (42)-(44), (52), and (56) and
its counterparts for a, and a3 there results after
considerable algebra the lowest-significant-order
result, on setting a =0 for simplicity,

f (d
X, Re e, (pl exp(i —(z —ci))

E, 0. (64)

P6 (dL5/c P6 &uL P (dpL 1
2 p. —1 —xo 2 c Y c y"2 (65)

since
~
p, -1-x,

~

~ 6 for the roots in question.
Equations (62) and (63) are transverse electric
field amplitudes which evolve by the spatial inter-
ference of the four independently propagating
waves, each with a slightly different wavelength.
Constructive interference results in net amplitude
enhancement; destructive interference results in
net amplitude reduction. Counterparts to these
equations for the temporal interference (beating)
of oscillations on a free-electron laser have been
previously discussed. " For either linear or cir-
cular polarization for the field at the boundary
z =0, Eqs. (62) and (63) show that the component
of the propagating field proportional to 6 is circu
larily polarized. We shall show below that Eqs.
(62) and (63) have only limited utility; they do not
appear to apply to the Stanford amplifier experi-
ment, for example, as shall be shown in Sec. III,
since the wavelength range of greatest interest is
outside of the range of inequality (60).

When
~
p —1 -x,

~

& 6 it is readily shown that
there is one root

x~=b -x, —~ $'6 (66)

which is well separated from the other three pro-
vided that 5 «x, «1, and these latter can be got
from (55) on retaining on the right only the term
with denominator x —(b+x,). The resulting ap-
proximate dispersion relation is

[(x —p) -6 ][x—(b +x,)]+-,'g'6'x, =0. (67)

This reduced dispersion relation has been given
previously. ' Application of the formulas for the
roots of a cubic indicates that Eq. (67) possesses
an unstable root, when 6 «x, «1, for

Note that if the interaction length L «c/(d6, then
in order of magnitude the ratio in Eqs. (62) and
(63) of the plasma correction terms, which involve
5, to the vacuum propagation terms, which do not,
is roughly

x exp i—[z(p, —x,) —ct]
~ (62)

,'g'x, b&+,x—p &(-276'$'xJ8)"'
This corresponds approximately to

(1+/')/2y (1+—,'P) &kJk&(1+$')/2y,

(68)

, = ee,X(0) epxp i—(z —ci))
.CO

lie

[ (0) (0)] sin((dz 6/c)
JtL —1 —xp

x exp i—[z(p, —x,) —ct]
~

the wavelength range of greatest interest for free-
electron lasers. Note that the unstable domain
disappears as x, vanishes and hence was not found
in the geometric optics approximation. " The max-
imum spatial-growth rate occurs when

b+x, —p =(-,'O'Px, )"'
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and to the requisite accuracy the roots are

x, =p. +(252@x,)'/' exp(-)) i/3),

X2

x, =p, —(-'O'Px )"'
(69)

Thus employing Eq. (59) with a =0, we find to low-
est order

a, (a) =-,'[a, (0) —a, (0)]exp(i —ax,)
3

+a[a, (0) +ia, (0)]+exp i—ax&)
j=1 c

Note that
3 S

g(x, -!)=o, Q(x, -!)'=0,

(VO)

g(x, —!(,)' = --,'5']'x, ,
jD

(71)

whence the sum in Eq. (70) can be written on Taylor
expansion and use of Eq. (Vl),

Pe~ i—zx
~c j)

=exp i—zp. (c )

=exp ~i—zp~
['.co

(c j

( (d
+exp J i z(x, —g) [—Ec )

[i((o/2c)z O' Px,] '"
(3n)!

(72)

a, (z) =QC(x~)e ""/'",

then it is a simple matter to show that

IA(xg) I 2x~/
IB(x/) I b —x03 —x/2

(V4)

Clearly where (&u/2c)z5'$'x, s 1 the interference of
the three modes is important, and only when
(&o/2c)z5'f'x0»1 does the spatially unstable mode
corresponding to x, dominate. Moreover, Eq. (70)
shows that the exponentially growing term only
has about 1/6 the initial amplitude. This corre-
sponds to an input power coupling loss of 1/36,
or -15.56 dB. Such an input coupling loss is well
known in traveling-wave tube theory, where only
one mode grows exponentially while two or more
pthers dp npt.

