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The viscosity of a 50% mixture of soft spheres (i.e., particles which interact according t;o the force law
P = d/r ') bas been simulated by applying nonequilibrium molecular dynamics to a system of 108 particles.
Results for several size (actually d) and mass differences are given and compared with the predictions of a
conformal-solution Van der Waals 1 theory. To construct this theory, it was necessary to derive a mixing
rule for the mass. Overall, agreement between theory and simulation is satisfactory to size differences of
about 14% and to mass differences of about 5%. It is pointed out that nonequilibrium molecular dynamics
is a powerful technique and appears well suited to this particular application: The simulated viscosity of the
mixture can be obtained to within about 5% accuracy for the 108-particle system by applying a shear to the
system and following its behavior for about 7000 time steps.

I. INTRODUCTION

Although few computer simulations of a dense gas
or liquid mixture in nonequilibrium have been dis-
cussed, ' they would be especially worthwhile
since simulation gives insight into the behavior of
the real fluid and complements theoretical studies
so well. The purpose of this article, therefore,
is to report some results obtained via nonequilib-
rium molecular dynamics (NEMD). Specifically
we have computed the viscosity of a binary mixture
of soft spheres for several size and mass ratios.
In addition a conformal-solution theory for viscosity
1s pl oposed.

There are two introductory remarks. The first
is that nonequ. ilibrium molecular dynamics is a
relatively new technique which has several sig-
nificant advantages over standard equilibrium
molecular dynamics (MD). For example, to ob-
tain the viscosity from the latter method, one ex-
amines the fluctuations in the fluid at equilibrium
and calculates the coefficient from the Green-Kubo
expression. But a large system is necessary and
fluctuations have to be followed for an exceptionally
long time to get results which approach the ac-
curacy which one would expect from an experi-
ment. ' With the former technique, however,
rather than examine a system only at equilibrium,
the model system is studied in a nonequilibrium
state after imposing an external force, in this
case a homogeneous shear. ' ' It turns out that
many properties of the system are weakly depen-
dent on system size and can be obtained to within
an acceptable accuracy from a manageable num-
ber of time steps. Nonequilibrium molecular
dynamics has been reviewed in detail by Hoover
and Ashurst' and applied recently by one of us to

obtain the frequency dependence of shear vis-
cosity."

The second remark emphasizes that the soft-
sphere system was the logical choice for this
preliminary study of a mixture. For instance,
(a) it was very helpful that the properties of the
pure fluid are known. ' the equilibrium properties
were discussed in Ref. 6 and the viscosity has
been computed by Ashurst and Hoover. "' (b) The
soft-sphere potential has" characteristics which
'simplify the computer simulation and the analysis
of the results. As an example a soft-sphere mix-
ture should exhibit only a single fluid phase, with
no problems due to gas-liquid or liquid-liquid phase
separation. (c) One might expect the behavior of
the viscosity to be close to that of a real mixture,
certainly at high temperatures. ' (d) The con-
formal-solution concept has been examined crit-
ically for an equilibrium mixture of soft spheres
in Ref. 10.

The organization of the paper is as follows: the
simulation is outlined briefly in Sec. II and some
results for a special mixture in which cross in-
teractions are zero are given in Sec. III. Results
from this particular mixture are one indication of
the validity of the simulation procedure. A con-
formal-solution theory is proposed for viscosity
in Sec. IV. Viscosities from the simulation for
various interaction and mass differences are re-
ported in Sec. V and compared to the conformal-
solution expression. Finally Sec. VI gives some
conclusions.

II. COMPUTER SIMULATION

The description of NEMD for viscosity used
here —a homogeneous-shear method, has been
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X = p*/W2 T*'" (3')

where p*=(V/V)o' and T*=Tk/e, defining o and
c by Eq. (1'). In this work we equated X to p* so
that T*, the redundant variable, was fixed at
0.25.

With X (= p*) set at a particular value and with
the molecular parameters o.', P, and y given, the
simulation proceeded as described in Ref. 4 allowing,
of course, for the two species 1 and 2. Briefly,
the particles were given initial velocities and
positions at zero time and the equation of motion
solved as a function of time step &&* (see Table I).
Having verified the system was well behaved,
specifically that the energy was constant (vari-
ation to within 0.1% over a projected 10000 time
steps), a strain rate ~*was imposed in the x-y
plane: 1O = Su„/Sy (Table I).

The viscosity coefficient (q) follows from the

published in Ref. 4. Nonequilibrium molecular
dynamics in general has been reviewed in depth
in Refs. 3 and 7. Only an outline, therefore, is

We considered a binary mixture of soft spheres
with masses m and nm, respectively. All inter-
molecular interactions (P) were of the form

P(r) =d/r",
so that with the index of repulsion fixed, Q is a
function only of the parameter d. It is, however,
also convenient to write Eq. (1) in terms of the
usual energy (o) and length (c) parameters:

4 (r) =&(o/r)".

Designating the particles by 1 and 2, like and un-
like interactions were expressed in terms of d„
and the parameters P and y:

Q„=d„/r'2, Q„=Pd„/r12, P„=yd„/r".
For the simulation, the potentials were truncated"
at a reduced cutoff distance which corresponded
to 1.5 for the Q» interaction and 1.5 P~12 and
1.5 y'~12 for the p» and rf » interactions, respec-
tively.

The system of volume V was constructed with
108(N) (p=N/V, where p is the density) particles
with species 1 labled by an odd particle number,
and species 2 by an even particle number. Thus
N, =N, =2N or, in number fractions (x;): x, =x2=~.

Following Ashurst and Hoover, ' the system was
studied at a density-to-temperature ratio X:

1f4 N ' t'~ 1/4

v2v &» W2V

with T the temperature and k Boltzmann's con-
stant. In terms of the usual reduced density and
temperature

TABLE I. Some dimensionless variables in terms of
&, 0., and d. See Eqs. (1) and (1'). In this work, (&/kT)
is constant.

Variable Dimens sonless Beat

Length

T I.me

Veloc ity

Shear Bate

Viscos ity

Pressure

x+g
= ~+(d/kT) '/"

~~= ~V&(m/. ) «'
= 6 t*(d/k T) (m/k T)

v=v+(&/m) /

=,*(kT/m) «'
= &+0 (&/m) /

= *(d/k T) / (k T/m)
g = g*(m&) '/2/0. 2

i/2(k T) 2/3/gf/6

pgg/ 3

= p+(kT) (e/kT) -'/4

pressure tensor P:

&=
V ( Q~, [v,. -u(r, )][v,. -u(r,.)]

(4)

since

8Q»P„=-g (5)

In Eq. (4), the summation is over i with m, =-m

for i odd and rn,.—= nm for i even. Similarly Q,,
is determined from Eq. (2) noting that i can be'

odd or even. v,. is the velocity of particle i,
u(r;) the streaming velocity at r, , and R,.z = rz

Values of X were varied between 0.3 and 0.8
(close to a melting density' ). Reduced shear
rates were set between 0.1 and 0.3, although for
most of the runs &~=0.2. In general, about 7000
time steps with & t~='0.006 were sufficient to give
a consistent value of the viscosity which was esti-
mated to be accurate to about+5% (Sec. IIA). In
fact we found we could usually obtain a viscosity
to within 6/o after only 3500 time steps.

A. Comment on the effect of strain rate

At first sight one could perhaps criticize NEDM
for viscosity because the strain rates required
are often very large in real terms and it would
seem impossible to obtain a Newtonian viscosity
from the technique. Fortunately, however, ex-
perience indicates the effect of the magnitude of
the strain is small for a soft-sphere system, ""'
and in fact is unimportant if the parameter X is
less than 0.6. For large values of X, the effect
is as shown in Fig. 1, which illustrates the vari-
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The argument can in fact be reversed. We have
found that the value of the pressure obtained from
NEMO (i.e., with a nonzero strain) for a given
number of time steps, has less statistical un-
certainty than the corresponding value determined
by MD at equilibrium. This is especially true for
mixtures whose components differ in mass and
size (d).

III. RESULTS FOR A NONINTERACTIVE MIXTURE
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FIG. 1. Viscosity of a pure soft-sphere fluid at X= 0.6
as a function of strain rate co*. Open circles from Ref.
7, filled circle; this work. Note: numerical results re-
ported here were made compatable to those of Ref. 7 by
the factor (c/kT), since (e/kT) =1 in that reference but
here, kT/e was fixed at 0. 25. Specifically, ~* (this
work) = co*(Ref. 7) x 4~~'~.