The wave polarization in the unstable regime is
also transverse. This is seen from the governing
differential equations (35)-(3V). If we write

4

a, (z) =+A(x&)e'""/' '
jM

(73)

—( ~~ g)./ (1 +g ) /3 P 3((]
IB(x/) I ( (d j (V5)

III. RESULTS

In this section we present some numerical re-
sults for the steady-state spatial evolution of the
electromagnetic disturbance on the electron beam,
assuming the driving fields a, (0) and a, (0) at the
boundary z =0 to be assigned. Values of the physic-
al parameters have been chosen in two distinct
classes: those corresponding to a low-current
high-energy beam, and those corresponding to a
high-current low-energy beam. As in the analysis
of, Sec. II, the beam is assumed cold and effects
of finite radius are not included. The beam is
also modeled as having an axially uniform equilib-
rium. In some experiments, the beam is actually
injected as a sequence of short bursts ' this fea-
ture could complicate a detailed comparison be-
tween this theory and the observed measurements.

The high-energy results are shown graphically
in Figs. 3-V. In Figs. 3-6 are plotted power gain
versus axial distance for the transverse electric
field component a, (z) from (54), with the ampli-

It has been fashionable to describe the gainmech-
anism for the free-electron laser in terms of
parametric coupling between longitudinally polar-
ized beam modes and transversely polarized
electromagnetic modes. %deed, if the helical
magnetic pump field is absent ($ =0) then Eq. (50)
corresponds to the product of uncoupled dispersion
relations for these entities. A ponderomotive
force is said to give axial bunching which drives
the instability. ' But, as we have shown, the polar-
ization of the modes on the beam in the presence
of the helical pump field is nearly transverse when
the growth mechanism is most active, and thus
the waves have little associated space change
(& ~ E= 0); therefore it is clear that the convention-
al modes have lost their identity in the regime of
instability. Indeed, as seen from Fig. 1, one of
the transverse waves has a phase velocity below
c. As we have stated, Eqs. (62) and (63) describe
an interference phenomenon giving small growth
and decay alternatively as free-running transverse
waves drive transverse electron perturbations
which beat in phase against one another. In con-
trast„Eqs. (VO)-(73) describe a steadily accum-
ulating bunching in phase, in the regime of
complex roots, with a relative phase value such
that work is done by the electrons on the wave
causing it to grow. Axial bunching (accompanied
by an axial electric field E,) is of higher order in
6.
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FIQ. 7. Gain vs wavelength evaluated at s = 160
(interaction length 520 cm) for k0=1.96 cm ' and $
=0.716 for three values of cg& and p. The FTHM (line-
width) for each curve is 0.38@. The peak gain values
are 2.3% (X=10.520 p), 12.5k (X=18.73 p), and 88%
P, =42.135 p). The symbol X on the ordinate is the point
where the roots of the dispersion relation switch from
all six real (longer wavelength side) to four real and two
complex (shorter wavelength side). In each case shown,
the gain curve embraces the regimes of both real and
complex roots, corresponding to gain on a stable system
due to constructive spatial interference and to expon-
ential growth on an unstable system.

tudes given by (53); we have taken a, (0) =1 and

a, (0) =0. The quantity P(s) is a,(z)a,*(z) and P(s) -1
is then the power gain. The axial coordinate s is
distance measured in units of the helical magnetic
pump period, i.e. , s =k,z/2v. Except for phase
factors, the power in the mode with transverse
electric field compoent a, (z) is approximately
equal to that corresponding to a, (z) [see Eq. (V4)].
The power in the longitudinal wave is Inuch smaller
[see Eg. (V5)]. Thus overall gain could be as large
as four times that shown in the figures.