(8)

where I is the unit tensor, g, (r) is the equilibrium
radial distribution function, and v(r) is an unknown

scalar function of x. The potential contribution to
the hydrostatic press~re is therefore

2

P, (~')=-—Jtr g(r;~')dr

=p, (~'=0)- ~ r v(r) —,——dr: ~'p' t' &P rr: —,
' r' I

(8a)

=p, ((u' =0), (8b)

since the second term of Eq. (8a) vanishes. "
We have verified by calculation that the pressure

is at most very weakly dependent on the strain.
For the illustration shown in Fig. 1, for example,
we determined P* (~*=0.2) =1.487. By comparison
the equilibrium run gave p* (&v*= 0) =1.425.

ation of the viscosity with strain rate at &=0.6.
A convincing argument that our results are valid

even for apparently large values of the strain rate
can be made by considering the hydrostatic pres-
sure The p.ressure (and temperature) is in-
dependent of strain provided one works in the
linear region, i.e., stress is linearly proportional
to strain. For instance, if & is the symmetric
traceless strain rate tensor and g(r) the nonequili-
brium radial distribution function, then an ir-
reducible Taylor expansion of g(r) in the strain
rate can be performed so that in the linear region" "

If P =0 [Eq. (2)] one has a mixture" in which
each component behaves as though it alone occupies
volume V. For x, =x, = ~, the mixture properties
at a ratio X are related simply to those of a pure
substance (@=1, y=1, P =1) at &X. For example,
we have for the viscosity

n, .w =n,.„(2~)( I+~&)

and for the hydrostatic pressure

p. ,„(X)= 2 p,„,.(-,'X) . (1o)

The computer simulation can thus be appraised
by investigating a mixture with P = 0. In this study,
mixture results at 1=0.6 were compared with
those for a pure Quid at X =0.3 for two values of

a =1 and n =10. For all calculations ~*=0.2.
The comparison is summarized in Table II.

The agreement between corresponding values
in the two columns of Table II is very satisfactory.
We note further that, within computational error,
the pressure for the pure fluid agrees with the
&*=0value from Ref. 6, and that the viscosity
agrees with the interpolated value from Ref. 7.
See also Fig. 1.

Overall, our computer procedure is judges to
give a viscosity with an accuracy of 5~jo for runs
of about 7000 time steps with &t*=0.006. While
this assessment is based on a system of 108 par-
ticles interacting with a potential truncated at
1.5 r*, preliminary simulations with a larger
cutoff distance of 2.5 x* indicate the viscosity
changes by less than 1%. As remarked, the results
are also not very sensitive to the size of the sys-
tem.

IV. CONFORMAL SOLUTION THEORY

Our simulation procedure is suitable to test
unambigously a transport theory. A conformal-
solution approach is especially appropriate since
the simulation satisfies the basic corresponding-
states criteria; namely, a single-force law is
obeyed for all interactions,

0&,, =~„f(r/v, ,);
the total potential is the sum of all pairs, and
classical mechanics is assumed. In addition, the
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TABLE IT.. Test of the computer simulation for a binary mixture with y= 1, but P= 0, at
X= 0.6 for e = 1 and 10, respectively. The viscosity and pressure are compared to values
from a pure fluid at X= 0.3 according to Eqs. (9) and (10). All calculations for m*=0. 2

Mixture at X
(2 = 1

From the pure fluid at 2X

Hydrostatic pressure
Total Viscos ity
Kinetic Viscosity

Hydrostatic pressure
Total Viscosity
Kinetic Viscosity

0.493
0.619
0.296

e =10
0 52c
1.24
0.57

x 0.235= 0.470 ~

x 0.298= 0.596 ~

x 0.136=0.272
t

2 x 0.235= 0.470
4.162 x 0.298= 1.24
4.162 x 0.136= 0.57

~ The Monte Carlo vat. ue at X= 0.3 is 0.464.
"Ref. 7 gives 0.64.' From results with (d=0.2.

parameter d» (i.e., cr» and c») is entered directly.
Here we will consider the Van der Waals one-
fluid (VdW1) model since it is well established for
a mixture in equilibrium. "

2

o'~ = —
2 Q rv(r) —(rr ——,

' l)dr ~: ~ ', (i2)

A. Mixing rule for the mass

Attempts to extend" the conformal-solution con-
cept to a nonequilibrium mixture have emphasized
some difficulties. First there is no consistent
relationship between the transport properties in
constrast to the situation for the equilibrium prop-
erties which follow from the free energy; second,
a one-fluid idea seems inappropriate for prop-
erties such as the diffusion coefficient"; and
third, one needs a mixing rule for the mass. "

In this latter case a mixing rule for the mass
can be derived from the formal expression for the
pressure tensor using an approach analogous to
that of Henderson" as follows. Let us consider
the potential contribution to the symmetric traceless
part of the pressure tensor a' (the kinetic contri-
bution is very small in the liquid) for a pure fluid:

assume that the v;, (like Q, ~) are simply rescaled
transformations of one another, hence

=2r 2 4 +, dQ*
rl, =—p g x,x, v„v'&0M„r v*(r*)dr*

0 dh*
(i5)

(v has units of time).
Equating Eq. (i5) with the corresponding expres-

sion for a pure fluid gives a mixing rule

o4lcPI„= Qx,xjc4qd&, qM, ~.

The mass M,.&
is given by

M, =2m,.m j(m;+m )

assuming that the relaxation of g;~(r~2') is gov-
erned by &;, and 0,&

and by the reduced mass of
an i,j pair of particles. We, therefore, suggest
that Eq. (i6) and

3 30 = &Xg 0 ]g,
ig

3 3
E„Cr„= X]&g ~]g O ~&

form a consistent set of mixing rules for the vis-
cosity. For a soft sphere the rules simplify to
become

where r =r/r. After carrying out the integration"
and comparing the result to the constitutive Eq.
(5),

o' = -2 'g(d

one obtains

and

d»4= ~» d~~4

d'~'~~= g X.x d'~'WM.
B. Viscosity expression

(20)

p ) r v(r)dr .2w

0

For a mixture this equation becomes

The one-Quid expression for the viscosity of a
mixture'of soft spheres, g„, at state parameter
X is

(i4) (22)

By analogy with the equilibrium VdW1 theory we where r/0(XO) is the viscosity of a reference sub-
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stance (pure soft-sphere fluid) evaluated at X',
to correspond to X [for example, in terms of den-
»ty p.; p'0= p.(d./d. )'"].

In this work the reference viscosity is that of the
fluid with the potential parameter d„, [Eq. (2)],
and with unit mass for convenience. Using Eqs.
(20) and (21), and Eq. (2), the viscosity equation
for a 50% mixture can be written

I +y' 3v n +2p 42m/(I + o')
7f (X) 4 go (Xo)

L (1 1j4 2P 1/4)2 (23)

Note that Eq. (23) reduces to Eq. (9) if y =1 and

o! =1 but P =0.

V. RESULTS FOR INTERACTION AND MASS

DIFFERENCES

Simulated viscosities are presented and com-
pared to the conformal-solution expression,
[Eq. (23)], in this section.

A. Dilutegas mixture

We are interested here in the dense system but
it is necessary to verify that the conformal-so-
lution approach is satisfactory for a dilute-gas
mixture, hence we first tabulate some values for
the dilute-gas 50/o mixture in Table III. For con-
venience the species are taken to have equal
masses (o. =1). Shown are mixture viscosities
from the Chapman-Enskog expression" normalized
by the viscosity of the pure soft-sphere dilute gas.
The corresponding results from the VdW1 equa-
tion (23) are given in the second column. It is
clear the agreement between the two sets is very
close, for example Eq. (23) is correct in the limit
of y = 1 but with P = 0, and further , both the C.hap-

man-Enskog and VdWI values tend to zero as P
tends to. infinity with y =1, or as y tends to in-
finity with P =1.

B. Dense mixtures

In two examples shown in Table IV, X,' was
selected to be o.8 with corresponding values of
q, (0.8) =4.40 obtained by extrapolation from re-
sults reported in Ref. 7, and a pressure of 2.81
from Ref. 6. These results were considered to
include a high X or density.

Table IV presents the viscosities and pressures
at fixed & =1. The heading Vd%1 gives the vis-
cosity from Eq. (23) and the pressure from the
relation p=P,X/Xo. Based on the estimated errors
in the viscosity and pressure both for a given run

TABLE IV. Variation of the viscosity and pressure for
50% mixture with P and y. Calculations carried out
at op*= 0. 2. In all cases 0. =1. The simulations were
run at a density-to-temperature ratio X such that Xo——0.6
or 0.8, see text.