The parameters chosen for the examples pre-
sented in Figs. 3-V are ko =1.96 cm ', g =O.V16,
~ =10.', 1.5x10', and 2x10' sec ' (corresponding
to beam current densities of 15, 34, and 60
mA/cm'), and y=48, 36, and 24. The parameter
s =k, z/2v runs from 0 to 300. The individual
curves in Figs. 3-6 are for fixed values of the ra-
diation wavelength; capital letter labels designate
solutions in the regime of real roots to the disper-
sion relation (6V), while lower-case labels desig-
nate solutions in the regime of complex roots.
Curves A-F in Fig. 3 are for wavelengths from
10.575 p, to 10.535 p, , respectively, in steps of
0.008 p. . Curves g, f, and e in Fig. 4 are for viave-
.lengths from 10.52V to 10.511 p, in steps of 0.008
p; curves d-a are for wavelengths of.from 10.509
p, to 10.503 p. in steps of 0.002 p, . Figs. 3 and 4
show the change in the nature of the gain versus
distance curves as wavelength is varied. At the
longer wavelengths (Fig. 3), where the dispersion
relation exhibits real roots, the gain alternates

0 «0
COMPI. EX
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I I I I I

480 490 500 510 520 530
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FIQ. 8. Gain vs wavelength for conditions of a pro-
posed experiment at the Naval Research Laboratory
(Ref. 5). The beam energy is to be 2.0 MV (y=4.9),
beam current is to be 1.7 kA (J= 6000A/cm ), pump
period 2.0 cm (ko ——cm ) and pump strength parameter
$ = 0.47. Results are shown for two interaction lengths,
50 and 100 cm, corresponding to s= 25 and s = 50. Peak
gain values are 4.23 and 2.64/ of what would be predicted
for exponential growth of the unstable mode propagating
alone.

—-50

between positive and negative values as the spatial-
ly propagating modes beat against one another.
At s =160 (corresponding to an interaction length
of 520 cm) the maximum achievable gain for the
mode given by a, (z) is 2.3%. For wavelengths be-
low 10.520 p, the dispersion relation has complex
roots, one corresponding to spatial amplification;
thus the curves for gain can exhibit monotone be-
havior (Fig. 4). This example is for parameters
resembling those for the reported amplifier ex-
periment, 3 except for the aforementioned compli-
cation due to the pulsed nature of the beam in the
experiments, with which we have not attempted to
deal. The measured power gain wa, s 7% for a
circularily polarized incident incident wave, in
fair agreern. ent with four times our calculated val-
ue of 2.3%, which was for a linearly polarized in-
cident wave. The measured 1/e full linewidth was
0.4/p, in fair agreement with our calculated FWHM
of 0.38% (see Fig. 7).

Figs. 5 and 6 are similar to Figs. 3 and 4, ex-
cept that y=24 and &&=2&&10' sec '. Curves A, B,
and C (real roots) are for wavelengths of 42.235,
42.215, and 42.195 p, , respectively, while curves
a-h are for wavelengths between 41.995 and
42.175 p, , in steps of 0.020 p. . The maximum gain
of 88% for s =160 occurs at X =42.135 p, and is in
the regime of complex roots. The FWHM for the
gain curve at s =160 (rightmost curve in Fig. 7) is
also 0.38/0. Also shown in Fig. 7 is a gain curve
for y =36 and z~ =1.5&& 10' sec ', values interme-
diate to the other two cases. Here maximum gain
of 12.5% occurs at X =18.73 p, with a FWHM also
of 0.38%. All three curves in Fig. 7 have similar
shape, equal FWHM's, and similar spanning of
the regimes of both real and complex roots to the
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disper sion r elation.
Fig. 8 shows two gain curves for parameters of

an experiment planned at the Naval Research Lab-
oratory. ' Here a low-energy (y =4.9) intense elec-
tron beam (J =6000 A/cm') is to be used. The
other Parameters are $ =0.47 and k, =v cm '. Two
interaction lengths, 50 and 100cm, are considered,
corresponding to s =25 and s =50. For s =25, the
spatial beating of the modes is clearly in evidence
for wavelengths below 505 p, , even though this is
within the regime of complex roots. The maximum
gain, at X =515 y, is 3.3 (330%). For s =50, the
gain curve has slightly lopsided Gaussian shape
with a maximum gain of 165 at A. =511 p, . The
FWHM for s =50 is 2.5/o. The e-fold length for

the one mode exhibiting growth in this case is
22.88 cm. If pure exponential gain were assumed,
one would find for the power gain values of 78 and
6250 for s =25 and 50. The correct analysis is
seen to give values which are 4.23 and 2.64/o of
these, corresponding to coupling losses of 13.7
and 15.8 dB, respectively. The latter value is in
close agreement with 1/36 =-15.6 dB, as discussed
above.
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