Viscos ity
VdW1 S imu lated

Pressure
VdW1 Simulated

Simulated viscosities and hydrostatic pressures
are presented in Tables IV-VI under conditions
selected to demonstrate how these properties
vary with the parameters P and y and the mass
difference &. In order to compare the results
with the conformal-solution equation in a con-
sistent manner, we selected the reference pure
fluid [Eq. (22)] such that X,' =0.6 at the reduced
strain rate of 0.2. From simulation q, (0.6) was
found to be 1.245+ 0.050 and the hydrostatic pres-
sure (Po) to be 1.44+0.01. Simulations, therefore,
were carried out at a value of X determined from
the relation

0 6 = —'X(1+y' '+2P' ')

P(q=1)

0
0.2

5

y(P=1)
0
1
5

2
1.133

1

0.867

1.066
1

0.932

.2

1.138
1

0.870

1.065
1

0.932

TABLE III. Comparison between the Van der aals
one-fluid (Vd%1) equation, Eq. (23) and the Chapman-
Enskog (CE) expression for the dilute-gas equal mass
50% mixture; X=0. In both examples the values have
been reduced by the Chapman-Enskog viscosity of a
soft-sphere dilute gas.

Ph =1)'
0.2
1.0
5.0

Ph =1)
0.2
1.0
5.0

X',= 0.6

1.42 1.32
1.24

1.08 1.02
X0= 0.8

4.64
4.40"

3.84 3.47
Xo——0.6

y(P=1)
0.2
1.0
5.0 1.16

1.25
1.24
1.22

~ Reference 22.
b From Ref. 7.' From Ref. 6 (~*=0) .

1.72

1.15

4.50

3.01

1.57

1.28

1.58
1.44
0.98

4.07
2 81 c

2.57

1.53
1.44
1.22
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TABLE V. Variation of the mixture viscosity with
mass (e) with p, y=1 at Xp=0.6, ~+=0 2, Note the
pressure is independent (to within computational error)
of the mass as expected.

TABLE VI. Results for a mixture with y= 0.2 and 5.'0
(with P=-1 in both cases) for n = 5 and 10, respectively:
Xo= 0.6 and ~*=0.2.

V iscos ity
VdW1 S imulated

Pressure
(1.44 for o.'= 1)

Viscos ity Pressure
VdW1 Simulated VdW1 Si'.ulated

10
20

100

2.13
2, 56
4.30

2.17
2.30
3.50

1.44
1.40
1.42

0.2
5.0

0. =5
1.81 1.92
1.82 1.81

o. =10

1.57
1.28

1.57
1.24

and for the reference pure fluid, we judge accept-
able agreement between the simulated results
and the conformal-solution VdW1 theory to be
within +8% for the viscosity and + 10% for the
pressure. It is seen, therefore, that the con-
formal-solution theory is generally satisfactory.
Table V gives the r'esults from the simulation and
VdWI for the variation of the viscosity with mass
only (P=y=1). We include the pressure —which
should be constant at 1.44—mainly to verify
that our simulation is satisfactory even though Qt

is very large. Agreement between theory and
simulation is acceptable if & &20. Finally results
for the mixture with parameters P, y, and n not
equal to 1 are given in Table VI. Here, one ob-
serves that the VdW1 theory is not satisfactory.

VI. CONCLUSION

We have simulated a binary mixture of soft
spheres by considering a 108-particle system
with components whose masses differ by a pa-
rameter Q'- and which obey the force laws @»=d»
r", g» Pd»/r», a—nd Q» yd»/r", r-espectively.
The shear viscosity has been computed by the meth-
od of nonequilibrium molecular dynamics' ' and
our first conclusion is that the computer tech-
nique is most satisfactory for this purpose: re-
liable results (viscosity to about 5%%uo) were ob-
tained without excessive computer time (about
7000 time steps) and with the relatively small
system of 108 particles.

We have further extended the well-known Van
der Waals one-fluid conformal-solution theory of
mixtures to the viscosity by proposing a mixing
rule for mass. Predictions from this theory were
compared to the simulated results. Our con-
clusions on the comparisons is not clear-cut. It

0.2
5.0

2.05
2.24

2.50
2.03

1.57
1.28

1.55
1.25
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does appear that the theory is satisfactory for a
mixture whose components have equal mass (n
=1) with P and y in the range 0.2-5.0. In terms
of a "Iennard-Jones o," this range can be re-
garded as representing molecules whose sizes
differ by about 14%%uo (see Ref. 18). Also the theory
is very satisfactory for a mixture whose com-
ponents differ only by the mass (i.e., P =y= 1) for
at least a mass difference of 20. However, there
is some evidence that the theory will fail to agree
with simulation if the mass difference is about 10
with y (or P) not set equal to 1. It is very possible
that the mass-mixing rule is too approximate, but
it is also possible that the concept of the conformal-
solution theory is not valid for all the values of P,
p, and & considered here. Clearly the theory
eventually has to fail if the mixture has components
which have very different masses and/or inter-
action parameters. We are currently investi-
gating mixtures which indeed are composed of such
different species."
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